Appendix to the

GrypTool Books Learning and Experiencing Gryptography with GrypTool and SageMath

Introduction into the CAS SageMath

Bernhard Esslinger

Appendix to the "CrypTool Book": Learning and Experiencing Cryptography with CrypTool and SageMath

Introduction into the CAS SageMath

Bernhard Esslinger

https://www.cryptool.org Friday 28th June, 2024 (13:15:00) This is a free document, so the content of the document can be copied and distributed, also for commercial purposes – as long as the authors, title and the CrypTool web site (https://www.cryptool.org) are acknowledged. Naturally, citations from the CrypTool book are possible, as in all other documents. Additionally, this document is liable to the specific license of the GNU Free Documentation Licence. This also applies to the code of the SageMath and OpenSSL samples in this document.

Copyright © 1998–2024 Bernhard Esslinger and the CrypTool Team.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation (FSF). A copy of the license is included in the section entitled "GNU Free Documentation License".

Suggestion for referencing with Bib(La)T_EX:

Typesetting software: LATEX Version control software: Git Support with translations: DeepL Translator by DeepL.com and ChatGPT 4 by openai.com Supporting the generation of Tikz diagram: Claude 3.5 Sonnet by claude.ai

Table of Contents

1	Introduction into the CAS SageMath	5
1.1	The three typical user interfaces of SageMath	6
1.2	Examples using the built-in mathematical functions in SageMath	8
1.3	Getting help when using SageMath	12
1.3.1	Getting help from websites	12
1.3.2	Getting help via help(), ?, ??, or search_src	14
1.3.3	Using tab completion	14
1.3.4	The comprehensive command list: The SageMath index	15
1.4	Using the Jupyter notebook	15
1.5	The kernel of a Jupyter notebook	21
1.6	Writing code with SageMath in the Sage console or via starting a Sage script in the terminal	22
1.7	SageMath and LATEX	23
1.7.1	LaTeX and SageMath on the console	25
1.7.2	LaTeX and SageMath within a Jupyter notebook	26
1.7.3	Within a LaTeX document use Sage commands generated by latex()	30
1.7.4	Within a LaTeX document use Sage code handled by SageTeX()	32
1.8	SageMath with Jupyter and interact	34
1.8.1	A typical sample with interact()	34
1.8.2	Technically – what are Decorators	35
1.8.3	Interact samples without graphics	36
1.8.4	Interact samples with graphics	37
1.9	SageMath with Jupyter and Matplotlib interactive_output	39
1.10	Further interact SageMath examples about cryptography	40
1.11	The curve courses of MTW with SageMath	41
1.12	More professional Sage programs	42
1.13	Further hints for SageMath in this book	42
Ackn	owledgments	43
2	Lists of Figures, Tables, Code Examples, etc.	44
2.1	List of Figures	44
2.2	List of Tables	44
2.3	List of SageMath Examples	44
3	Literature	46
4	Index	47

1 Introduction into the CAS SageMath

(Bernhard Esslinger. Last update: Jun 2024)

This chapter, which was designed as an appendix to the CrypTool book, mainly describes the ecosystem of SageMath, i. e. how to use SageMath in different environments. Beginners are often confused by the many variants – this chapter helps with examples and a systematic overview, which is summarized in the tables 1 and 2.

The CrypTool book contains numerous program examples created with SageMath. However, this appendix can also be read on its own as an introduction to SageMath. SageMath is a computer-algebra system (CAS) like Mathematica, Maple, and MATLAB. SageMath supports teaching, study, and research in mathematics. It combines many other high-quality open-source packages¹ and provides access to their functionalities via a common interface, based on the programming language Python.²

SageMath is free and can be downloaded from:

https://www.sagemath.org

SageMath can be used as a powerful desktop calculator, as a tool to help (undergraduate) students study mathematics, or as a programming environment for prototyping algorithms and research in algorithmic aspects of mathematics. Instead of programming mathematical tasks with SageMath, you can just as well use Python and libraries. The advantage of SageMath is that a number of mathematical constructs are already included and you can also do symbolic math.³

You can get a quick impression of SageMath e.g. with the references in Footnote 4.⁴ Footnote 5 lists four examples of good documents about SageMath for further reading.⁵

With respect to studying cryptography, SageMath modules can be used to complement a first course in cryptography.⁶ Introductions into cryptography using SageMath are in this footnote⁷. Section 2.8 of the CrypTool book contains SageMath samples for many classical cryptographic algorithms.

This introduction uses mainly examples to show what SageMath can do, but it also shows the environments and surroundings, i. e. how to use SageMath in the terminal and in the notebook; how the user controls provided by SageMath work together with those of Jupyter and Matplotlib; or how LaTeX and SageMath work together. This overall view was missing in many other introductions. It is supplemented with many annotated references that have proven to be useful in teaching and learning.

All SageMath examples of this introduction can be found on the CrypTool website:

https://www.cryptool.org/en/ctbook/sagemath

⁴- "The SDSU Sage Tutorial", https://mosullivan.sdsu.edu/sagetutorial/ https://mosullivan.sdsu.edu/sagetutorial/sagecalc.html

⁷- David Kohel's course from 2015: https://www.sagemath.org/files/kohel-book-2008.pdf

¹Normally you only install the binaries of SageMath. However, if you compile it yourself, you get an impression of how big SageMath is: After downloading the source of SageMath 4.1, it took around 5 hours on an average Linux PC to compile the whole system including all libraries. The compiled version occupied 1.8 GB disk space. With SageMath 9.0 the bz2 file had around 2 GB, and uncompressed > 7 GB. It took me around 40 minutes to compile SageMath 10.3 under Ubuntu 22.04 – following the instructions at https://sagemanifolds.obspm.fr/install_ubuntu.html.

²There is also an interface to the C language, called Cython, which can speed up functions in SageMath. See https://openwetware.org/ wiki/Open_writing_projects/Sage_and_cython_a_brief_introduction.

SageMath runs under the operating systems Linux, macOS, and Windows. From SageMath version 8, there was a native Windows installer; from SageMath 9 (released at Jan 1st, 2020), Python 3 (instead of Python 2) is used.

³ https://doc.sagemath.org/html/en/reference/calculus/sage/calculus/calculus.html

⁻ Sage Quick Reference Cards, https://wiki.sagemath.org/quickref

^{5- &}quot;Library": https://www.sagemath.org/library.html,

^{- &}quot;Documentation Project": https://wiki.sagemath.org/DocumentationProject,

^{- &}quot;Teaching": https://wiki.sagemath.org/Teaching_with_SAGE,

^{- &}quot;Calculating with Sage at high schools": https://doc.sagemath.org/html/de/thematische_anleitungen/sage_gymnasium.html. To our knowledge, this is currently only there in German.

⁶- Overview, what crypto currently is in SageMath: https://doc.sagemath.org/html/en/reference/cryptography/index.html

⁻ Teaching related aspects of developing crypto in SageMath: https://groups.google.com/g/sage-devel/c/xVcsTY1C0IE

^{- &}quot;Introduction to Cryptography with Open-Source Software", a very good book from Alasdair McAndrew, CRC, 2011

1.1 The three typical user interfaces of SageMath

Table 1 lists three ways in which SageMath is usually used: two ways each via a terminal and via a Jupyter notebook, and two samples via a website.⁸

1) Terminal based	a) Sage console b) Sage program	<pre>\$ sage sage: factor(35) sage: sage: attach filename.sage \$ sage script.sage</pre>	Text output in lines below the command. Graphics output into a file.
2) Juputer potebook	a) run in browser	Starting the kernel:	Text and graphics output in the cell's output
2) Jupyter Hotebook	b) via VS Code	\$ sage -n jupyter <filename.ipynb></filename.ipynb>	Graphics output also into a file.
3) External website	Via browser	https://sagecell.sagemath.org/	Output in browser
	remote access on an external website	or https://cocalc.com/	

Tab. 1: Overview about the SageMath calling possibilities (user interfaces)

1. The first user interface is **command line** or **terminal** based, as shown in Fig. 1 on the next page. This is normally used when you installed SageMath locally.

From the command line (terminal, shell) of the operating system, you have two options:⁹

- a) Either the interactive Sage console (sage:)¹⁰ where text output appears below the entered command. When you generate graphical output, SageMath creates a file and asynchronously calls an image processing program to display the picture.
- b) As a second option in the terminal you can write SageMath programs (scripts) and execute them like a batch file (\$ sage script.sage). This is used for longer calculations and typical tasks in programs.
- 2. Secondly, there is also a graphical user interface for SageMath (called a notebook). The most popular notebook today is the **Jupyter notebook** (see Fig. 2 on the following page).

This option is well suited for interactive or didactic tasks, and is also frequently used by data analysts. Jupyter notebooks are similar to the REPL model (Read-Evaluate-Print-Loop). More about Jupyter can be found in appendix 1.7.2 on page 26 and in 1.4 on page 15.

The two most common ways to use a Jupyter notebook are:

- a) within a browser
- b) within Visual Studio Code (abbreviated as VS Code or VSC)

Remark 1: VS Code with a self-built SageMath installation

⁹The differences are described in Section 5.12.5.4 of the CrypTool book.

⁸ See https://doc.sagemath.org/html/en/installation/launching.html.

¹⁰https://doc.sagemath.org/html/en/tutorial/interactive_shell.html

Fig. 1: SageMath console from the command line (terminal)

Fig. 2: Creating a SageMath file with Jupyter in a browser

If you build your SageMath installation yourself, e. g. because the existing binaries in the distributions are not new enough¹¹ and still have an old SageMath version installed, it can happen that VS Code only displays the old Sage version as a potential kernel.

If the new kernel is not listed in VS Code, you can proceed as follows. Prerequisite to fix this: The kernel (Jupyter server) is started via \$ sage -n jupyter. Click on the kernel icon (or click Ctrl+Shift+P and select "Select Kernel"). Then select one after the other:

Select Another Kernel --> Existing Jupyter Server and enter the URL of the running Jupyter server, e.g. http://127.0.0.1:8888/tree?token=... The current SageMath kernel (e.g. 10.3) is then also available.

Remark 2: Using SageMath functions within a Python file

If SageMath is installed locally, you can also use SageMath functions in a Python file. To do this, add from sage.all import * to the beginning of the Python file. However, the operators remain those of Python, so ** causes exponentiation and ^ means XOR; while with SageMath ^ causes exponentiation. A minimal example (test_sage-in-py-file.py) can be found on the CrypTool website: https://www.cryptool.org/en/ctbook /sagemath/.

Remark 3: Possible future: SageMath running completely local in the browser

There are first attempts to create a WebAssembly-based version of SageMath so that SageMath can also run locally in the browser in the future (this mean, not only the frontend, but also the kernel): https://github.c om/sagemathinc/wasm-pari.

1.2 Examples using the built-in mathematical functions in SageMath

Now that the basic options for installing and using SageMath have been shown, we will briefly describe what SageMath offers. SageMath examples 1.1 and 1.2 on the current page and on page 10 contain a few little examples – as an introduction to see what you can do with SageMath on the command line.¹²

SageMath example 1.1 contains calls for dealing with numbers (e. g. determining length), from number theory (e. g. finding prime numbers, coprimes and primitive roots), trigonometry and dealing with polynomials (analysis, symbolic expressions).

How SageMath treats symbolic expressions is interesting. If you define a mathematical function as a symbolic expression with symbolic variables, SageMath can distinguish between "arguments" as independent variables on the one hand, and parameters, that is, variables that are expected to have fixed values on the other hand.

```
SageMath Example 1.1: Small samples from different areas in mathematics (1)
```

```
print("\n# SageAppendix--SAMPLE 010: ======")
# Allgemein: Bestimmen der Länge der dezimalen und der binären Darstellung von 26!
# General: Determine the length of the decimal and the binary representation of 26!
print("14.digits():", 14.digits()) # Show the digits of an integer number
b=factorial(26)
print("Factorial b:", b)
print("Factorial b.n():", b.n())
print("Factorial b.n(prec=16):", b.n(prec=16))
print("Factorial b.ndigits():", b.ndigits())
print("Factorial b.ndigits(base=2):", b.ndigits(base=2))
print("Factorial b.nbits():", b.nbits())
```

¹¹In May 2024, SageMath version 10.3 (the current release version then) was available on macOS via brew, but on Ubuntu the latest pre-built binary only had version 9.5. Also the Windows Subsystem for Linux WSL offered version 9.5 (the earlier pre-built binaries for Windows based on Cygwin are obsolete). See also https://doc.sagemath.org/html/en/installation/.

¹²The examples are mostly from a no more existing blog of Alasdair McAndrew.

```
ctd. SageMath Example 1.1
```

```
# Zahlentheorie / Number theory:
print("\n14.coprime_integers(max=16):", 14.coprime_integers(16))
i=randint(2^49,2^50); p=next_prime(i)
print("Next prime of %d: p=%d" % (i,p))
# p=1022095718672689 # for testing
r=primitive_root(p)
print("Primitive_root(p):", r)
pl=log(mod(10^15,p),r)
print("pl:", pl)
print("mod(r,p)^pl", mod(r,p)^pl)
```

```
# Trigonometrie (SageMaths Trigonometrie-Funktionen nutzen Bogenmaß statt Grad; pi=180°)
# Trigonometry (Sage's trigonometry functions use radians instead of degrees; pi=180°)
print("\nsin(pi/6):", sin(pi/6)) # 30° (Grad / degrees)
```

print("Type of p: {0}".format(type(p)))

```
#-----
```

```
# SageAppendix--SAMPLE 010: =======
# 14.digits(): [4, 1]
# Factorial b: 403291461126605635584000000
# Factorial b.n(): 4.03291461126606e26
# Factorial b.n(prec=16): 4.033e26
# Factorial b.ndigits(): 27
# Factorial b.ndigits(base=2): 89
# Factorial b.nbits(): 89
# 14.coprime_integers(max=16): [1, 3, 5, 9, 11, 13, 15]
# Next prime of 816414536954577: p=816414536954609
# Primitive_root(p): 3
# pl: 171454160901578
# mod(r,p)^pl 183585463045391
# sin(pi/6): 1/2
# Expression p1: a*e^(x^2)
# Expression p2: 1024*a*x^10*e^(x^2) + 23040*a*x^8*e^(x^2) + 161280*a*x^6*e^(x^2) + 403200*a*x^4*e^(x^2) + ▶
 302400*a*x^2*e^(x^2) + 30240*a*e^(x^2)
# Expression p: x |--> 32*(32*a*x^10*e^(x^2) + 720*a*x^8*e^(x^2) + 5040*a*x^6*e^(x^2) + 12600*a*x^4*e^(x^2)
 + 9450*a*x^2*e^(x^2) + 945*a*e^(x^2))*e^(-x^2)
# Polynom p simplified: 1024*a*x^10 + 23040*a*x^8 + 161280*a*x^6 + 403200*a*x^4 + 302400*a*x^2 + 30240*a
# Variables in p: (a, x); Arguments in p: (x,)
# Type of p: <class 'sage.symbolic.expression.Expression'>
```

SageMath example 1.2 on the following page contains calls from linear algebra (LA) and functions for finite fields.

Vectors in linear algebra are sometimes represented as row vectors and sometimes as columns vectors. Both representations are equivalent and also both occur in mathematical literature. SageMath can handle both representations because it works with so-called "generic" vectors. If we define, say, the vector v=vector([1,2])

and the matrix A=([[3,4],[5,6]]), then we can multiply v with the matrix A from the right as well as from the left. The expression A * v uses v as column vector while v * A uses v as row vector. The vector just has to have the right length. To create an explicit row vector from a "generic" vector, just use the row() method. However, the result then is of the type Matrix. And the transpose() method can only be applied on the matrix type. Entering v.transpose() results in an error message – while entering v.row().transpose() works well.

```
SageMath Example 1.2: Small samples from different areas in mathematics (2)
print("\n# SageAppendix--SAMPLE 020: =======")
# Lineare Algebra / Linear algebra:
u = zero_vector(SR, 10) # create a zeros vector (Nullvektor); SR = Symbolic Ring
print("Zero vector u:\n", u, sep="")
0 = matrix.ones(SR, 2, 10) \# create 2 ones vectors. As there is no function like ones_vector(),
                          # define the vector as the first row of a matrix of ones, or
print("Ones matrix 0:\n", 0, sep="")
v = vector(SR, [1]*10) \# [1]*10 is the Python way to construct a list with 10 repeats of 1.
print("Ones vector v:\n", v, sep="")
M=matrix([[1,2,3],[4,5,6],[7,8,10]])
print("M echo:\n", M.echelon_form(), sep="") \# show the echelon basis matrix
c=random_matrix(ZZ,3,1)
print("Random vector c:\n", c, sep="")
print("Random vector c.transpose():\n", c.transpose(), sep="")
b=M*c
print("Matrix * vector: b = M*c:\n", b, sep="")
print("Using inverse matrix M^-1 * b:\n", M^-1*b, sep="")
A = matrix([[1,1,0],[0,2,0], [0,0,3],]) \# 3*3
print("A:", type(A))
print("rows:", A.nrows()) # 3 # find out the number of rows of a matrix
print("cols:", A.ncols()) # 3 # find out the number of cols of a matrix
print("A echo:\n", A.echelon_form(), sep="") # show the echelon basis matrix
print("v:", type(v))
print("len(v):", v.length()) # Alternative: len(v)
print(v)
print("A*v:", A * v) # (3, 4, 0) # results in a 3*1 vector
print("v*A:", v * A) # (1, 5, 0) # results in a 1*3 vector
r = v.row() # [1 2 0] # REMARK: Vector.row() and .column() create a matrix type
print("r:", type(r))
print("r=v.row():", r) # Remark: len(r) doesn't work, as r is a matrix (1*3)
c = r.transpose() # [1] [2] [0] # REMARK: r,c are type matrix (not vector).
print("c:", type(c))
print("c=transposed r:\n", c, sep='')
# vector multiplication
print("r*c:", r * c) # [5]
print("c*r:\n", c * r, sep='') # [1 2 0] [2 4 0] [0 0 0]
# multiplication of matrix and vector (explicit a row or col one)
# What does not work is: A * r and c * A
print("r*A:", r * A) # (1, 5, 0) # results in a 1*3 vector
print("A*c:\n", A * c, sep='') # (3, 4, 0) # results in a 3*1 vector
```

Create LaTeX command to typset a matrix equation

ctd. SageMath Example 1.2

```
# print('$$ A*c=b: %s * %s = %s $$'%(latex(A), latex(c), latex(A*c)))
# Endliche Körper (\url{http://de.wikipedia.org/wiki/Endlicher_K%C3%B6rper})
# Finite Fields (\url{http://en.wikipedia.org/wiki/Finite_field})
F.<x>=GF(2)[]
G.<a>=GF(2^4,name='a',modulus=x^4+x+1)
print("\nIn GF: a^2/(a^2+1): ", a^2/(a^2+1))
print("a^100: ", a^100)
print("log(a^2,a^3+1): ", log(a^2,a^3+1))
                        ", (a^3+1)^13)
print("(a^3+1)^13:
#-----
# SageAppendix--SAMPLE 020: =======
# Zero vector u:
\# (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# Ones matrix 0:
# [1 1 1 1 1 1 1 1 1 ]
# [1 1 1 1 1 1 1 1 1]
# Ones vector v:
# (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
# M echo:
# [1 2 0]
# [0 3 0]
# [0 0 1]
# Random vector c:
# [-1]
# [ 0]
# [-5]
# Random vector c.transpose():
# [-1 0 -5]
# Matrix * vector: b = M*c:
# [-16]
# [-34]
# [-57]
# Using inverse matrix M^-1 * b:
# [-1]
# [ 0]
# [-5]
# A: <class 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>
# rows: 3
# cols: 3
# A echo:
# [1 1 0]
# [0 2 0]
# [0 0 3]
# v: <class 'sage.modules.vector_integer_dense.Vector_integer_dense'>
# len(v): 3
# (1, 2, 0)
# A*v: (3, 4, 0)
# v*A: (1, 5, 0)
# r: <class 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>
# r=v.row(): [1 2 0]
# c: <class 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>
# c=transposed r:
# [1]
# [2]
# [0]
# r*c: [5]
# c*r:
# [1 2 0]
# [2 4 0]
# [0 0 0]
# r*A: [1 5 0]
# A*c:
```

```
ctd. SageMath Example 1.2
```

```
# [3]
# [4]
# [0]
#
# In GF: a<sup>2</sup>/(a<sup>2</sup>+1): a<sup>3</sup> + a
# a<sup>100</sup>: a<sup>2</sup> + a + 1
# log(a<sup>2</sup>,a<sup>3</sup>+1): 13
# (a<sup>3</sup>+1)<sup>1</sup>3: a<sup>2</sup>
```

1.3 Getting help when using SageMath

Loading SageMath from the command line and entering help(), we get outputs like in SageMath example 1.3:

SageMath Example 1.3: SageMath help (Welcome)
<pre>sage: help() Welcome to Sage 10.3!</pre>
To view the Sage tutorial in your web browser, type "tutorial()", and to view the (very detailed) Sage reference manual, type "manual()". For help on any Sage function, for example "matrix_plot", type "matrix_plot?" to see a help message, type "help(matrix_plot)" to see a very similar message, type "browse_sage_doc(matrix_plot)" to view a help message in a web browser, and type "matrix_plot??" to look at the function's source code.
(When you type something like "matrix_plot?", "help(matrix_plot)", or "matrix_plot??", Sage may start a paging program to display the requested message. Type a space to scroll to the next page, type "h" to get help on the paging program, and type "q" to quit it and return to the "sage:" prompt.)
For license information for Sage and its components, read the file "COPYING.txt" in the top-level directory of the Sage installation, or type "license()".
To enter Python's interactive online help utility, type "python_help()". To get help on a Python function, module or package, type "help(MODULE)" or "python_help(MODULE)".

1.3.1 Getting help from websites

The official SageMath documentation is distributed with every release of SageMath (see Fig. 3). This includes the following documents:

- Tutorial This tutorial is designed to help SageMath beginners become familiar with SageMath. It covers many features that beginners should be familiar with, and takes one to three hours to go through.
- Constructions This document is in the style of a SageMath "cookbook". It is a collection of answers to questions about constructing various objects in SageMath.
- Developers' Guide This guide is for developers who want to contribute to the development of SageMath. Among other issues, it covers coding style and conventions, modifying the core SageMath libraries, modifying the SageMath standard documentation, and code review and distribution.

- Reference Manual This manual provides complete documentation on the major features of SageMath. The description of a class normally is accompanied by several code samples. All code samples in the reference manual are tested before a new SageMath version is released.
- Installation Guide This guide explains how to install SageMath under various platforms.
- A Tour of Sage This is a tour of SageMath that showcases various features of SageMath that are useful for beginners.
- Numerical Sage This document introduces tools available under SageMath that are useful for numerical computation.
- Three Lectures about Explicit Methods in Number Theory Using Sage This document is about using SageMath to perform computations in advanced number theory.

Fig. 3: Website for the SageMath standard documentation (https://doc.sagemath.org/html/en/)

Further assistance on specific problems is available

- in the archive of the sage-support mailing list at https://groups.google.com/g/sage-support
- at https://ask.sagemath.org
- at https://math.stackexchange.com/questions/tagged/sagemath
- at https://doc.sagemath.org/html/en/reference/genindex.html

1.3.2 Getting help via help(), ?, ??, or search_src

If we already know the exact name of a function, we can use help or the question mark "?" to obtain further information on that function. For example, the command help(SubstitutionCryptosystem) provides documentation on the according built-in class (see SageMath example 1.4). In both cases, inside the documentation mode you go to the next page by hitting the space bar, and you leave the documentation mode via "q". When using help(fname), the listing is opened in a separate window, so the help listing does not clutter up your session, unlike the output of fname? sometimes does.

It is possible to place the question mark *in front of* the search like ?fname. Besides, two question marks are also allowed like in fname?? or ??fname. In this case you also get the source code defining fname.

Finally, it is worth mentioning the various functions from here https://doc.sagemath.org/html/en/referen ce/misc/sage/misc/sagedoc.html, especially search_src, my_getsource or search_def. Those can be helpful if the regular help doesn't help.

SageMath Example 1.4: SageMath help (for single function)
<pre>sage: help(SubstitutionCryptosystem)</pre>
SubstitutionCryptosystem() Create a substitution cryptosystem.
INPUT: - "S" - a string monoid over some alphabet
OUTPUT: - A substitution cryptosystem over the alphabet "S".
<pre>EXAMPLES:: sage: M = AlphabeticStrings() sage: E = SubstitutionCryptosystem(M) sage: E Substitution cryptosystem on Free alphabetic string monoid on A-Z sage: K = M([25-i for i in range(26)]) sage: K ZYXWVUTSRQPONMLKJIHGFEDCBA sage: e = E(K) sage: m = M("THECATINTHEHAT") sage: e(m) GSVXZGRMGSVSZG</pre>
<pre>TESTS:: sage: M = AlphabeticStrings() sage: E = SubstitutionCryptosystem(M) sage: E == loads(dumps(E)) True</pre>

1.3.3 Using tab completion

Here we present tab completion for searching two different topics: for finding the standard commands and for finding the methods of Sage objects.

Tab completion to find a command From within a SageMath session, we can obtain a list of (default) commands matching some pattern. To do so, we type the first few characters and then press the "Tab" key like in SageMath example 1.5 on the next page:

Sa	ageMath Example	e 1.5: Sagel	Math help (expand with Tab key)	
age: Su[TAB]				
Subsets	Subwords		SuperPartitions	
SubstitutionCryptosys	stem Sudoku		SupersingularModule	
SubwordComplex	SuperPartition	ı	SuzukiGroup	
age: su[TAB]				
subfactorial	sum	supersingu	lar D	
subsets	sum of k squares	supersingui	lar i	
subsets	Sull_01_k_Squares	superstingu		
sudoku	super	surfaces		

Tab completion to find all methods (member functions) of a Sage object To list all methods (member functions, attributes) of a Sage object AA just type AA., then type the "Tab" key on your keyboard. A possible output is shown in Fig. 4.

sage:	AlphabeticStrings.					
		AlphabeticStrings.Element	AlphabeticStrings.base	AlphabeticStrings.category	Alpgs.coerce_map_from	
		AlphabeticStrings.Hom	AlphabeticStrings.base_ring	Alpgs.characteristic_frequency	Alpgs.convert_map_from	
		AlphabeticStrings.alphabet	AlphabeticStrings.cardinality	AlphabeticStrings.coerce	AlphabeticStrings.dump	>
		AlphabeticStrings.an_element	AlphabeticStrings.categories	Alpgs.coerce_embedding	AlphabeticStrings.dumps	

Fig. 4: Output after dot with tab completion

List all methods of a Sage object via a program Instead of using the "Tab" key, you also can write a small program which prints all methods of a Sage object (here AA) – like in SageMath example 1.6.

SageMath Example 1.6: Program to print all member functions of a SageMath obj	ject
<pre>sage: AA = AlphabeticStrings() sage: object_methods = [method_name for method_name in dir(AA): if callable(getattr(AA, method_name))]; object_methods ['CartesianProduct', 'Element', 'Hom', 'bool', 'unrank', 'unrank', 'unrank_range', 'variable_name', 'variable_names']</pre>	

1.3.4 The comprehensive command list: The SageMath index

There is also a complete, alphabetically ordered list of the SageMath commands on the internet. Figure 5 shows this site, the so-called index. If you click on one of the letters at the top, all commands starting with that letter are shown and one can proceed searching like in Fig. 6. Alternatively, you can go to the full index, which is indeed quite huge.

1.4 Using the Jupyter notebook

So far we have shown the functions of SageMath in the terminal. Here we describe what a Jupyter notebook is and how to use it in the browser and in Visual Studio Code (VSC)..¹³

¹³ If the Jupyter extension is installed, it is sufficient to load a file with the extension "ipynb" so that VS Code switches to the notebook view.

••• • • • · · · · ·	0	doc.sagemath.org/html/en/reference/genindex.html
≡		Reference Manual
Index		
Symbols _ A B C D E	E G H I J K L N	M N O P Q R S T U V W X Y Z
Full index on one page (can	be huge)	

Fig. 5: Index

		5 of 5 matches Begins with 🕄 📿 alphabetic	0
≡	Reference Manual		
	 Alphabet() (In module says.combinat.words.alphabet) 		-
	 alphabet() (sage.combinat.recognizable_series.RecognizableSeriesSpace method) 		
	 (sage.combinat.words.words.AbstractLanguage method) 		
	 (sage.combinat.words.words_Nords_n method) 		
	 (sage.monoids.string_monoid.StringMonoid_class method) 		
	 (sage.monoids.trace_monoid.TraceMonoidElement method) 		
	 (sage.rings.padics.padic_printing.pAdicPrinterDefaults method) 		
	 alphabet_size() (sage.crypto.cryptosystem.SymmetricKeyCryptosystem method) 		
	 AlphabeticStringMonoid (class in sage.monoids.string_monoid) 		
	 AlphabeticStrings (in module sage.monoids.string_monoid) 		

Fig. 6: Search among those commands that begin with the letter *a*.

A Jupyter notebook (formerly IPython Notebook) is a browser-based interactive computational environment for creating notebook documents. The file name usually ends with ".ipynb". IPython was originally developed as an enhanced Python terminal interpreter.¹⁴

Formally, a Jupyter notebook is a JSON file, with a specific structure containing an ordered list of cells – see Fig. 7.

There are three types of cells: code cells, markdown cells, and raw cells. Default initially is "Code". Raw cells are rarely used. Markdown cells (seldom called text cells) are used for documentation. For each cell, the cell type is displayed and can be changed there or via the menu.

Code cells consist of an input part and an output part. The output part (the cell's output) displays the result when the code in the cell's input is executed by the kernel (here SageMath).¹⁵ More about the kernel in Section 1.5. So for example, a line of code that begins with a number sign (#) is formatted in italic green font, interpreted as a comment, and not executed by the notebook. The cell's output is shown directly below the code cell's input and can contain text and graphical output. The graphical output can also have interactive parts. See Figs. 8 and 9.

The editor for Jupyter notebooks has two modes: the edit mode and the command mode. You can use different keyboard shortcuts when in edit vs command mode. If you click inside a cell, you switch to edit mode.

When you run a cell, its code with all of its operations is executed. So, a cell can only be executed as a whole. To run it, click in the toolbar on "Run" or click the menu path "Cells > Run Cells". Alternatively, you can press **Ctrl+Enter**, which works in both, the edit and the command mode: Then the cell where the mouse pointer currently is located will be executed. This key combination is the preferred method for executing a cell compared to clicking the mouse:¹⁶

- Ctrl+Enter evaluates current cell and keeps focus in the current cell.
- Shift+Enter evaluates current cell and moves focus to the next cell.

Special key commands are available in the command mode. To enter command Mode press **Esc** or use the mouse to click outside a cell's editor area. Being in the command mode is indicated by a gray cell border with a blue left margin.

Some useful keyboard shortcuts in the command mode:

- Enter+O switch on/off whether the following output cell is shown or not.
- a insert a cell above the selected cell
- **b** insert a cell below the selected cell
- **d d** delete the selected cell(s)

When (re-)opening a Jupyter notebook (ipynb), it's recommended to first evaluate all cells by going to the first cell and click on "Execute cell and all below".

Remark: To initialize the variables of a cell there are 3 commands:

reset()

Delete all user-defined variables and resets all global variables back to their default states.

restore()

Restore predefined global variables like QQ to their default values.

clear_vars()

Delete all 1-letter symbolic variables predefined at startup of SageMath.

¹⁴https://en.wikipedia.org/wiki/Project_Jupyter, https://jupyter.org/, and https://www.tutorialspoint.com/jupyter/ipy thon_introduction.htm

¹⁵ https://jupyter-notebook.readthedocs.io/en/stable/notebook.html

¹⁶There are many shortcuts making the usage easier. See https://jupyter-tutorial.readthedocs.io/de/latest/workspace/jupyter/notebook/shortcuts.html

Markdown Cell

Language: Markdown
This is a header
Here is some text.

Code Cell

Language: Python

print("Hello World")

Code cells allow you to write and execute programming code. Python is commonly used, but Jupyter supports many other languages such as R, Julia, SQL, and SageMath through various kernels.

Cell's output

Hello World

The cell's output display the results of code execution. This includes text output, plots, tables, and visualizations.

Fig. 7: Typical generic sequence of cells within a Jupyter Notebook

Intro	oauct		nto the		ageMath	
×	:	0.3		ų		

()	ydn(/ter sageJNB-01 Last Checkpoint: 30 minutes ago			
File	Edit	View Run Kernel Settings Help Not Trus	× X	sageJNB-01.ipynb - Visual Studio Code $ imes$	× < >
	% +	□ 🗂 ► ■ C ► Code < JupyterLab 🖸 & SageMath 10	File Edit	Selection View Go Run Terminal Help	
		1) Juypter notebook: Text cell with intro	ipos + auoq €	NB-01.lpynb × be > Downloads > ctub-git > ctub > code > sage > ■ sageJNB-01.jpynb > be > Downloads > ctub-git > ctub > code > sage > ■ sageJNB-01.jpynb > + Markdown D> Run All D Restart ≕ Clear All Outputs Variables ≔ Outline ···	않 🏾 … L SageMath 10.3
		This is a text cell. It's language mode is markdown (MD).	б	### 1) Juypter notebook: Text cell with intro	
		The next cell is a code cell with some SageMath functions (Python is selected as language mode and the SageMath kernel is running).	4ª 19	This is a text cell. It's language mode is markdown (MD). The next cell is a code cell with some SageMath functions (Python is selected as language and the SageMath kernel is running).	i mode
	Ξ	from sage.all import * □ → ↓ = +			markdown
		<pre>print("test text") print(factor(2020-1)) Z = IntegerRing(); a=Z(17); print(Z, ": ", a, ",", Z(18), sep='') R = Integers(97); a = R(5); print(R, ": ", a, sep='')</pre>		E א א E from sage.all import * print("test text") print(factor(2020-1))	信 : ①
		<pre># get the first prime p for which X^4 - 2 is irreducible in F_p[X]. start = 10^20</pre>		Z = IntegerRing(); a=Z(1/); print(Z, ": ", a, ",", Z(18), sep='') R = Integers(97); a = R(5); print(R, ": ", a, sep='')	
		<pre>for p in primes(start, start + 1000): R = PolynomialRing(GF(p), names='X') X = R.gens()[0] if not (X^4 - 7)_is irreducible(): </pre>		<pre># get the first prime p for which X⁻⁴ - 2 is irreducible in F_p[X]. start = 10⁻²⁰ for p in primes(start + 10000):</pre>	
		<pre>print("reducible polynom mod %s: X^4-2 = %s> next prime" % (p, factor(X^4 - 2))) continue print("%s is OK" % p) break</pre>		<pre>X = K.gens()[0] if not (X*4 - 2).is_irreducible():</pre>	
		test text	Ξ	 0.05 	Python
		<pre>3 * b/3 Integer Ring: 17,18 Ring of integers modulo 97: 5 reducible polynom mod 1000000000000000000000000000000000000</pre>		est text + 673 nteger Ring: 17,18 nteger Ring: 17,18 ing of integers modulo 97: 5 reducible polynom mod 100000000000039: X*4.2 = (X + 47307024817598180300) * (X + 526 reducible polynom mod 100000000000000315: X*4.2 = (X + 10271815955254566) * (X + 4416 reducible polynom mod 10000000000000151: X*4.2 = (X + 6822500915132347755) * (X + 4416 reducible polynom mod 100000000000000151: X*4.2 = (X + 38354482782534882697) * (X + 6116 0000000000000000000000000000000000	(69297518240: 17581842413: 17881844447, 67876161383; 64551721736; 64551721736; 12df G G

Fig. 8: Typical sequence of cells within a Jupyter Notebook for Sage code with text output within a browser and in VSC

1.5 The kernel of a Jupyter notebook

The Jupyter notebook, regardless of whether it is running in the browser or in VS Code, only displays the results of the so-called kernel, in this case the SageMath server. The kernel can be executed locally or on a remote server. More precisely, between the Jupyter notebook and the kernel there is the notebook server which can run either locally or remotely. In both cases, SageMath must be accessible to the Jupyter server as "kernel".¹⁷ This is visualized in Fig. 10.

Fig. 10: Surroundings of a Jupyter Notebook¹⁸

As shown in Table 1 you can use SageMath remotely (without installing SageMath locally) :

```
https://sagecell.sagemath.org/ or https://cocalc.com/
```

Two common methods to run the Jupyter server locally are:

• If you have installed Anaconda on your computer, first activate the SageMath environment and then in the same terminal start the Jupyter server, which then starts the specified notebook Untitled.ipynb in the browser:

```
$ conda activate sage
$ jupyter notebook Untitled.ipynb<sup>19</sup>
```

• Without Anaconda, but having a local SageMath installation, you can start the notebook under Linux normally this way from a terminal:

```
$ sage -n jupyter
or
$ sage -n jupyterlab
```

Executing \$ sage -n jupyter on the command line opens a browser window that shows all files in the current directory. If you double-click on an ipynb file, it then appears in another browser tab as a Jupyter notebook.

Sometimes the first click on the "Run" button results in the message "Error displaying widget: model not found". Pressing the button again usually solves the problem if the installation is correct.

¹⁹In the browser you can then see as link something like http://127.0.0.1:8888/notebooks/Untitled1.ipynb?kernel_name=sagemath

¹⁷It may happen, that the notebook doesn't know a function like interact, then first check that it's a code cell, that SageMath is set as kernel, and then click on the icon "restart the kernel".

¹⁸With small changes taken from https://mlsummit.ai/blog/jupyter-notebooks-fuer-lehre-und-entwicklung-alles-im-blick-n otizbuch-fuer-entwickler/

1.6 Writing code with SageMath in the Sage console or via starting a Sage script in the terminal

When you start using a CAS (computer algebra system) you normally type in ready commands on the command line as in SageMath example 1.1 on page 8.²⁰

If you develop your own functions, modify them and call them again, then it is much easier to do the development of the functions in an editor (easier compared to using the sage console only). For that three ways are common:

- Using the Jupyter notebook. This is discussed extensively in 1.8 and in 1.8.
- Executing of the edited script within the Sage console
- Executing of the edited script as Sage program from the terminal (e.g. in the bash shell)

The last two cases are discussed further within this subsection.

All three ways to develop code were applied in the CrypTool book Chapters 1.12 ("Appendix: Educational examples for symmetric ciphers using SageMath"), 2.8 ("Appendix: Examples using SageMath"), 4.15 ("Appendix: Examples using SageMath"), 5.20 ("Examples using SageMath"), and 9.4 ("Appendix: Boolean maps in SageMath").

To test and load the SageMath code stored in program file, there are two useful commands: load() and attach().²¹

Suppose you have a function definition like this which has been saved to the file primroots.sage:

```
SageMath Example 1.7: Function definition in file with extension .sage

def somefunction(varl): # inside file with name e.g. primroots.sage

r"""

DocText.

"""

...

return (L)
```

Loading The command load() can be used in all three cases: Sage console, Sage program, and Jupyter notebook – see Table 1 on page 6.

Within SageMath example 1.8, the above function from SageMath example 1.7 is loaded into SageMath with the command load().

SageMath Example 1.8: load

sage: load("primroots.sage")

Then you can proceed to use on the command line any variable or function defined in that SageMath script primroots.sage.²²

²⁰When presenting code for the Sage console lines start with "sage:" and "…":

```
sage: m = 11
sage: for a in range(1, m):
....: print( [power_mod(a, i, m) for i in range(1, m)] )
....:
```

Code in SageMath scripts and from Jupyter cells are presented in the same way as they appear there.

²¹See SageMath tutorial about programming, chapter "Loading and Attaching Sage files", https://doc.sagemath.org/html/en/tutoria l/programming.html

²²Notes/hints concerning SageMath scripts:

First, the load command executes all commands, regardless of whether it is called on the Sage command line or in a Sage script. After that the functions from the file loaded with load are still available. Unfortunately, unlike in Python, it is not possible to make just the functions of a SageMath file known. This functionality was implemented with the own function my_import (see Item (c) in Section 5.20.4 of the CrypTool book).

Attaching The command attach() can only be used on the Sage console (directly or within of another Sage script loaded from there), but it is not available in a Sage program called in a terminal or in a Jupyter notebook (there you have to use load()).

Normally we want to edit our own SageMath script and reload the content of the changed script into SageMath again. In order to automatically reload the file after every change, the command attach() is sufficient:²³

SageMath Example 1.9: attach

sage: attach("primroots.sage")

Now edit and save again the SageMath script in a text editor, but don't exit SageMath. The changed function definition is reloaded into the running SageMath session after the next time you press Enter (and a syntax check is done at once). You can think of the command attach() as a way of telling SageMath to watch for all changes to a file, and reloading the file again once SageMath notices that there have been changes.

Figure 11 on the next page shows SageMath code in the editor VS Code with activated Python code highlighting. You can use other editors like gVim or Notepad++ just as well.

If you prefer to see the output of an attached file as if you entered the commands on the command line directly (not only what is shown via print()) then you could use the command iload(): Each line is loaded one at a time. To load the next line, you have to press the Enter key. You have to repeatedly press the Enter key until all lines of the SageMath script are loaded into the SageMath session.

SageMath Example 1.10: iload

sage: iload("primroots.sage")

1.7 SageMath and LATEX

"Sage and the LaTeX dialect of TeX have an intensely synergistic relationship."²⁵ We will explain the relations most important for us using Table 2.

⁻ Don't use white spaces in your file name.

⁻ It's recommended that your SageMath script has the file extension ".sage" instead of ".py". For a SageMath script with the file extension ".sage" the default SageMath environment is also loaded when loading the file, and the syntax is checked.

⁻ Instead of loading a script file from the SageMath prompt you can directly load it when starting SageMath; e. g. from a bash shell using \$ sage primroots.sage. Here also, a syntax check is performed instantly and, if this check was successful, the script is executed.

⁻ If you load your script as above, then SageMath first parses your script and copies it to another file with the extension ".py". SageMath then adds all necessary variables within "primroots.py" as well as all necessary import statements. That way, your SageMath script is executed as if you had entered the commands in your script directly to the SageMath command line.

⁻ An important difference between commands within a script file and the commands entered manually behind the SageMath prompt is that all outputs need a print() statement. For example, instead of "m=11; m" you have to enter "m=11; print(m)".

²³attach() can be applied directly after loading the script, even before having changed the script; and you can even omit load() and just call attach(), as load() is contained in attach().

²⁴The source code used in this editor can be found in SageMath example 5.20.11 of the CrypTool book. and in the file "chap05_sample120.sage".

²⁵Quote from the chapter "Sage, LaTeX and Friends" by Rob Beezer (2010-05-23), https://doc.sagemath.org/html/en/tutorial/la tex.html

		chap04_sample12.sage - tmp - Visual Studio Code	- • 😣
File Edit	Selection \	View Go Run Terminal Help	
Д	🍨 chap(04_sample12.sage 2 ×	\triangleright ~ \square …
	🍖 chap	04_sample12.sage > 😚 count_PrimitiveRoots_of_a_PrimesRange	
			Martin Con
	15	<pre>det count_PrimitiveRoots_of_a_PrimesRange(start, end):</pre>	
9 ₀	16	Compute all printing methods all prime between start and and inclusion	And a state of the
حلی	17 18	"""	
	19	nPrimes = 0	
æ^		nPrimitiveRoots = 0	
	21	for p in primes(start, end+1):	
Б	22	L = enum PrimitiveRoots of an Integer(p)	
	23	print(p, len(L))	
Д	24	nPrimes += 1	
	25	nPrimitiveRoots += len(L)	
	26	<pre>print("Found all %s" % nPrimitiveRoots + " primitive roots of %s primes." % nPrimes</pre>)
	27		
		import time	
	29	Import Lime	
	30		
	32	print("\nCC Start Testcases for count PrimitiveRoots of a PrimesRange(start, end)")	
Q	33	print("Testcase: (1, 1500)"): StartTime = time.time()	
	34	count PrimitiveRoots of a PrimesRange(1, 1500)	
552	35	<pre>print(" Time = %f sec" % (time.time()-StartTime))</pre>	
503			
Pytho	n 3.9.9 64-b	it ⊗ 0 🛆 2 Ln 15, Col 20 Spaces: 4 UTF-8 LF Pytl	hon & C

Fig. 11: SageMath example shown in an editor with code highlighting²⁴

	Sage console Sage program	latex()						
With SageMath		Markdown cell: \$\$						
with bagelviath	Jupyter notebook	Code cell: latex(< <latex code="">>) Latex(r"""<<latex code="">>""") view oder show(<<latex code="">>)</latex></latex></latex>						
Within a	Use result of latex() from SageMath	e.g.\$ \frac{1}{5} z^{5} \$						
LaTeX document	Use math mode and SageTeX macros	Call sequence: pdflatex \rightarrow sage \rightarrow pdflatex (see Fig. 18)						

Tab. 2: Overview about the interconnection between SageMath and LaTeX

Remark: LaTeX separates the tasks of typesetting mathematics and typesetting normal text. This is achieved by the use of two operating modes, text and math mode. Text mode is the default mode for the document environment and does not need to be called explicitly. In LaTeX all mathematics needs to be inside some maths mode construction and many symbols, including \circ or \sum_{n=1}^\infty, are defined to only work in maths mode. The most common way to enter math mode is \dots , where the text within the dollar signs is in the math mode environment. Two further ways to enter math mode are \begin{equation} = u < - (1 - 1) (also called double dollar or display style and used for offset formulas). Math mode ignores whitespace. When we wish to include text within mathematics, we must tell LaTeX that we are writing text, otherwise it will assume the word is actually a sequence of symbols and they are displayed in italics. There are two approaches to correctly formatting such text, the first using the \mbox command, and the second using the \text{} command which requires the amsmath package.

To get the LaTeX code of a Sage expression within SageMath code, we normally use the latex() function. This

function expects the input to be in math mode like within \$... \$. Please note, that then the normal LaTeX text macros like \texttt{} don't work.

1.7.1 LaTeX and SageMath on the console

From within SageMath, the simplest way to exploit SageMath's support of LaTeX is to use the latex() function. The created strings can then be incorporated directly into standalone LaTeX documents. This works the same in a code cell of the Jupyter notebook and at the Sage command line. With latex() SageMath objects can be output (typesetting) in usual mathematics form in two ways: We can pass them to the command latex(), alternatively some SageMath objects provide the SageMath description by themselves when calling their own latex() method. The created text form (LaTeX code) can then be transformed via LATEX display software in the usual mathematical form.

In other words: You pass a SageMath expression to the function latex() to get a LaTeX expression. So SageMath converts the LaTeX-relevant components directly into LaTeX syntax, and you can embed them 1:1 into a LaTeX document.

Example 1: Calling the command latex(y) (or sometimes y.latex()):²⁶

```
sage: z=var('z'); latex(z^12)
z^{12}
sage: latex(integrate(z^4, z))
\frac{1}{5} \, z^{5}
sage: latex('This is a string')
\text{\texttt{This{ }is{ }a{ }string}}
sage: latex(QQ)
\Bold{Q}
```

Example 2: Every Object in SageMath has a ET_EX representation. Calling latex() on \$y = (a*x^2)/5\$ will result in an error, because an assignment (the term on the right side of = is assigned to y) is not an object in SageMath. The right side alone is an object, and therefore we can call latex() on it:

```
sage: var('a,x,y')
(a, x, y)
sage: latex(y=(a*x^2)/5)
TypeError Traceback (most recent call last)
<ipython-input-4-23375ccb8aef> in <module>
----> 1 latex(y=(a*x**Integer(2))/Integer(5))
TypeError: LatexCall.__call_() got an unexpected keyword argument 'y'
sage: latex((a*x^2)/5)
\frac{1}{5} \, a x^{2}
sage: latex(y)
\frac{1}{5} \, a x^{2}
```

²⁶The command latex() is not completely flawless. For instance, \Bold is not available in normal LaTeX, it is defined via \newcommand{\Bold} in sage.misc.latex_macros. So only use \Bold interactively or use it in a TeX file only after inserting the \newcommand definition. Easier would be \$\mathbb{Q}\$ for Q, where \mathbb requires the package amsfonts.

Example 3: The last command in the linear algebra part of SageMath example 1.2 on page 10 also contains latex() calls to **automatically** generate the code for a matrix equation.

See the following line commented out there:

	(1)	1	0		(1)		(3)	١
A * c = b:	0	2	0	*	2	=	4	
	0 /	0	3 /		(0)		$\left(\begin{array}{c} 0 \end{array} \right)$	/

1.7.2 LaTeX and SageMath within a Jupyter notebook

The Figs. 8 and 9 on page 19 and on page 20 show the first two parts of the notebook sageJNB-01.ipynb. Each of these two parts contains a Markdown cell and a code cell (including its output). These two code cells with Sage code do not yet contain any "LaTeX commands".

The third part of this notebook contains several variants of different "LaTeX commands" in the code cell – see Fig. 13 on the next page.

The Sage expressions rendered with latex() are output via print(), show(), and view() The differences can be seen in the cell's output. You can also call show() without first calling latex() and receive output in the cell's output as in a LaTeX document.

The three individual windows shown in Fig. 12 are created with the view command.

Fig. 12: Plot output from code in Fig. 13 in three extra windows

sageJNB-01.ipynb - Visual Studio Code π × ×	File Edit Selection View Go Run Terminal Help	C = sage/NB-01.lp/mb x home > be > Downloads > ctb-git > ctb > code > sage > ■ sage/NB-01.lp/mb > home > be > Downloads > ctb-git > ctb > code > sage > ■ sage/NB-01.lp/mb > O + Code + Markdown D> Run All D> Restart = Ctbar All Outputs = U'ariables = = Outline	ع) Text cell before 3rd code cell	the following cell uses Latex-like expressions for the output and shows what syntax works in a Python code cell. □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	<pre>A display(Math()) writes result of math mode to output cell (like a string between \$\$) display(Math(r'uzh) display: {}\mathcal{N} m = \lambda \mathcal{N} \wedge \</pre>	<pre>print("El-p: print latex(): ", exprl); print("E2-p: print latexExp(): ", expr2)</pre>	<pre>#> display(), print(), and show() just do text output in the mext cell, # the output of show() and display() is reneareed] #> view() store rendered drem as graph in a PDF and opens this PDF in xtra windows. expr3m=latex('(x² + 1)/5'); print("E3a-p: ", expr3ma); show("E3a-s: ", expr3ma) x=var('X'); expr3ma=latex((x²+22)/5); print("E30-p-var: ", expr3ma); show("E3b-s-var: ", expr3ma)</pre>	a,x=var('a,x'); expr4=(a*x'2) / 5; show("E4-s-var-no-latex(); ", expr4+81); view(expr4+91) print("E4-p-var-no-latex(): ", expr4+71)	<pre>expr5=FiniteField(25,'a'); print("E5-p: ", latex(expr5)); view(latex(expr5)) print(LatexExpr(r"\text{[TX1: } (a*x'3) / 7")) # shows Latex code as text in output cell view(LatexExpr(r"\text{[PDF: } (a*x'3) / 9 ")) # shows rendered Latex code in extra window</pre>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{llllllllllllllllllllllllllllllllllll$	E4-s-var-no-latex(): ¹ / ₂ ax ² + 81 (3) E4-p-var-no-latex(): 15*s*x2 + 71 (5) Nold(F) (5*2) (1) (1*x(TX):) (a*x3) L 7 (2) (1*x(TX):) (a*x3) L 7 (4) (2)
C Jupyter sageJNB-01 Last Checkpoint: 42 minutes ago	The Lott View Multi Netting Security Trep 1	3) Text cell before 3rd code cell	The following cell uses Latex-like expressions for the output and shows what syntax works in a Python code cell.	<pre>[3]: from IPython.display import display, Math # display(Math()) writes result of math mode to output cell (like a string between \$\$). display(Math(r'via\ display: {}\ m \times {}\ m^2 \ \ - \ Formula: A = \pi \times r^2'. format(13.49, cound(2.55,21))</pre>	<pre>r, theta = var('r', 'theta'); f = r * sin(theta) expr1=latex(f+1); expr2=LatexExpr(f+2) # display(Math(latex())) [=expr1] looks ok; display(Math(LatexExp())) looks wrong. # for simple math expressions show() is enough [display(Math(expr1) not needed.] show("E1-s: ", expr1)</pre>	<pre>print("E1-p: print latex(): ", expr1); print("E2-p: print LatexExp(): ", expr2)</pre>	<pre>#> display(), print(), and show() just do text output in the next cell, # the output of show() and display() is rendered. #> view() stores rendered term as graph in a PDF and opens this PDF in extra windows. expr3a=latex('(x² + 1)/5'); print("E3a-p: ", expr3a); show("E3a-s: ", expr3a)</pre>	x=var('x'); expr3b=latex((x^2+22)/5); print("E3b-p-var: ",expr3b); show("E3b-s-var: ",expr3b)	<pre>a.x=var('a,x'); expr4=(a*x^2) / 5; show("E4-s-var-no-latex(): ", expr4+81); view(expr4+91) print("E4-p-var-no-latex(): ", expr4+71) expr5=FiniteField(25,'a'); print("E5-p: ", latex(expr5)); view(latex(expr5))</pre>	<pre>print(LatexExpr(r"\text{TXT: } (a*x^3) / 7")) # shows Latex code as text in output cell view(LatexExpr(r"\text{PDF: } (a*x^3) / 9 ")) # shows rendered Latex code in extra window</pre>	$ \begin{array}{l} via \ display: 13.490000000 \ m \times 2.26 \ m = x \ m^2 \ - \ Formula: A = \pi \times r^2 \\ {\rm E1-s:rsin}(\theta) + 1 \\ {\rm E2-s:rint}(1 \ {\rm Latex}(r): \ r^{\rm sin}({\rm theta}) + 2 \\ {\rm E3-s:} \ rext{(textft}(x{(\timesfchar`v^2)2{}) + {} 1)/5}) \\ {\rm E3a-s:}(x^2 + 1)/5 \\ {\rm E3b-p-var:} \ \sqrt{{\rm frac}(1){5}} \ v. \ x^2{2} + \sqrt{{\rm frac}(22{}{5}){5}) \\ \end{array} $	$\begin{array}{l} {\tt E3b-s-var:} \frac{1}{5}x^2 + \frac{22}{5}\\ {\tt E4-s-var-no-latex():} \frac{1}{5}ax^2 + 81\\ {\tt E4-p-var-no-latex():} 1/5^*a^*x^2 + 71\\ {\tt E5-p:}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Fig. 13: Typical sequence of cells within a Jupyter Notebook for code Sage with LaTeX axpressions within a browser and in VSC

There are roughly three different ways of using LaTeX in a Jupyter notebook that execute SageMath code.

a) latex() The latex() command offers the same options here as on the Sage console – see Subsection 1.7.1 and Fig. 14.

b) view() or show() We use show() to create a LaTeX expression from the Sage expression and display it in nicely formatted output.^{27,28} See Fig. 14.

💭 Jupyter	Interact (autosaved)	Logout
File Edit	View Insert Cell Kernel Widgets Help Truste	ed SageMath 9.3 O
₽ + % 4	$\blacksquare \clubsuit \clubsuit \clubsuit \blacksquare \blacksquare \blacksquare \textcircled \clubsuit \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	
In [284]:	<pre>var('a,x'); latex((a*x^2)/5)</pre>	
Out[284]:	\frac{1}{5} a x^{2}	
In [286]:	<pre>var('a,x'); view((a*x^2)/5)</pre>	
In [287]:	<pre>var('a,x'); show((a*x^2)/5)</pre>	
	$\frac{1}{5}ax^2$	

Fig. 14: latex() and show() in SageMath commands within a Jupyter notebook

c) Latex() If you already have prepared LaTeX code from a document, you can use it in the Sage code cell. The most stable is probably using the Latex command.²⁹

Using Latex(), the LaTeX code between the delimiters """ is rendered by the LaTeX display in math mode. In contrast, latex() proceeds in such a way that the LaTeX code between the """ is only converted to LaTeX code in math mode.

```
from IPython.display import Latex
Latex(r"""
\begin{align}
c = \sqrt{a^2 + b^2}
\end{align}
""")
```

Built-in magic commands for LaTeX in a Jupyter notebook This further variant has become rather uncommon. Here (instead of working with display()) the so-called "magic"³⁰ command %latex is used. This command turns the entire cell into a LaTeX cell. See Fig. 15 on the following page.

²⁷You can find further, not always completely up-to-date details under https://doc.sagemath.org/html/en/tutorial/latex.html. ²⁸LaTeX must be installed to use the show() command.

²⁹Less often used is the further display variant getting a raw LaTeX string for the math object.

³⁰Jupyter notebooks have built-in magic commands ("magics") that start with %. For example, the IPython kernel extends the Python syntax this way. A distinction is made between two different types of magic:

[•] Line magics denoted by a single % prefix and run on a single input line

[•] Cell magics preceded by a double symbol %. This allows you to run a single notebook cell in a subprocess of another interpreter (like bash, R, or latex) (rather than in the default kernel).

Whether and which extensions are available depends on the configured kernel (SageMath offers fewer magics than IPython).

```
%latex
\begin{align}
c = \sqrt{a^2 + b^2}
\end{align}
```

💭 Jupyter		Logout
File Edit View Insert Cell Kernel Widgets Help	Trusted 🥒	SageMath 9.3 O
<pre>In [312]: %%latex c = \sqrt{a^2 + b^2}</pre>		
$c = \operatorname{sqrt}\{a^2 + b^2\}$		
<pre>In [314]: %%latex \begin{align} c = \sqrt{a^2 + b^2} \end{align}</pre>		
$c = \sqrt{a^2 + b^2}$		

Fig. 15: Usage of %latex() in a Jupyter notebook

Two further examples:³¹ Here text and Sage code are combined in different ways. See Fig. 16 on the next page.

1) Concatenate with LatexExpr()

var('A, x, y, alpha, beta')
U = A*x^(alpha) * y^(beta) # typical Sage code
show(U) # output Sage code in rendered form
LatexExpr("U(x)=" + latex(U)) # build another Sage code expression

2) Create html code containing Sage expressions and LaTeX commands

SageMath Example 1.11: Create html code containing Sage expressions and LaTeX commands

```
# SageJupyter_sample010.sage: SageMath within a Jupyter notebook
var('A, x, y, alpha, beta')
U = A*x^(alpha)*y^(beta)
text = fr"""
<h3>This is a title</h3>
This is some text explaining several interesting
things. <strong>HTML</strong> can be used to
format these lines.
Now we write an inline mathematical expression
$U(x,y)={latex(U)}$, as well as a displayed one:
$$\frac{{\partial^2 U}}{{\partial x \partial y}{(x,y)}}
= {latex(diff(U,x,y))}$$
"""
```

³¹From https://ask.sagemath.org/question/47978/add-a-text-in-latex-in-front-of-a-result/

Fig. 16: Usage of text and code in a code cell of the Jupyter notebook

The Jupyter cell outputs are rendered using MathJax.³² MathJax is a cross-browser JavaScript library that displays mathematical notation in browsers. The output can be generated in several formats, including HTML with CSS styling, or scalable vector graphics (SVG) images. MathJax can only map a subset of TeX and LaTeX.

Section 1.8 on page 34 (with Jupyter and interact) describes some more use cases where automated LATEX typesetting is used via \$...\$ e.g. for labels. This makes them look nicer in the output of the **Jupyter notebook**.

1.7.3 Within a LaTeX document use Sage commands generated by latex()

If you pass Sage objects to the latex() command in SageMath, you get LaTeX code. You can simply copy this into a LaTeX document (restriction see 1.7.1 on page 25).

In SageMath example 1.12 a matrix equation³³ is solved, and then the equation is output via show(). At the end, the LaTeX commands are generated, with which the solved equation can be output (see below). The according Jupyter notebook can be seen in Fig. 17 on the following page.

SageMath Example 1.12: Code to generate the LaTeX command of an equation

```
# SageJupyter_sample070.sage: SageMath within a Jupyter notebook
```

```
# Solve a matrix equation and generate LaTeX code to show the solved equation e.g. in a pdf.
```

```
M4= MatrixSpace(ZZ, 4)
A = M4.matrix([[0, -1, -1, 1], [1, 1, 1, 1], [2, 4, 1, -2], [3, 1, -2, 2]])
b = vector(ZZ, [0, 6, -1, 3])
```

```
<sup>32</sup> https://www.mathjax.org/
```

³³The equation is from Craig Finch's book, p. 118. The code has been heavily customized.

ctd. SageMath Example 1.12

```
import matplotlib.pyplot as plt
plt.plot([0,2,1,4,9])  # In a sage file (e.g. in VSC with sage extension), this has no effect.
```

```
In [38]: M4 = MatrixSpace(ZZ, 4)
         A = M4.matrix([[0, -1, -1, 1], [1, 1, 1, 1], [2, 4, 1, -2], [3, 1, -2, 2]])
         b = vector(ZZ, [0, 6, -1, 3])
         bT=b.column()
         var('x1 x2 x3 x4')
         x = vector( [x1, x2, x3, x4] )
         xT=xx.column()
         show('$$ A*x=b:~~~ %s * %s = %s $$'%(latex(A), latex(xT), latex(bT)))
         solution = A.solve right(b)
         show('$$ A*x=b:~~~ %s * %s = %s $$'%(latex(A), latex(solutionT), latex(bT)))
         print('$$ A*x=b:~~~ %s * %s = %s $$'%(latex(A), latex(solutionT), latex(bT)))
                       0
                          -1
                              ^{-1}
                                    1
                                                   0
                                          x_1
                                    1
                      1
                               1
                           1
                                          x_2
                                                   6
         A * x = b:
                      2
                           4
                               1
                                   -2
                                          x_3
                     3
                              -2
                                    2
                           1
                      0
                          -1
                              -1
                                     1
                               1
                                    1
                      1
                           1
         A * x = b:
                      2
                               1
                                   -2
                           4
                     3
                           1
                              -2
                                    2
         $$ A*x=b:~~~ \left(\begin{array}{rrrr}
         0 & -1 & -1 & 1 \\
         1&1&1&1 \\
         2 & 4 & 1 & -2 \\
         3 & 1 & -2 & 2
         \end{array}\right) * \left(\begin{array}{r}
         2 \\
         -1 \\
         3 \\
         2
         \end{array}\right) = \left(\begin{array}{r}
         0 \\
         6 \\
         -1 \\
         3
         \end{array}\right) $$
```

Fig. 17: Solve a matrix equation and create the LaTeX code of the equation

Here is the result of the LaTeX commands generated by latex():

$$A * x = b: \begin{pmatrix} 0 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 4 & 1 & -2 \\ 3 & 1 & -2 & 2 \end{pmatrix} * \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 6 \\ -1 \\ 3 \end{pmatrix}$$
$$A * x = b: \begin{pmatrix} 0 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 4 & 1 & -2 \\ 3 & 1 & -2 & 2 \end{pmatrix} * \begin{pmatrix} 2 \\ -1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 6 \\ -1 \\ 3 \end{pmatrix}$$

1.7.4 Within a LaTeX document use Sage code handled by SageTeX()

This is – compared to Subsection 1.7.3 – the more exciting part.

Suppose you have a TEX distribution on your machine. Then you can enter SageMath code directly into LATEX documents, you can then run this code and embed the result automatically in the generated (usually: pdf) output.

For this, you need the package **SageTeX** which has to be included in the header of the T_EX file via \usepackage{ \blacktriangleright sagetex}. MikT_EX brings sagetex with it, while in case you have T_EXLive or MacT_EX, you can get the package and the documentation here: https://ctan.org/pkg/sagetex?lang=en.

The TEX file you want to apply Sage TeX to should be located in the same folder as the Sage TeX files that you downloaded as a zip folder and then extracted. Alternatively, the SageMath installation also comes with this package, but you have to do some additional work to use it, see https://doc.sagemath.org/html/en/referen ce/misc/sagetex.html.

If you have a LATEX document that uses this package, the generation of the pdf is done in three steps as follows:

- pdflatex file.tex → the file file.sagetex.sage is created as well as the files file.aux, file.log, file.pdf.
- sage file.sagetex.sage → sage is run on the SageMath code that was generated in the last step and written to file.sagetex.sage. Here the three files file.sagetex.[sage.py, scmd, sout] are generated.
- Again call pdflatex file.tex → file.pdf is finished.

This workflow is summarized in Fig. 18.

Fig. 18: Workflow with SageTeX

Remark: For experienced LATEX users and bigger LaTeX projects we recommend to use arara³⁴ to deal with

³⁴ arara by Paulo Cereda is a TeX automation tool based on rules written at the beginning of the main tex file of a LaTeX project. You have to write these rules about what arara should do into your LaTeX document by yourself. arara then determines its actions from these rules – rather than automatically generating rules from indirect resources, such as log file analysis. arara requires a Java virtual machine. See https://gitlab.com/islandoftex/arara and https://islandoftex.gitlab.io/arara/. Since 2024, arara is no longer part of the MacTeX delivery, but can be installed there later.

workflows like in Fig. 18. We want to introduce arara with a minimal working example (MWE) – see SageMath example 1.13. Try out entering arara -w mwe.tex in the terminal after saving the MWE example to a file named mwe.tex. The result of this command is, that the number 32 is printed in the PDF.

The prerequisite is that "pdflatex" has access to the file "sagetex.sty" from the installed SageMath version. If this is not the case, you can find instructions at https://doc.sagemath.org/html/en/tutorial/sagetex.html#s ec-sagetex-install.

SageMath Example 1.13: Arara and sagetex

```
\documentclass{scrartcl}
% arara: pdflatex
% arara: sage: { files: [mwe.sagetex.sage]}
% arara: pdflatex
\usepackage{sagetex}
\begin{document}
$$\sage{2^5}$$
\end{document}
```

With SageTeX all the computational and LaTeX-formatting features of SageMath can be handled automatically. The SageTeX package is a collection of TeX macros³⁵, that allow a LaTeX document to include instructions to let SageMath compute and/or format various objects.

In the following sample, the LaTeX code for the matrix is created by the Sage code – the LaTeX file contains only the following four lines:³⁶

```
\begin{sagesilent}
  var('x,y')
  M = matrix([[i*x+j*y for i in range(3)] for j in range(3)])
\end{sagesilent}
```

The generated matrix then looks like this:

$$M := \begin{pmatrix} 0 & x & 2x \\ y & x+y & 2x+y \\ 2y & x+2y & 2x+2y \end{pmatrix}$$

SageMath commands can also be used in interact samples (compare appendix 1.8.3 on page 36 and appendix 1.8.4 on page 37).

³⁵ Further details about Sage TeX macros can be found at: https://ctan.org/pkg/sagetex, https://doc.sagemath.org/html/en/tutor ial/latex.html and https://doc.sagemath.org/html/en/tutorial/sagetex.html.

Besides **SageTeX**, there are also Python packages which can automate things in a LaTeX document. The most well known one is **PythonTeX** (https://ctan.org/pkg/pythontex).

The almost 60-page document https://cryptool.org/download/ctb/PythonTex-by-Examples.pdf contains many examples and testcases. PythonTeX is often used together with SymPy, a LaTeX package that allows you to also embed the results from a symbolic maths package within a LaTeX document.

Alternative packages like pyLaTeX by Jelte Fennema, v1.3.4, 2020 or hybrid-latex by Leo Brewin, v0.1, 2018 are no more maintained. ³⁶taken from https://phubert.github.io/sagetex-tutorial.pdf, page 8

1.8 SageMath with Jupyter and interact

With interact, SageMath programs become interactive – the impact of parameters on calculations can be visualized dynamically. This is done in a very general way using Python functionality. "Therefore, nearly every possible dependency could be shown."³⁷

Till now, we showed the result of the calculations as text, plot or as (animated) gif. With interact, the user is able to manipulate predefined parameters and see the changed results instantaneously.

1.8.1 A typical sample with interact()

Figure 19 shows a slightly modified example from the SageMath tutorials³⁸: In the two dropdown controls you can change the length of both sides n and m of a rectangle, which is then shown. Then its area size is calculated dynamically and the factors of the size are printed as text.

SageMath Example 1.14: Starting sample using interact in a Jupyter notebook

SageJupyter_sample020.sage: SageMath within a Jupyter notebook @interact def f(n=(1..10), m=selector([1..15],default=6)): print("Area: n * m = {} = {}".format(n * m, factor(n * m))) P = polygon([(0, 0), (0, n), (m, n), (m, 0)]) P.show(aspect_ratio=1, gridlines='minor', figsize=[3, 3], xmax=15, ymax=10)

Fig. 19: A starting sample using interact in a Jupyter notebook

For the interaction with the user there are currently eight interactive Sage widget controls:

- boxes
- sliders
- range sliders
- checkboxes
- selectors (drop-down lists or buttons)
- grid of boxes

³⁷https://www.sagemath.org/tour-graphics.html

 $^{^{38} \}verb+https://more-sagemath-tutorials.readthedocs.io/en/latest/tutorial-start-here.html+latest/tutorial-start-here.html+latest/tutorial-start-here.html+latest/tutorial-start-here.html+latest/start-here.html+latest-start-here.$

- color selectors
- plain text

In Fig. 19 on the previous page, two drop-down selectors are used. The first one for n is used implicitly, the second one for m is called explicitly in order to add an option for setting the initial value (6) used at the beginning (if no initial value is set, the first value in the list is used as default).

Many more details can be found on the following pages and at the links in the footnote.³⁹

1.8.2 Technically – what are Decorators

Decorators are a construct in Python 3 that can be used to add a certain functionality to an existing function (or method). A decorator takes in a function, adds some functionality and returns it. So the decorator acts as a wrapper.⁴⁰

The following two short examples are exactly the same –besides different notation. Because of better readability, only the @ way is used. This is just a "syntactic sugar" to implement the decorator function.

```
def myplot(f=x^2):
    show(plot(f,(x,-3,3)))
myplot=interact(myplot)
@interact
def myplot(f=x^2):
    show(plot(f,(x,-3,3)))
```

The short examples are taken from the SageMath documentation.⁴¹ The graph of a function f will be plotted, and the user can change the function f. We defined a new function myplot and made f a variable. To make a "control" allowing the user to interactively enter the function f, we just preface the function myplot with @interact. Note that we can still call the myplot function, even when we've used @interact. This is often useful in debugging it: myplot(x^4).

It's a convention to use the underscore "_" for throw-away names that we don't care about like myplot. See the next example and Fig. 20 on the following page. In the figure, the option aspect_ratio is used: Values smaller than 1 squeeze the graph vertically which helps to reduce the needed vertical space. Then first _(x^2) is plotted and then _(x^3).

```
@interact
def _(f=x^2):
    show(plot(f,(x,-3,3)))
_(x^3)
```

@interact "magically" offers in the next cell for each argument of the unnamed function a control, where the user can change the according argument. The result (calculation or plot) is adapted without having to click on "Run" again.

Using the interact method, basic widgets (graphical controls already included in SageMath) can be displayed automatically and linked to the parameters of user-defined functions. Widgets from Matplotlib or from the Jupyter notebook are more flexible and their usage is shown in SageMath example 1.17 on page 39.

https://doc.sagemath.org/html/en/prep/Quickstarts/Interact.html,

⁴⁰ The parameters of the decorator function are the same as the parameters of function it decorates. So any number of parameters can be used. In Python, this "magic" is done via function(*args,**kwargs), where args is the tuple of positional arguments and kwargs is the dictionary of keyword arguments. See https://docs.python.org/3/tutorial/controlflow.html#defining-functions.

```
<sup>41</sup>https://doc.sagemath.org/html/en/prep/Quickstarts/Interact.html
```

³⁹https://more-sagemath-tutorials.readthedocs.io/en/latest/tutorial-start-here.html,

https://wiki.sagemath.org/interact/,

https://wiki.sagemath.org/interact/graphics

Fig. 20: Calling an unnamed function automatically via interact and then again directly

Widgets can be created either directly or through the interact function. Because it is convenient for quick use, mostly the interact method is used. Interact takes a function as its first argument, followed by the arguments of this function with their possible values. This creates widgets that allow to select those values, making a callback with the current value for every selection.

1.8.3 Interact samples without graphics

@interact is mainly used to show interactive graphs, but it also can be used for showing parameterized text output.

The following example⁴² factors a symbolic expression depending on the exponent n.

```
@interact
```

```
def _(n=(2,100,1), auto_update=False):
    show(factor(x^n - 1))
```


⁴²from http://fe.math.kobe-u.ac.jp/icms2010-dvd/SAGE/www.sagemath.org/doc/reference/sagenb/notebook/interact.html

Moving the slider in Fig. 21 on the preceding page changes the exponent. Here the recalculation and redraw is only performed after the user pushes the "Run Interact" button (via setting the option auto_update to False). Disabling this default makes sense for functions whose evaluation takes awhile or to prevent flickering because normally the recalculation is started at each point where the slider is moved over.

The sample in Fig. 22^{43} builds an interact control set with three inputs: two slider inputs for a and y (running through the range of integers from -5 to 15 and from 0 to 20), and a text input for the expression c. Note that printing c shows its symbolic expression y+2, while c(y) evaluates its value.

```
var('y')
@interact
def _(a=5, y=(0..20), c=y+2):
    print("a+y:", a + y); print("c: ", c, "=", c(y))
```


1.8.4 Interact samples with graphics

Now some more examples are shown, which use interact for manipulating graphics.⁴⁴

The sample in Fig. 23 on the following page and in SageMath example 1.15 is adapted and enhanced – from the very good book [Fin11]. The curve $1/((x-a)^e) = (x-a)^{-e}$ has two interact parameters a, e. The graph shows the poles at x = a for odd values of e and a flexible range of y values depending on the value of e. The labels of the axes are set manually in LaTeX in the code cell.

SageMath Example 1.15: Graph with vertical pole and parameters for different curves (see Fig. 23)

```
# SageJupyter_sample030.sage: SageMath within a Jupyter notebook
@interact
def _(a=slider([-5..5], default=2, label='Param a: '),
        e=slider([-5..5], default=1, label='Param e: ')):
        xs=0.15  # space in x direction shown left an right of the pole
        pole_plot = plot(1 / ((x - a)^e), (x, a-(xs), a+(xs)), detect_poles='show')
        pole_plot.ymax((100.0)^e)
        pole_plot.ymin(-(100.0)^e)
        print("min y = {0:.3f} // max y = {1:.3f}".format( pole_plot.ymin(), pole_plot.ymax() ))
        print("min x = {0:.3f} // max x = {1:.3f}".format( pole_plot.xmin(), pole_plot.xmax() ))
        pole_plot.axes_labels([r'$x$', r'$1/(x-a)^e$'])
```

⁴⁴Many more examples can be found at:

- https://wiki.sagemath.org/interact/misc https://wiki.sagemath.org/interact/games
- https://wiki.sagemath.org/interact/games
- https://wiki.sagemath.org/interact/graph_theory
- https://www.sagemath.org/tour-graphics.html
- https://wiki.sagemath.org/art

⁴³taken and modified from http://fe.math.kobe-u.ac.jp/icms2010-dvd/SAGE/www.sagemath.org/doc/reference/sagenb/notebook /interact.html

pole_plot.show()

Fig. 23: Graph with vertical pole and parameters (compare Fig. 24)

Even a bit more flexible than SageMath example 1.15 on the preceding page is SageMath example 1.16 (without figure): It has a similar functionality, but the function g() is defined **before** the unnamed function and so the function name g can be used in the unnamed function instead of using its expression several times. This works fine within plot() – and also within axes_labels the italic LaTeX presentation is shown for the evaluated g function: The trick here – learned from ask.sagemath.org – is to get the string for the label of the y-axis via concatenation: '\$'+latex(g(a,e,x))+'\$'.⁴⁵

SageMath Example 1.16: Graph with vertical pole and parameters and generic function (without fig.)

⁴⁵Some parameters in the SageMath plot are still a bit unflexible. Using the underlying Mathplotlib directly can give more robustness.

1.9 SageMath with Jupyter and Matplotlib interactive_output

The graphics (plots) in SageMath are created with the Python package Matplotlib.⁴⁶ Matplotlib is the most common graphics library for Python in general.

The most commonly used functions of matplotlib are directly accessible through Sage functions. So far we have limited our examples to the graphics functions built into SageMath (see the Sage widgets in 1.8.1 on page 34).

Alternatively, you can either import the whole Mathplotlib package into SageMath (and then use its complete functionality) or use the graphics functions (widgets or controls) from the Jupyter notebook, which are also based on Mathplotlib. In the following example we use the Jupyter widgets and achieve a nicer layout than with the Sage widgets.

The previous sample in Fig. 23 and in SageMath example 1.15 on page 37 showed the controls below each other. This is practical for a quick result, but doesn't deliver a nice user interface. Now we reconstruct this example using Jupyter widgets (ipywidgets)⁴⁷.

The two ipywidgets.IntSlider act as input; ipywidgets.Label is used as output (instead of print). All four widgets are initially generated independently. Then the widgets are inserted into a grid consisting of $2 \cdot 3 = 6$ cells. The sliders take up the first two columns, the labels take the last column; Sliders are therefore twice as wide as the labels. Labels are not only available for coordinate axes (like in the previous examples), but can be placed anywhere. Label widgets display the value text but are not editable, which is intended here.

Not only g() but also myplot() is separately defined, so that the interactive function is relatively small: It calls myplot() and assigns the slider input controls aa and ee to the input variables a and e of the myplot() function.

With the help of interactive_output the graphic is not output immediately, but created in an output widget. As a result, the graphic could later be output several times per display.

Overall, the ipywidgets allow a much more flexible layout than the basic widgets integrated in SageMath. However, the code is longer 9.

```
SageMath Example 1.17: Code for graph with widgets from ipywidgets (see Fig. 24)
```

```
# SageJupyter_sample060.sage: SageMath within a Jupyter notebook
# Widgets from ipywidgets and called via interactive_output
from ipywidgets import GridspecLayout, Layout, IntSlider, Label, interactive_output
var('a, e, x')
g(a,e,x) = 1 / ((x - a)^e)
# Create the controls
aa = IntSlider(min=-5, max=5, value=2, description='Param a: ', layout=Layout(width='auto', height='auto'))
ee = IntSlider(min=-5, max=5, value=1, description='Param e: ', layout=Layout(width='auto', height='auto'))
label1 = Label(description="for_x", layout=Layout(display='flex', justify_content="center", border='1px ▶
 ▶ solid green'))
label2 = Label(description="for_y", layout=Layout(display='flex', justify_content="center", border='1px ▶
 $ solid green'))
# Distribute the controls into a grid for better layout
grid = GridspecLayout(int(2), int(3))
grid[0,0:2] = aa
grid[1,0:2] = ee
grid[0,-1] = label1
```

grid[1, -1] = label2

⁴⁶https://matplotlib.org/

⁴⁷ See https://ipywidgets.readthedocs.io/en/latest/examples/Using%20Interact.html. Two very nice introductions to Jupyter widgets can be found in https://www.elab2go.de/demo-py1/jupyter-notebook-widgets.php and https://kapernikov.com/ipywi dgets-with-matplotlib/ (2020).

```
ctd. SageMath Example 1.17
def myplot(a, e):
    xs=0.15 # space in x direction shown to the left and right of the pole
    pole_plot = plot( g(a,e,x), (x, a-(xs), a+(xs)), detect_poles='show' )
    pole_plot.ymax((100.0)^e)
    pole_plot.ymin(-(100.0)^e)
    # Add spaces via the unicode character xa0 ("nonbreaking space")
    skip = ':\xa0\xa0\xa0\xa0'
    s1 = 'x' + skip + "min = {0:.2f} \xa0 // \xa0 max = {1:.2f}".format( pole_plot.xmin(), pole_plot.xmax())
     ) ا
    s2 = 'y' + skip + 
         ( "min = {0:.0f} \xa0 // \xa0 max = {1:.0f}".format(pole_plot.ymin(), pole_plot.ymax()) if (▶
           bpole_plot.ymin()>100 or pole_plot.ymin()<-100)</pre>
           else "min = {0:.2f} \xa0 // \xa0 max = {1:.2f}".format(pole_plot.ymin(), pole_plot.ymax()) )
    label1.value = s1
    label2.value = s2
    pole_plot.axes_labels([ '$x$', '$'+latex(g())+'$' ])
    pole_plot.show()
out = interactive_output( myplot, {'a': aa, 'e': ee} )
```

```
_____
display(grid, out)
```


Fig. 24: Graph with widgets from ipywidgets (compare Fig. 23)

1.10 Further interact SageMath examples about cryptography

Besides the examples in this book, you can find at the link in Footnote 48 many simple examples, which present the commands from the area of cryptography in SageMath with interact:⁴⁸

- 1. Shift Cipher (Encryption and Decryption)
- 2. Affine Cipher (Encryption and Decryption)
- 3. Substitution Cipher
- 4. Playfair Cipher (Encryption and Decryption)
- 5. Frequency Analysis Tools
 - a) Letter Frequency Counter
 - b) Frequency Analysis Decryption Guesser

⁴⁸ https://wiki.sagemath.org/interact/cryptography (created first at "Sage Days 103", 7-9 August 2019)

- 6. Vigenère Cipher (Encryption and Decryption)
- 7. One-Time Pad (OTP)
- 8. Hill Cipher (Encryption and Decryption)
- 9. Modular Arithmetic (Preliminaries for RSA, Diffie-Hellman, ElGamal)
 - a) Modular Arithmetic Multiplication Table
 - b) Modular Exponentiation
 - c) Discrete Log Problem (Solving for x and for b)

10. RSA

- a) RSA, from Alice's Perspective
- b) RSA, from Babette's Perspective
- c) RSA with Digital Signatures

1.11 The curve courses of MTW with SageMath

In the international Mystery Twister⁴⁹ (MTW, formerly MTC3) crypto puzzle competition, there are three levels in which the awarded points for a solved task are automatically calculated using a formula. The level specifies a base number of points, which the user gets at least and where the number of points converges to – the longer the task has been published. How fast this approximation takes place depends on the level: the lower the level, the faster (see https://mysterytwister.org/challenges/points-calculation/).

The according graph is visualized in Fig. 25 on the next page for the first 500 days. The graph is created with the SageMath example 1.18.

The 3 curves of the 3 levels can be seen in blue – normalized to a base value of 100. With the slider you can select the weight c in small steps to see in a red curve how quickly the "rate of fall" adjusts to the base value. This red curve always moves on top of the other curves; and hides the blue curve of level 1 in Fig. 25, as c = 1.00 in level 1.

The base value is 50 % of the maximum value (here in the graph it is always 200; in MTW it is 200, 2000, and 20000). Each of the three levels starts with its maximum value. After 10 days (L1/L2/L3) are each at (55/74/86) % of the maximum value. Level 1 (L1) reaches 50 % after just after 101 days. After 500 days (L2/L3) are each at (57/70) % of the maximum value.

```
SageMath Example 1.18: Code generating the graph for MTW points over time
# SageJupyter_sample050.sage: SageMath within a Jupyter notebook
# MTW formular: points for one challenge after d days
c,d = var('c, d')
def f(c, d):
   r = 1 - (1 / ((2^{(1-c)}) * ((d+1)^{c})))
   return ( r )
def a(c.d):
   100 / f(c,d)
@interact
def _( c = slider( 0, 2, step_size=0.05, default=1 ) ):
   g1 = 100 / f(1, d)
   p1 = plot(g1, (1, 500), thickness=1, color='blue' )
   q025 = 100 / f(0.25, d)
   p025 = plot(g025, (1, 500), thickness=1, color='blue' )
   g01 = 100 / f(0.1, d)
```

⁴⁹ https://mysterytwister.org/

Fig. 25: Graph about MTW points over time

1.12 More professional Sage programs

In the literature and also here, you can often find short code examples for SageMath. But it is also possible to write very professional programs with Sage. This is mainly due to the fact that you can use in Sage programs all the possibilities of Python 3.

In SageMath example 2.8.19 of the CrypTool book you can see that to some extent. The analysis program

- has the typical structure of a Python program with a clear main function at the end.
- breaks down all tasks into manageable functions.
- parses the command line with argparse.
- contains test data (here in a dictionary).
- supports a verbose mode, which can be used to output internal processes (inner workings) and log information ad hoc.
- contains comments, usage info, and versioning.

1.13 Further hints for SageMath in this book

Some more hints:

- To get the version of your SageMath environment: version()
- To move quickly to the SageMath examples in this book,

- either look in the index at SageMath -> Code examples,
- or have a look at Chapter 2 on page 45
- The SageMath examples in this book can be found at the CrypTool website for download. Further details at the end of the overview in Chapter 2 on page 45.

All links of this appendix have been confirmed at June 5, 2024.

Acknowledgments

I would like to take this opportunity to thank Doris Behrendt for her thorough and constructive proofreading of this chapter.

2 Lists of Figures, Tables, Code Examples, etc.

2.1 List of Figures

1	SageMath console from the command line (terminal)	7
2	Creating a SageMath file with Jupyter in a browser	7
3	Website for the SageMath standard documentation (https://doc.sagemath.org/html/en/)	13
4	Output after dot with tab completion	15
5	Index	16
6	Search among those commands that begin with the letter <i>a</i>	16
7	Typical generic sequence of cells within a Jupyter Notebook	18
8	Typical sequence of cells within a Jupyter Notebook for Sage code with text output within a	
	browser and in VSC	19
9	Typical sequence of cells within a Jupyter Notebook for Sage code with plot output within a	
	browser and in VSC	20
10	Surroundings of a Jupyter Notebook ¹	21
11	SageMath example shown in an editor with code highlighting	24
12	Plot output from code in Fig. 13 in three extra windows	26
13	Typical sequence of cells within a Jupyter Notebook for code Sage with LaTeX axpressions	
	within a browser and in VSC	27
14	latex() and show() in SageMath commands within a Jupyter notebook	28
15	Usage of %%latex() in a Jupyter notebook	29
16	Usage of text and code in a code cell of the Jupyter notebook	30
17	Solve a matrix equation and create the LaTeX code of the equation $\ldots \ldots \ldots \ldots$	31
18	Workflow with Sage TeX	32
19	A starting sample using interact in a Jupyter notebook	34
20	Calling an unnamed function automatically via interact and then again directly \ldots .	36
21	Calling a function without a graph via interact (using auto_update)	36
22	Function with 2 inputs and evaluating a symbolic expression via interact	37
23	Graph with vertical pole and parameters (compare Fig. 24)	38
24	Graph with widgets from ipywidgets (compare Fig. 23)	40
25	Graph about MTW points over time	42

2.2 List of Tables

1	Overview about the SageMath calling possibilities (user interfaces)	6
2	Overview about the interconnection between SageMath and LaTeX	24

2.3 List of SageMath Examples

1.1	Small samples from different areas in mathematics (1)					•				 •	8
1.2	Small samples from different areas in mathematics (2)	•								 •	10

¹With small changes taken from https://mlsummit.ai/blog/jupyter-notebooks-fuer-lehre-und-entwicklung-alles-im-blick-n otizbuch-fuer-entwickler/

1.3	SageMath help (Welcome)	12
1.4	SageMath help (for single function)	14
1.5	SageMath help (expand with Tab key)	15
1.6	Program to print all member functions of a SageMath object	15
1.7	Function definition in file with extension .sage	22
1.8	load	22
1.9	attach	23
1.10	iload	23
1.11	Create html code containing Sage expressions and LaTeX commands	29
1.12	Code to generate the LaTeX command of an equation	30
1.13	Arara and sagetex	33
1.14	Starting sample using interact in a Jupyter notebook	34
1.15	Graph with vertical pole and parameters for different curves (see Fig. 23)	37
1.16	Graph with vertical pole and parameters and generic function (without fig.)	38
1.17	Code for graph with widgets from ipywidgets (see Fig. 24)	39
1.18	Code generating the graph for MTW points over time	41

All SageMath examples of this book can be found on the CrypTool website: https://www.cryptool.org/en/ctbook/sagemath

The names of the SageMath script files contain first the chapter number and then the running number of the script within that chapter, e.g. chap09_sample110.sage.

All examples have been tested with the SageMath versions 9.3 (release date 2021-05-09) under Windows, 9.5 (release date 2022-01-30) under Linux, and 10.0 (release date 2023-05-23) under macOS.

3 Literature

[Fin11] Craig Finch. Sage Beginner's Guide. PACKT Publishing, 2011 (cit. on p. 37).

4 Index

A

analysis frequency, 40 arara, 32

С

cipher affine, 40

D

decorator, 35

Η

Hill, 41

K

kwargs, 35

L

logarithm problem discret, 41

М

modular arithmetic, 41 MTW, 41 formula, 41 my_import, 23

0

OTP, 41

Р

Playfair, 40 Python, 5

R

RSA, 41

S

SageMath, 5 code examples, 5, 45 SageTeX, 32 shift cipher, 40 substitution, 40 syntactic sugar, 35

v

Vigenère, 41