

Appendix to the „CrypTool Book“:
Learning and Experiencing Cryptography with CrypTool and SageMath

Introduction into the CAS
SageMath

Bernhard Esslinger

https://www.cryptool.org

Friday 28th June, 2024 (13:15:00)

Page 2

https://www.cryptool.org

This is a free document, so the content of the document can be copied and distributed, also for
commercial purposes – as long as the authors, title and the CrypTool web site (https://www.cryp
tool.org) are acknowledged. Naturally, citations from the CrypTool book are possible, as in all
other documents. Additionally, this document is liable to the specific license of the GNU Free
Documentation Licence. This also applies to the code of the SageMath and OpenSSL samples in
this document.

Copyright © 1998–2024 Bernhard Esslinger and the CrypTool Team.

Permission is granted to copy, distribute and/ormodify this document under the terms of theGNU
Free Documentation License, Version 1.3 or any later version published by the Free Software Foun-
dation (FSF). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

Suggestion for referencing with Bib(La)TEX:

@article{Esslinger:ctb_2024_app_sage_en,

editor = {Bernhard Esslinger},

title = {{A}ppendix to the {C}ryp{T}ool {B}ook:

{L}earning and {E}xperiencing {C}ryptography

with {C}ryp{T}ool and {S}age{M}ath:

{I}ntroduction into the {CAS} {SageMath}},

publisher = {CrypTool Project},

year = {2024}

}

Typesetting software: LATEX
Version control software: Git
Support with translations: DeepL Translator by DeepL.com and ChatGPT 4 by openai.com
Supporting the generation of Tikz diagram: Claude 3.5 Sonnet by claude.ai

Page 3

https://www.cryptool.org
https://www.cryptool.org

Table of Contents

Table of Contents

1 Introduction into the CAS SageMath . 5
1.1 The three typical user interfaces of SageMath . 6
1.2 Examples using the built-in mathematical functions in SageMath 8
1.3 Getting help when using SageMath . 12
1.3.1 Getting help from websites . 12
1.3.2 Getting help via help(), ?, ??, or search_src . 14
1.3.3 Using tab completion . 14
1.3.4 The comprehensive command list: The SageMath index 15
1.4 Using the Jupyter notebook . 15
1.5 The kernel of a Jupyter notebook . 21
1.6 Writing code with SageMath in the Sage console or via starting a Sage script in the terminal . 22
1.7 SageMath and LATEX . 23
1.7.1 LaTeX and SageMath on the console . 25
1.7.2 LaTeX and SageMath within a Jupyter notebook . 26
1.7.3 Within a LaTeX document use Sage commands generated by latex() 30
1.7.4 Within a LaTeX document use Sage code handled by SageTeX() 32
1.8 SageMath with Jupyter and interact . 34
1.8.1 A typical sample with interact() . 34
1.8.2 Technically – what are Decorators . 35
1.8.3 Interact samples without graphics . 36
1.8.4 Interact samples with graphics . 37
1.9 SageMath with Jupyter andMatplotlib interactive_output 39
1.10 Further interact SageMath examples about cryptography 40
1.11 The curve courses of MTWwith SageMath . 41
1.12 More professional Sage programs . 42
1.13 Further hints for SageMath in this book . 42
Acknowledgments . 43

2 Lists of Figures, Tables, Code Examples, etc. 44
2.1 List of Figures . 44
2.2 List of Tables . 44
2.3 List of SageMath Examples . 44

3 Literature 46

4 Index 47

Page 4

1 Introduction into the CAS SageMath

1 Introduction into the CAS SageMath

(Bernhard Esslinger. Last update: Jun 2024)

This chapter, which was designed as an appendix to the CrypTool book, mainly describes the ecosystem of
SageMath, i. e. how to use SageMath in different environments. Beginners are often confused by the many
variants – this chapter helps with examples and a systematic overview, which is summarized in the tables 1 and 2.

The CrypTool book contains numerous program examples created with SageMath. However, this appendix
can also be read on its own as an introduction to SageMath. SageMath is a computer-algebra system (CAS)
like Mathematica, Maple, andMATLAB. SageMath supports teaching, study, and research in mathematics.
It combines many other high-quality open-source packages1 and provides access to their functionalities via a
common interface, based on the programming language Python.2

SageMath is free and can be downloaded from:

https://www.sagemath.org

SageMath can be used as a powerful desktop calculator, as a tool to help (undergraduate) students study
mathematics, or as a programming environment for prototyping algorithms and research in algorithmic aspects
of mathematics. Instead of programming mathematical tasks with SageMath, you can just as well use Python
and libraries. The advantage of SageMath is that a number of mathematical constructs are already included and
you can also do symbolic math.3

You can get a quick impression of SageMath e. g. with the references in Footnote 4.4 Footnote 5 lists four
examples of good documents about SageMath for further reading.5

With respect to studying cryptography, SageMath modules can be used to complement a first course in crypto-
graphy.6 Introductions into cryptography using SageMath are in this footnote7. Section 2.8 of the CrypTool
book contains SageMath samples for many classical cryptographic algorithms.

This introduction uses mainly examples to show what SageMath can do, but it also shows the environments and
surroundings, i. e. how to use SageMath in the terminal and in the notebook; how the user controls provided by
SageMath work together with those of Jupyter andMatplotlib; or how LaTeX and SageMath work together.
This overall view was missing in many other introductions. It is supplemented with many annotated references
that have proven to be useful in teaching and learning.

All SageMath examples of this introduction can be found on the CrypTool website:
https://www.cryptool.org/en/ctbook/sagemath

1Normally you only install the binaries of SageMath. However, if you compile it yourself, you get an impression of how big SageMath
is: After downloading the source of SageMath 4.1, it took around 5 hours on an average Linux PC to compile the whole system
including all libraries. The compiled version occupied 1.8 GB disk space. With SageMath 9.0 the bz2 file had around 2 GB, and
uncompressed> 7 GB. It took me around 40 minutes to compile SageMath 10.3 under Ubuntu 22.04 – following the instructions at
https://sagemanifolds.obspm.fr/install_ubuntu.html.
2There is also an interface to the C language, called Cython, which can speed up functions in SageMath. See https://openwetware.org/
wiki/Open_writing_projects/Sage_and_cython_a_brief_introduction.
SageMath runs under the operating systems Linux, macOS, andWindows. From SageMath version 8, there was a native Windows
installer; from SageMath 9 (released at Jan 1st, 2020), Python 3 (instead of Python 2) is used.
3
https://doc.sagemath.org/html/en/reference/calculus/sage/calculus/calculus.html

4- “The SDSU Sage Tutorial”, https://mosullivan.sdsu.edu/sagetutorial/
https://mosullivan.sdsu.edu/sagetutorial/sagecalc.html

- Sage Quick Reference Cards, https://wiki.sagemath.org/quickref
5- “Library”: https://www.sagemath.org/library.html,
- “Documentation Project”: https://wiki.sagemath.org/DocumentationProject,
- “Teaching”: https://wiki.sagemath.org/Teaching_with_SAGE,
- “Calculating with Sage at high schools”: https://doc.sagemath.org/html/de/thematische_anleitungen/sage_gymnasium.html.
To our knowledge, this is currently only there in German.

6- Overview, what crypto currently is in SageMath: https://doc.sagemath.org/html/en/reference/cryptography/index.html
- Teaching related aspects of developing crypto in SageMath: https://groups.google.com/g/sage-devel/c/xVcsTY1C0IE
7- David Kohel’s course from 2015: https://www.sagemath.org/files/kohel-book-2008.pdf
- “Introduction to Cryptography with Open-Source Software”, a very good book from Alasdair McAndrew, CRC, 2011

Page 5

https://www.sagemath.org
https://www.cryptool.org/en/ctbook/sagemath
https://sagemanifolds.obspm.fr/install_ubuntu.html
https://openwetware.org/wiki/Open_writing_projects/Sage_and_cython_a_brief_introduction
https://openwetware.org/wiki/Open_writing_projects/Sage_and_cython_a_brief_introduction
https://doc.sagemath.org/html/en/reference/calculus/sage/calculus/calculus.html
https://mosullivan.sdsu.edu/sagetutorial/
https://mosullivan.sdsu.edu/sagetutorial/sagecalc.html
https://wiki.sagemath.org/quickref
https://www.sagemath.org/library.html
https://wiki.sagemath.org/DocumentationProject
https://wiki.sagemath.org/Teaching_with_SAGE
https://doc.sagemath.org/html/de/thematische_anleitungen/sage_gymnasium.html
https://doc.sagemath.org/html/en/reference/cryptography/index.html
https://groups.google.com/g/sage-devel/c/xVcsTY1C0IE
https://www.sagemath.org/files/kohel-book-2008.pdf

1 Introduction into the CAS SageMath

1.1 The three typical user interfaces of SageMath

Table 1 lists three ways in which SageMath is usually used: two ways each via a terminal and via a Jupyter
notebook, and two samples via a website.8

1) Terminal based

a) Sage console $ sage
sage: factor(35)
sage: ...
sage: attach filename.sage

Text output in
lines below

the command.
Graphics output

into a file.b) Sage program $ sage script.sage

2) Jupyter notebook

a) run in browser
Starting the kernel:
$ sage -n jupyter <filename.ipynb>

Text and
graphics output

in the cell’s output.
Graphics output also

into a file.
b) via VS Code

3) External website Via browser
remote access on
an external website

https://sagecell.sagemath.org/
or
https://cocalc.com/

Output in browser

Tab. 1: Overview about the SageMath calling possibilities (user interfaces)

1. The first user interface is command line or terminal based, as shown in Fig. 1 on the next page. This is
normally used when you installed SageMath locally.

From the command line (terminal, shell) of the operating system, you have two options:9

a) Either the interactive Sage console (sage:)10 where text output appears below the entered command.
When you generate graphical output, SageMath creates a file and asynchronously calls an image
processing program to display the picture.

b) As a second option in the terminal you can write SageMath programs (scripts) and execute them
like a batch file ($ sage script.sage). This is used for longer calculations and typical tasks in
programs.

2. Secondly, there is also a graphical user interface for SageMath (called a notebook). The most popular
notebook today is the Jupyter notebook (see Fig. 2 on the following page).

This option is well suited for interactive or didactic tasks, and is also frequently used by data analysts.
Jupyter notebooks are similar to the REPLmodel (Read-Evaluate-Print-Loop). More about Jupyter can
be found in appendix 1.7.2 on page 26 and in 1.4 on page 15.

The two most common ways to use a Jupyter notebook are:

a) within a browser

b) within Visual Studio Code (abbreviated as VS Code or VSC)

Remark 1: VS Code with a self-built SageMath installation

8 See https://doc.sagemath.org/html/en/installation/launching.html.
9The differences are described in Section 5.12.5.4 of the CrypTool book.
10
https://doc.sagemath.org/html/en/tutorial/interactive_shell.html

Page 6

https://doc.sagemath.org/html/en/installation/launching.html
https://doc.sagemath.org/html/en/tutorial/interactive_shell.html

1 Introduction into the CAS SageMath

Fig. 1: SageMath console from the command line (terminal)

Fig. 2: Creating a SageMath file with Jupyter in a browser

Page 7

1 Introduction into the CAS SageMath

If you build your SageMath installation yourself, e. g. because the existing binaries in the distributions are not
new enough11 and still have an old SageMath version installed, it can happen that VS Code only displays the old
Sage version as a potential kernel.

If the new kernel is not listed in VS Code, you can proceed as follows. Prerequisite to fix this: The kernel
(Jupyter server) is started via $ sage -n jupyter. Click on the kernel icon (or click Ctrl+Shift+P and select
“Select Kernel”). Then select one after the other:
Select Another Kernel --> Existing Jupyter Server and enter the URL of the running Jupyter server, e. g.
http://127.0.0.1:8888/tree?token=...The current SageMath kernel (e. g. 10.3) is then also available.

Remark 2: Using SageMath functions within a Python file

If SageMath is installed locally, you can also use SageMath functions in a Python file. To do this, add from

sage.all import * to the beginning of the Python file. However, the operators remain those of Python, so **

causes exponentiation and ^means XOR; while with SageMath ^ causes exponentiation. A minimal example
(test_sage-in-py-file.py) can be found on the CrypTool website: https://www.cryptool.org/en/ctbook
/sagemath/.

Remark 3: Possible future: SageMath running completely local in the browser

There are first attempts to create a WebAssembly-based version of SageMath so that SageMath can also run
locally in the browser in the future (this mean, not only the frontend, but also the kernel): https://github.c
om/sagemathinc/wasm-pari.

1.2 Examples using the built-in mathematical functions in SageMath

Now that the basic options for installing and using SageMath have been shown, we will briefly describe what
SageMath offers. SageMath examples 1.1 and 1.2 on the current page and on page 10 contain a few little examples
– as an introduction to see what you can do with SageMath on the command line.12

SageMath example 1.1 contains calls for dealing with numbers (e. g. determining length), from number theory
(e. g. finding prime numbers, coprimes and primitive roots), trigonometry and dealing with polynomials
(analysis, symbolic expressions).

How SageMath treats symbolic expressions is interesting. If you define a mathematical function as a symbolic
expression with symbolic variables, SageMath can distinguish between “arguments” as independent variables on
the one hand, and parameters, that is, variables that are expected to have fixed values on the other hand.

SageMath Example 1.1: Small samples from different areas in mathematics (1)

print("\n# SageAppendix--SAMPLE 010: =========")

Allgemein: Bestimmen der Länge der dezimalen und der binären Darstellung von 26!

General: Determine the length of the decimal and the binary representation of 26!

print("14.digits():", 14.digits()) # Show the digits of an integer number

b=factorial(26)

print("Factorial b:", b)

print("Factorial b.n():", b.n())

print("Factorial b.n(prec=16):", b.n(prec=16))

print("Factorial b.ndigits():", b.ndigits())

print("Factorial b.ndigits(base=2):", b.ndigits(base=2))

print("Factorial b.nbits():", b.nbits())

11In May 2024, SageMath version 10.3 (the current release version then) was available on macOS via brew, but on Ubuntu the latest
pre-built binary only had version 9.5. Also the Windows Subsystem for LinuxWSL offered version 9.5 (the earlier pre-built binaries for
Windows based on Cygwin are obsolete). See also https://doc.sagemath.org/html/en/installation/.

12The examples are mostly from a no more existing blog of Alasdair McAndrew.

Page 8

https://www.cryptool.org/en/ctbook/sagemath/
https://www.cryptool.org/en/ctbook/sagemath/
https://github.com/sagemathinc/wasm-pari
https://github.com/sagemathinc/wasm-pari
https://doc.sagemath.org/html/en/installation/

1 Introduction into the CAS SageMath

ctd. SageMath Example 1.1

Zahlentheorie / Number theory:

print("\n14.coprime_integers(max=16):", 14.coprime_integers(16))

i=randint(2^49,2^50); p=next_prime(i)

print("Next prime of %d: p=%d" % (i,p))

p=1022095718672689 # for testing

r=primitive_root(p)

print("Primitive_root(p):", r)

pl=log(mod(10^15,p),r)

print("pl:", pl)

print("mod(r,p)^pl", mod(r,p)^pl)

Trigonometrie (SageMaths Trigonometrie-Funktionen nutzen Bogenmaß statt Grad; pi=180°)

Trigonometry (Sage's trigonometry functions use radians instead of degrees; pi=180°)

print("\nsin(pi/6):", sin(pi/6)) # 30° (Grad / degrees)

Analysis (Infinitesimalrechnung) / Calculus // Symbolic expression:

x=var('x')

var('a, x') # symbolic variables (can be parameters or independent variables)

p1=a*exp(x^2)

print("\nExpression p1: ", p1)

p2=diff(p1,x,10) # compute tenth derivative

print("Expression p2: ", p2)

p(x)=diff(p1,x,10)*exp(-x^2) # via "(x)" only x is considered independent variable

print("Expression p: ", p)

print("Polynom p simplified:", p.simplify_full())# now a polynomial since exp canceled out

print("Variables in p: {0}; Arguments in p: {1}".format(

p.variables(), p.arguments())) # an "argument" is an independent variable

print("Type of p: {0}".format(type(p)))

#------------------------------------

SageAppendix--SAMPLE 010: =========

14.digits(): [4, 1]

Factorial b: 403291461126605635584000000

Factorial b.n(): 4.03291461126606e26

Factorial b.n(prec=16): 4.033e26

Factorial b.ndigits(): 27

Factorial b.ndigits(base=2): 89

Factorial b.nbits(): 89

#

14.coprime_integers(max=16): [1, 3, 5, 9, 11, 13, 15]

Next prime of 816414536954577: p=816414536954609

Primitive_root(p): 3

pl: 171454160901578

mod(r,p)^pl 183585463045391

#

sin(pi/6): 1/2

#

Expression p1: a*e^(x^2)

Expression p2: 1024*a*x^10*e^(x^2) + 23040*a*x^8*e^(x^2) + 161280*a*x^6*e^(x^2) + 403200*a*x^4*e^(x^2) + �
� 302400*a*x^2*e^(x^2) + 30240*a*e^(x^2)

Expression p: x |--> 32*(32*a*x^10*e^(x^2) + 720*a*x^8*e^(x^2) + 5040*a*x^6*e^(x^2) + 12600*a*x^4*e^(x^2 �
�) + 9450*a*x^2*e^(x^2) + 945*a*e^(x^2))*e^(-x^2)

Polynom p simplified: 1024*a*x^10 + 23040*a*x^8 + 161280*a*x^6 + 403200*a*x^4 + 302400*a*x^2 + 30240*a

Variables in p: (a, x); Arguments in p: (x,)

Type of p: <class 'sage.symbolic.expression.Expression'>

SageMath example 1.2 on the following page contains calls from linear algebra (LA) and functions for finite
fields.

Vectors in linear algebra are sometimes represented as row vectors and sometimes as columns vectors. Both
representations are equivalent and also both occur in mathematical literature. SageMath can handle both
representations because it works with so-called “generic” vectors. If we define, say, the vector v=vector([1,2])

Page 9

1 Introduction into the CAS SageMath

and the matrix A=([[3,4],[5,6]]), then we can multiply v with the matrixA from the right as well as from
the left. The expressionA ∗ v uses v as column vector while v ∗ A uses v as row vector. The vector just has
to have the right length. To create an explicit row vector from a “generic” vector, just use the row()method.
However, the result then is of the type Matrix. And the transpose()method can only be applied on the matrix
type. Entering v.transpose() results in an error message – while entering v.row().transpose()works well.

SageMath Example 1.2: Small samples from different areas in mathematics (2)

print("\n# SageAppendix--SAMPLE 020: =========")

Lineare Algebra / Linear algebra:

u = zero_vector(SR, 10) # create a zeros vector (Nullvektor); SR = Symbolic Ring

print("Zero vector u:\n", u, sep="")

O = matrix.ones(SR, 2, 10) # create 2 ones vectors. As there is no function like ones_vector(),

define the vector as the first row of a matrix of ones, or

print("Ones matrix O:\n", O, sep="")

v = vector(SR, [1]*10) # [1]*10 is the Python way to construct a list with 10 repeats of 1.

print("Ones vector v:\n", v, sep="")

M=matrix([[1,2,3],[4,5,6],[7,8,10]])

print("M echo:\n", M.echelon_form(), sep="") # show the echelon basis matrix

c=random_matrix(ZZ,3,1)

print("Random vector c:\n", c, sep="")

print("Random vector c.transpose():\n", c.transpose(), sep="")

b=M*c

print("Matrix * vector: b = M*c:\n", b, sep="")

print("Using inverse matrix M^-1 * b:\n", M^-1*b, sep="")

A = matrix([[1,1,0],[0,2,0], [0,0,3],]) # 3*3

print("A:", type(A))

print("rows:", A.nrows()) # 3 # find out the number of rows of a matrix

print("cols:", A.ncols()) # 3 # find out the number of cols of a matrix

print("A echo:\n", A.echelon_form(), sep="") # show the echelon basis matrix

v = A.column(1) # (1, 2, 0) # get the 2nd column (results in a 3*1 vector)

print("v:", type(v))

print("len(v):", v.length()) # Alternative: len(v)

print(v)

print("A*v:", A * v) # (3, 4, 0) # results in a 3*1 vector

print("v*A:", v * A) # (1, 5, 0) # results in a 1*3 vector

r = v.row() # [1 2 0] # REMARK: Vector.row() and .column() create a matrix type

print("r:", type(r))

print("r=v.row():", r) # Remark: len(r) doesn't work, as r is a matrix (1*3)

c = r.transpose() # [1] [2] [0] # REMARK: r,c are type matrix (not vector).

print("c:", type(c))

print("c=transposed r:\n", c, sep='')

vector multiplication

print("r*c:", r * c) # [5]

print("c*r:\n", c * r, sep='') # [1 2 0] [2 4 0] [0 0 0]

multiplication of matrix and vector (explicit a row or col one)

What does not work is: A * r and c * A

print("r*A:", r * A) # (1, 5, 0) # results in a 1*3 vector

print("A*c:\n", A * c, sep='') # (3, 4, 0) # results in a 3*1 vector

Create LaTeX command to typset a matrix equation

Page 10

1 Introduction into the CAS SageMath

ctd. SageMath Example 1.2

print('$$ A*c=b: %s * %s = %s $$'%(latex(A), latex(c), latex(A*c)))

Endliche Körper (\url{http://de.wikipedia.org/wiki/Endlicher_K%C3%B6rper})

Finite Fields (\url{http://en.wikipedia.org/wiki/Finite_field})

F.<x>=GF(2)[]

G.<a>=GF(2^4,name='a',modulus=x^4+x+1)

print("\nIn GF: a^2/(a^2+1): ", a^2/(a^2+1))

print("a^100: ", a^100)

print("log(a^2,a^3+1): ", log(a^2,a^3+1))

print("(a^3+1)^13: ", (a^3+1)^13)

#------------------------------------

SageAppendix--SAMPLE 020: =========

Zero vector u:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Ones matrix O:

[1 1 1 1 1 1 1 1 1 1]

[1 1 1 1 1 1 1 1 1 1]

Ones vector v:

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

M echo:

[1 2 0]

[0 3 0]

[0 0 1]

Random vector c:

[-1]

[0]

[-5]

Random vector c.transpose():

[-1 0 -5]

Matrix * vector: b = M*c:

[-16]

[-34]

[-57]

Using inverse matrix M^-1 * b:

[-1]

[0]

[-5]

A: <class 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>

rows: 3

cols: 3

A echo:

[1 1 0]

[0 2 0]

[0 0 3]

v: <class 'sage.modules.vector_integer_dense.Vector_integer_dense'>

len(v): 3

(1, 2, 0)

A*v: (3, 4, 0)

v*A: (1, 5, 0)

r: <class 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>

r=v.row(): [1 2 0]

c: <class 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>

c=transposed r:

[1]

[2]

[0]

r*c: [5]

c*r:

[1 2 0]

[2 4 0]

[0 0 0]

r*A: [1 5 0]

A*c:

Page 11

1 Introduction into the CAS SageMath

ctd. SageMath Example 1.2

[3]

[4]

[0]

#

In GF: a^2/(a^2+1): a^3 + a

a^100: a^2 + a + 1

log(a^2,a^3+1): 13

(a^3+1)^13: a^2

1.3 Getting help when using SageMath

Loading SageMath from the command line and entering help(), we get outputs like in SageMath example 1.3:

SageMath Example 1.3: SageMath help (Welcome)

sage: help()

Welcome to Sage 10.3!

To view the Sage tutorial in your web browser, type "tutorial()", and

to view the (very detailed) Sage reference manual, type "manual()".

For help on any Sage function, for example "matrix_plot", type

"matrix_plot?" to see a help message, type "help(matrix_plot)" to see

a very similar message, type "browse_sage_doc(matrix_plot)" to view a

help message in a web browser, and type "matrix_plot??" to look at the

function's source code.

(When you type something like "matrix_plot?", "help(matrix_plot)", or

"matrix_plot??", Sage may start a paging program to display the

requested message. Type a space to scroll to the next page, type "h"

to get help on the paging program, and type "q" to quit it and return

to the "sage:" prompt.)

For license information for Sage and its components, read the file

"COPYING.txt" in the top-level directory of the Sage installation,

or type "license()".

To enter Python's interactive online help utility, type "python_help()".

To get help on a Python function, module or package, type "help(MODULE)" or

"python_help(MODULE)".

1.3.1 Getting help from websites

The official SageMath documentation is distributed with every release of SageMath (see Fig. 3). This includes
the following documents:

• Tutorial – This tutorial is designed to help SageMath beginners become familiar with SageMath. It covers
many features that beginners should be familiar with, and takes one to three hours to go through.

• Constructions – This document is in the style of a SageMath “cookbook”. It is a collection of answers to
questions about constructing various objects in SageMath.

• Developers’ Guide –This guide is for developers whowant to contribute to the development of SageMath.
Among other issues, it covers coding style and conventions, modifying the core SageMath libraries,
modifying the SageMath standard documentation, and code review and distribution.

Page 12

1 Introduction into the CAS SageMath

• Reference Manual – This manual provides complete documentation on the major features of SageMath.
The description of a class normally is accompanied by several code samples. All code samples in the
reference manual are tested before a new SageMath version is released.

• Installation Guide – This guide explains how to install SageMath under various platforms.

• A Tour of Sage – This is a tour of SageMath that showcases various features of SageMath that are useful
for beginners.

• Numerical Sage – This document introduces tools available under SageMath that are useful for numerical
computation.

• Three Lectures about Explicit Methods in Number Theory Using Sage – This document is about using
SageMath to perform computations in advanced number theory.

Fig. 3: Website for the SageMath standard documentation (https://doc.sagemath.org/html/en/)

Further assistance on specific problems is available

• in the archive of the sage-supportmailing list at
https://groups.google.com/g/sage-support

• at https://ask.sagemath.org

• at https://math.stackexchange.com/questions/tagged/sagemath

• at https://doc.sagemath.org/html/en/reference/genindex.html

Page 13

https://doc.sagemath.org/html/en/
https://groups.google.com/g/sage-support
https://ask.sagemath.org
https://math.stackexchange.com/questions/tagged/sagemath
https://doc.sagemath.org/html/en/reference/genindex.html

1 Introduction into the CAS SageMath

1.3.2 Getting help via help(), ?, ??, or search_src

If we already know the exact name of a function, we can use help or the question mark “?” to obtain further
information on that function. For example, the command help(SubstitutionCryptosystem) provides docu-
mentation on the according built-in class (see SageMath example 1.4). In both cases, inside the documentation
mode you go to the next page by hitting the space bar, and you leave the documentation mode via “q”. When
using help(fname), the listing is opened in a separate window, so the help listing does not clutter up your session,
unlike the output of fname? sometimes does.

It is possible to place the question mark in front of the search like ?fname. Besides, two question marks are also
allowed like in fname?? or ??fname. In this case you also get the source code defining fname.

Finally, it is worth mentioning the various functions from here https://doc.sagemath.org/html/en/referen
ce/misc/sage/misc/sagedoc.html, especially search_src, my_getsource or search_def. Those can be helpful
if the regular help doesn’t help.

SageMath Example 1.4: SageMath help (for single function)

sage: help(SubstitutionCryptosystem)

SubstitutionCryptosystem(...)

Create a substitution cryptosystem.

INPUT:

- "S" - a string monoid over some alphabet

OUTPUT:

- A substitution cryptosystem over the alphabet "S".

EXAMPLES::

sage: M = AlphabeticStrings()

sage: E = SubstitutionCryptosystem(M)

sage: E

Substitution cryptosystem on Free alphabetic string monoid on A-Z

sage: K = M([25-i for i in range(26)])

sage: K

ZYXWVUTSRQPONMLKJIHGFEDCBA

sage: e = E(K)

sage: m = M("THECATINTHEHAT")

sage: e(m)

GSVXZGRMGSVSZG

TESTS::

sage: M = AlphabeticStrings()

sage: E = SubstitutionCryptosystem(M)

sage: E == loads(dumps(E))

True

1.3.3 Using tab completion

Here we present tab completion for searching two different topics: for finding the standard commands and for
finding the methods of Sage objects.

Tab completion to find a command From within a SageMath session, we can obtain a list of (default)
commands matching some pattern. To do so, we type the first few characters and then press the “Tab” key like
in SageMath example 1.5 on the next page:

Page 14

https://doc.sagemath.org/html/en/reference/misc/sage/misc/sagedoc.html
https://doc.sagemath.org/html/en/reference/misc/sage/misc/sagedoc.html

1 Introduction into the CAS SageMath

SageMath Example 1.5: SageMath help (expand with Tab key)

sage: Su[TAB]

Subsets Subwords SuperPartitions

SubstitutionCryptosystem Sudoku SupersingularModule

SubwordComplex SuperPartition SuzukiGroup

sage: su[TAB]

subfactorial sum supersingular_D

subsets sum_of_k_squares supersingular_j

sudoku super surfaces

Tab completion to find all methods (member functions) of a Sage object To list all methods (member
functions, attributes) of a Sage object AA just type AA., then type the “Tab” key on your keyboard. A possible
output is shown in Fig. 4.

Fig. 4: Output after dot with tab completion

List all methods of a Sage object via a program Instead of using the “Tab” key, you also can write a small
program which prints all methods of a Sage object (here AA) – like in SageMath example 1.6.

SageMath Example 1.6: Program to print all member functions of a SageMath object

sage: AA = AlphabeticStrings()

sage: object_methods = [method_name for method_name in dir(AA)

....: if callable(getattr(AA, method_name))]; object_methods

['CartesianProduct',

'Element',

'Hom',

'__bool__',

...

'unrank',

'unrank_range',

'variable_name',

'variable_names']

1.3.4 The comprehensive command list: The SageMath index

There is also a complete, alphabetically ordered list of the SageMath commands on the internet. Figure 5 shows
this site, the so-called index. If you click on one of the letters at the top, all commands starting with that letter
are shown and one can proceed searching like in Fig. 6. Alternatively, you can go to the full index, which is
indeed quite huge.

1.4 Using the Jupyter notebook

So far we have shown the functions of SageMath in the terminal. Here we describe what a Jupyter notebook is
and how to use it in the browser and in Visual Studio Code (VSC)..13

13 If the Jupyter extension is installed, it is sufficient to load a file with the extension “ipynb” so that VS Code switches to the notebook
view.

Page 15

1 Introduction into the CAS SageMath

Fig. 5: Index

Fig. 6: Search among those commands that begin with the letter a.

Page 16

1 Introduction into the CAS SageMath

A Jupyter notebook (formerly IPython Notebook) is a browser-based interactive computational environment
for creating notebook documents. The file name usually ends with “.ipynb”. IPython was originally developed
as an enhanced Python terminal interpreter.14

Formally, a Jupyter notebook is a JSON file, with a specific structure containing an ordered list of cells – see
Fig. 7.

There are three types of cells: code cells, markdown cells, and raw cells. Default initially is “Code”. Raw cells are
rarely used. Markdown cells (seldom called text cells) are used for documentation. For each cell, the cell type is
displayed and can be changed there or via the menu.

Code cells consist of an input part and an output part. The output part (the cell’s output) displays the resultwhen
the code in the cell’s input is executed by the kernel (here SageMath).15 More about the kernel in Section 1.5.
So for example, a line of code that begins with a number sign (#) is formatted in italic green font, interpreted as a
comment, and not executed by the notebook. The cell’s output is shown directly below the code cell’s input and
can contain text and graphical output. The graphical output can also have interactive parts. See Figs. 8 and 9.

The editor for Jupyter notebooks has two modes: the edit mode and the command mode. You can use different
keyboard shortcuts when in edit vs command mode. If you click inside a cell, you switch to edit mode.

When you run a cell, its code with all of its operations is executed. So, a cell can only be executed as a whole. To
run it, click in the toolbar on “Run” or click the menu path “Cells > Run Cells”. Alternatively, you can press
Ctrl+Enter, which works in both, the edit and the command mode: Then the cell where the mouse pointer
currently is located will be executed. This key combination is the preferredmethod for executing a cell compared
to clicking the mouse:16

• Ctrl+Enter evaluates current cell and keeps focus in the current cell.

• Shift+Enter evaluates current cell and moves focus to the next cell.

Special key commands are available in the commandmode. To enter commandMode press Esc or use themouse
to click outside a cell’s editor area. Being in the command mode is indicated by a gray cell border with a blue left
margin.

Some useful keyboard shortcuts in the command mode:

• Enter+O switch on/off whether the following output cell is shown or not.

• a insert a cell above the selected cell

• b insert a cell below the selected cell

• d d delete the selected cell(s)

When (re-)opening a Jupyter notebook (ipynb), it’s recommended to first evaluate all cells by going to the first
cell and click on “Execute cell and all below”.

Remark: To initialize the variables of a cell there are 3 commands:

reset()
Delete all user-defined variables and resets all global variables back to their default states.

restore()
Restore predefined global variables like QQ to their default values.

clear_vars()
Delete all 1-letter symbolic variables predefined at startup of SageMath.

14
https://en.wikipedia.org/wiki/Project_Jupyter, https://jupyter.org/, and https://www.tutorialspoint.com/jupyter/ipy

thon_introduction.htm
15

https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
16There are many shortcuts making the usage easier. See https://jupyter-tutorial.readthedocs.io/de/latest/workspace/jupyter
/notebook/shortcuts.html

Page 17

https://en.wikipedia.org/wiki/Project_Jupyter
https://jupyter.org/
https://www.tutorialspoint.com/jupyter/ipython_introduction.htm
https://www.tutorialspoint.com/jupyter/ipython_introduction.htm
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://jupyter-tutorial.readthedocs.io/de/latest/workspace/jupyter/notebook/shortcuts.html
https://jupyter-tutorial.readthedocs.io/de/latest/workspace/jupyter/notebook/shortcuts.html

1 Introduction into the CAS SageMath

Markdown Cell

Language: Markdown
This is a header

Here is some text.

Code Cell

Language: Python

print("Hello World")

Code cells allow you to write and execute programming code. Python
is commonly used, but Jupyter supports many other languages such
as R, Julia, SQL, and SageMath through various kernels.

Cell’s output

Hello World

The cell’s output display the results of code execution. This
includes text output, plots, tables, and visualizations.

Fig. 7: Typical generic sequence of cells within a Jupyter Notebook

Page 18

1 Introduction into the CAS SageMath

Fi
g.
8:
Ty
pi
ca
ls
eq
ue
nc
eo
fc
ell
sw

ith
in
aJ
up
yt
er
N
ot
eb
oo
k
fo
rS
ag
ec
od
ew

ith
te
xt
ou
tp
ut
w
ith
in
ab
ro
w
se
ra
nd

in
VS
C

Page 19

1 Introduction into the CAS SageMath

Fi
g.
9:
Ty
pi
ca
ls
eq
ue
nc
eo
fc
ell
sw

ith
in
aJ
up
yt
er
N
ot
eb
oo
k
fo
rS
ag
ec
od
ew

ith
pl
ot
ou
tp
ut
w
ith
in
ab
ro
w
se
ra
nd

in
VS
C

Page 20

1 Introduction into the CAS SageMath

1.5 The kernel of a Jupyter notebook

The Jupyter notebook, regardless of whether it is running in the browser or in VS Code, only displays the results
of the so-called kernel, in this case the SageMath server. The kernel can be executed locally or on a remote
server. More precisely, between the Jupyter notebook and the kernel there is the notebook server which can run
either locally or remotely. In both cases, SageMath must be accessible to the Jupyter server as “kernel”.17 This is
visualized in Fig. 10.

User Browser

HT
TP
&

We
bso
cke
ts

Notebook
Server Kernel

Ze
roM

Q

Notebook
File

Fig. 10: Surroundings of a Jupyter Notebook18

As shown in Table 1 you can use SageMath remotely (without installing SageMath locally) :
https://sagecell.sagemath.org/ or https://cocalc.com/

Two commonmethods to run the Jupyter server locally are:

• If you have installed Anaconda on your computer, first activate the SageMath environment and then in
the same terminal start the Jupyter server, which then starts the specified notebook Untitled.ipynb in
the browser:

$ conda activate sage

$ jupyter notebook Untitled.ipynb
19

• Without Anaconda, but having a local SageMath installation, you can start the notebook under Linux
normally this way from a terminal:

$ sage -n jupyter

or
$ sage -n jupyterlab

Executing $ sage -n jupyter on the command line opens a browser window that shows all files in the current
directory. If you double-click on an ipynb file, it then appears in another browser tab as a Jupyter notebook.

Sometimes the first click on the “Run” button results in the message “Error displaying widget: model not
found”. Pressing the button again usually solves the problem if the installation is correct.

17It may happen, that the notebook doesn’t know a function like interact, then first check that it’s a code cell, that SageMath is set as
kernel, and then click on the icon “restart the kernel”.

18With small changes taken from https://mlsummit.ai/blog/jupyter-notebooks-fuer-lehre-und-entwicklung-alles-im-blick-n

otizbuch-fuer-entwickler/
19In the browser you can then see as link something like http://127.0.0.1:8888/notebooks/Untitled1.ipynb?kernel_name=sagemath

Page 21

https://sagecell.sagemath.org/
https://cocalc.com/
https://mlsummit.ai/blog/jupyter-notebooks-fuer-lehre-und-entwicklung-alles-im-blick-notizbuch-fuer-entwickler/
https://mlsummit.ai/blog/jupyter-notebooks-fuer-lehre-und-entwicklung-alles-im-blick-notizbuch-fuer-entwickler/
http://127.0.0.1:8888/notebooks/Untitled1.ipynb?kernel_name=sagemath

1 Introduction into the CAS SageMath

1.6 Writing code with SageMath in the Sage console or via starting a Sage script in the terminal

When you start using a CAS (computer algebra system) you normally type in ready commands on the command
line as in SageMath example 1.1 on page 8.20

If youdevelop your own functions,modify themand call themagain, then it ismuch easier to do the development
of the functions in an editor (easier compared to using the sage console only). For that three ways are common:

• Using the Jupyter notebook. This is discussed extensively in 1.8 and in 1.8.

• Executing of the edited script within the Sage console

• Executing of the edited script as Sage program from the terminal (e. g. in the bash shell)

The last two cases are discussed further within this subsection.

All three ways to develop code were applied in the CrypTool book Chapters 1.12 (“Appendix: Educational
examples for symmetric ciphers using SageMath”), 2.8 (“Appendix: Examples using SageMath”), 4.15 (“Ap-
pendix: Examples using SageMath”), 5.20 (“Examples using SageMath”), and 9.4 (“Appendix: Boolean maps in
SageMath”).

To test and load the SageMath code stored in program file, there are two useful commands: load() and
attach().21

Suppose you have a function definition like this which has been saved to the file primroots.sage:

SageMath Example 1.7: Function definition in file with extension .sage

def somefunction(var1): # inside file with name e.g. primroots.sage

r"""

DocText.

"""

...

return (L)

Loading The command load() can be used in all three cases: Sage console, Sage program, and Jupyter
notebook – see Table 1 on page 6.

Within SageMath example 1.8, the above function from SageMath example 1.7 is loaded into SageMath with
the command load().

SageMath Example 1.8: load

sage: load("primroots.sage")

Then you can proceed to use on the command line any variable or function defined in that SageMath script
primroots.sage.22

20When presenting code for the Sage console lines start with “sage:” and “...”:

sage: m = 11

sage: for a in range(1, m):

....: print([power_mod(a, i, m) for i in range(1, m)])

....:

Code in SageMath scripts and from Jupyter cells are presented in the same way as they appear there.
21See SageMath tutorial about programming, chapter “Loading and Attaching Sage files”, https://doc.sagemath.org/html/en/tutoria
l/programming.html

22Notes/hints concerning SageMath scripts:

Page 22

https://doc.sagemath.org/html/en/tutorial/programming.html
https://doc.sagemath.org/html/en/tutorial/programming.html

1 Introduction into the CAS SageMath

First, the load command executes all commands, regardless of whether it is called on the Sage command line
or in a Sage script. After that the functions from the file loaded with load are still available. Unfortunately,
unlike in Python, it is not possible to make just the functions of a SageMath file known. This functionality was
implemented with the own function my_import (see Item (c) in Section 5.20.4 of the CrypTool book).

Attaching The command attach() can only be used on the Sage console (directly or within of another Sage
script loaded from there), but it is not available in a Sage program called in a terminal or in a Jupyter notebook
(there you have to use load()).

Normally we want to edit our own SageMath script and reload the content of the changed script into SageMath
again. In order to automatically reload the file after every change, the command attach() is sufficient:23

SageMath Example 1.9: attach

sage: attach("primroots.sage")

Now edit and save again the SageMath script in a text editor, but don’t exit SageMath. The changed function
definition is reloaded into the running SageMath session after the next time you press Enter (and a syntax check
is done at once). You can think of the command attach() as a way of telling SageMath to watch for all changes
to a file, and reloading the file again once SageMath notices that there have been changes.

Figure 11 on the next page shows SageMath code in the editor VS Code with activated Python code highlighting.
You can use other editors like gVim or Notepad++ just as well.

If you prefer to see the output of an attached file as if you entered the commands on the command line directly
(not only what is shown via print()) then you could use the command iload(): Each line is loaded one at a
time. To load the next line, you have to press the Enter key. You have to repeatedly press the Enter key until all
lines of the SageMath script are loaded into the SageMath session.

SageMath Example 1.10: iload

sage: iload("primroots.sage")

1.7 SageMath and LATEX

“Sage and the LaTeX dialect of TeX have an intensely synergistic relationship.”25 Wewill explain the relations
most important for us using Table 2.

- Don’t use white spaces in your file name.
- It’s recommended that your SageMath script has the file extension “.sage” instead of “.py”. For a SageMath script with the file
extension “.sage” the default SageMath environment is also loaded when loading the file, and the syntax is checked.

- Instead of loading a script file from the SageMath prompt you can directly load it when starting SageMath; e. g. from a bash shell
using $ sage primroots.sage. Here also, a syntax check is performed instantly and, if this check was successful, the script is executed.

- If you load your script as above, then SageMath first parses your script and copies it to another file with the extension “.py”. SageMath
then adds all necessary variables within “primroots.py” as well as all necessary import statements. That way, your SageMath script is
executed as if you had entered the commands in your script directly to the SageMath command line.

- An important difference between commands within a script file and the commands entered manually behind the SageMath prompt is
that all outputs need a print() statement. For example, instead of “m=11; m” you have to enter “m=11; print(m)”.

23
attach() can be applied directly after loading the script, even before having changed the script; and you can even omit load() and just
call attach(), as load() is contained in attach().

24The source code used in this editor can be found in SageMath example 5.20.11 of the CrypTool book. and in the file “chap05_sam-
ple120.sage” .

25Quote from the chapter “Sage, LaTeX and Friends” by Rob Beezer (2010-05-23), https://doc.sagemath.org/html/en/tutorial/la
tex.html

Page 23

https://doc.sagemath.org/html/en/tutorial/latex.html
https://doc.sagemath.org/html/en/tutorial/latex.html

1 Introduction into the CAS SageMath

Fig. 11: SageMath example shown in an editor with code highlighting24

With SageMath

Sage console
Sage program

latex()

Jupyter notebook

Markdown cell:
$...$

Code cell:
latex(<<Latex code>>)

Latex(r"""<<Latex code>>""")

view oder show(<<Latex code>>)

Within a
LaTeX document

Use result of latex()
from SageMath

e. g. $ \frac{1}{5} \, z^{5} $

Use math mode
and SageTeXmacros

Call sequence:
pdflatex→ sage→ pdflatex
(see Fig. 18)

Tab. 2: Overview about the interconnection between SageMath and LaTeX

Remark: LaTeX separates the tasks of typesetting mathematics and typesetting normal text. This is achieved
by the use of two operating modes, text and math mode. Text mode is the default mode for the document
environment and does not need to be called explicitly. In LaTeX all mathematics needs to be inside some maths
mode construction andmany symbols, including \circor \sum_{n=1}^\infty, are defined to onlywork inmaths
mode. The most common way to enter math mode is $... $, where the text within the dollar signs is in the
math mode environment. Two further ways to enter math mode are \begin{equation} ... \end{equation}

and \[... \] (also called double dollar or display style and used for offset formulas). Math mode ignores
whitespace. When we wish to include text within mathematics, we must tell LaTeX that we are writing text,
otherwise it will assume the word is actually a sequence of symbols and they are displayed in italics. There are
two approaches to correctly formatting such text, the first using the \mbox command, and the second using the
\text{} command which requires the amsmath package.

To get the LaTeX code of a Sage expression within SageMath code, we normally use the latex() function. This

Page 24

1 Introduction into the CAS SageMath

function expects the input to be in math mode like within $... $. Please note, that then the normal LaTeX
text macros like \texttt{} don’t work.

1.7.1 LaTeX and SageMath on the console

From within SageMath, the simplest way to exploit SageMath’s support of LaTeX is to use the latex() function.
The created strings can then be incorporated directly into standalone LaTeX documents. This works the same
in a code cell of the Jupyter notebook and at the Sage command line. With latex() SageMath objects can
be output (typesetting) in usual mathematics form in two ways: We can pass them to the command latex(),
alternatively some SageMath objects provide the SageMath description by themselves when calling their own
latex() method. The created text form (LaTeX code) can then be transformed via LATEX display software in the
usual mathematical form.

In other words: You pass a SageMath expression to the function latex() to get a LaTeX expression. So SageMath
converts the LaTeX-relevant components directly into LaTeX syntax, and you can embed them 1:1 into a LaTeX
document.

Example 1: Calling the command latex(y) (or sometimes y.latex()):26

sage: z=var('z'); latex(z^12)

z^{12}

sage: latex(integrate(z^4, z))

\frac{1}{5} \, z^{5}

sage: latex('This is a string')

\text{\texttt{This{ }is{ }a{ }string}}

sage: latex(QQ)

\Bold{Q}

Example 2: Every Object in SageMath has a LATEXrepresentation. Calling latex() on $y = (a*x^2)/5$will
result in an error, because an assignment (the term on the right side of= is assigned to y) is not an object in
SageMath. The right side alone is an object, and therefore we can call latex() on it:

sage: var('a,x,y')

(a, x, y)

sage: latex(y=(a*x^2)/5)

TypeError Traceback (most recent call last)

<ipython-input-4-23375ccb8aef> in <module>

----> 1 latex(y=(a*x**Integer(2))/Integer(5))

TypeError: LatexCall.__call__() got an unexpected keyword argument 'y'

sage: latex((a*x^2)/5)

\frac{1}{5} \, a x^{2}

sage: y=(a*x^2)/5

sage: latex(y)

\frac{1}{5} \, a x^{2}

26The command latex() is not completely flawless. For instance, \Bold is not available in normal LaTeX, it is defined via
\newcommand{\Bold} in sage.misc.latex_macros. So only use \Bold interactively or use it in a TeX file only after inserting the
\newcommand definition. Easier would be \mathbb{Q} forQ, where \mathbb requires the package amsfonts.

Page 25

1 Introduction into the CAS SageMath

Example 3: The last command in the linear algebra part of SageMath example 1.2 on page 10 also contains
latex() calls to automatically generate the code for a matrix equation.
See the following line commented out there:
print('$$ A*c=b: %s * %s = %s $$'%(latex(A), latex(c), latex(A*c)))

This is the result:

A ∗ c = b :

 1 1 0
0 2 0
0 0 3

 ∗

 1
2
0

 =

 3
4
0


1.7.2 LaTeX and SageMath within a Jupyter notebook

The Figs. 8 and 9 on page 19 and on page 20 show the first two parts of the notebook sageJNB-01.ipynb. Each
of these two parts contains a Markdown cell and a code cell (including its output). These two code cells with
Sage code do not yet contain any “LaTeX commands”.

The third part of this notebook contains several variants of different “LaTeX commands” in the code cell – see
Fig. 13 on the next page.

The Sage expressions rendered with latex() are output via print(), show(), and view() The differences can be
seen in the cell’s output. You can also call show()without first calling latex() and receive output in the cell’s
output as in a LaTeX document.

The three individual windows shown in Fig. 12 are created with the view command.

Fig. 12: Plot output from code in Fig. 13 in three extra windows

Page 26

1 Introduction into the CAS SageMath

Fi
g.
13
:T
yp
ica
ls
eq
ue
nc
eo
fc
ell
sw

ith
in
aJ
up
yt
er
N
ot
eb
oo
k
fo
rc
od
eS
ag
ew

ith
La
Te
X
ax
pr
es
sio
ns
w
ith
in
ab
ro
w
se
ra
nd

in
VS
C

Page 27

1 Introduction into the CAS SageMath

There are roughly three different ways of using LaTeX in a Jupyter notebook that execute SageMath code.

a) latex() The latex() command offers the same options here as on the Sage console – see Subsection 1.7.1
and Fig. 14.

b) view() or show() We use show() to create a LaTeX expression from the Sage expression and display it in
nicely formatted output.27,28 See Fig. 14.

Fig. 14: latex() and show() in SageMath commands within a Jupyter notebook

c) Latex() If you already have prepared LaTeX code from a document, you can use it in the Sage code cell.
The most stable is probably using the Latex command.29

Using Latex(), the LaTeX code between the delimiters """ is rendered by the LaTeX display in math mode. In
contrast, latex() proceeds in such a way that the LaTeX code between the """ is only converted to LaTeX code
in math mode.

from IPython.display import Latex

Latex(r"""

\begin{align}

c = \sqrt{a^2 + b^2}

\end{align}

""")

Built-in magic commands for LaTeX in a Jupyter notebook This further variant has become rather
uncommon. Here (instead of working with display()) the so-called “magic”30 command %%latex is used. This
command turns the entire cell into a LaTeX cell. See Fig. 15 on the following page.

27You can find further, not always completely up-to-date details under https://doc.sagemath.org/html/en/tutorial/latex.html.
28LaTeXmust be installed to use the show() command.
29Less often used is the further display variant getting a raw LaTeX string for the math object.
30Jupyter notebooks have built-in magic commands (“magics”) that start with %. For example, the IPython kernel extends the Python
syntax this way. A distinction is made between two different types of magic:
• Line magics denoted by a single % prefix and run on a single input line
• Cell magics preceded by a double symbol %%. This allows you to run a single notebook cell in a subprocess of another interpreter
(like bash, R, or latex) (rather than in the default kernel).

Whether and which extensions are available depends on the configured kernel (SageMath offers fewer magics than IPython).

Page 28

https://doc.sagemath.org/html/en/tutorial/latex.html

1 Introduction into the CAS SageMath

%%latex

\begin{align}

c = \sqrt{a^2 + b^2}

\end{align}

Fig. 15: Usage of %%latex() in a Jupyter notebook

Two further examples:31 Here text and Sage code are combined in different ways. See Fig. 16 on the next
page.

1) Concatenate with LatexExpr()

var('A, x, y, alpha, beta')

U = A*x^(alpha) * y^(beta) # typical Sage code

show(U) # output Sage code in rendered form

LatexExpr("U(x)=" + latex(U)) # build another Sage code expression

2) Create html code containing Sage expressions and LaTeX commands

SageMath Example 1.11: Create html code containing Sage expressions and LaTeX commands

SageJupyter_sample010.sage: SageMath within a Jupyter notebook

var('A, x, y, alpha, beta')

U = A*x^(alpha)*y^(beta)

text = fr"""

<h3>This is a title</h3>

<p>This is some text explaining several interesting

things. HTML can be used to

format these lines.</p>

<p>Now we write an inline mathematical expression

$U(x,y)={latex(U)}$, as well as a displayed one:

$$\frac{{\partial^2 U}}{{\partial x \partial y}}(x,y)

= {latex(diff(U,x,y))}$$</p>

"""

show(html(text))

31From https://ask.sagemath.org/question/47978/add-a-text-in-latex-in-front-of-a-result/

Page 29

https://ask.sagemath.org/question/47978/add-a-text-in-latex-in-front-of-a-result/

1 Introduction into the CAS SageMath

Fig. 16: Usage of text and code in a code cell of the Jupyter notebook

The Jupyter cell outputs are rendered using MathJax.32 MathJax is a cross-browser JavaScript library that
displays mathematical notation in browsers. The output can be generated in several formats, including HTML
with CSS styling, or scalable vector graphics (SVG) images. MathJax can only map a subset of TeX and LaTeX.

Section 1.8 on page 34 (with Jupyter and interact) describes some more use cases where automated LATEX type-
setting is used via $...$ e. g. for labels. This makes them look nicer in the output of the Jupyter notebook.

1.7.3 Within a LaTeX document use Sage commands generated by latex()

If you pass Sage objects to the latex() command in SageMath, you get LaTeX code. You can simply copy this
into a LaTeX document (restriction see 1.7.1 on page 25).

In SageMath example 1.12 a matrix equation33 is solved, and then the equation is output via show(). At the end,
the LaTeX commands are generated, with which the solved equation can be output (see below). The according
Jupyter notebook can be seen in Fig. 17 on the following page.

SageMath Example 1.12: Code to generate the LaTeX command of an equation

SageJupyter_sample070.sage: SageMath within a Jupyter notebook

Solve a matrix equation and generate LaTeX code to show the solved equation e.g. in a pdf.

M4= MatrixSpace(ZZ, 4)

A = M4.matrix([[0, -1, -1, 1], [1, 1, 1, 1], [2, 4, 1, -2], [3, 1, -2, 2]])

b = vector(ZZ, [0, 6, -1, 3])

32
https://www.mathjax.org/

33The equation is from Craig Finch’s book, p. 118. The code has been heavily customized.

Page 30

https://www.mathjax.org/

1 Introduction into the CAS SageMath

ctd. SageMath Example 1.12

bT= b.column()

var('x1 x2 x3 x4')

x = vector([x1, x2, x3, x4])

xT= x.column()

print('$$ A*x=b:~~~ %s * %s = %s $$'%(latex(A), latex(xT), latex(bT)))

solution = A.solve_right(b)

solutionT= solution.column()

show('s: $$A*x=b:~~~ %s * %s = %s $$'%(latex(A), latex(solutionT), latex(bT))) # 'show' is an alias for �
�pretty_print

which should choose the "best" output supported by the user interface; but showed only escaped �
�text on console

print('p: $$A*x=b:~~~ %s * %s = %s $$'%(latex(A), latex(solutionT), latex(bT))) # 'print' shows text for �
�LateX on console; 'view' had no effect.

import matplotlib.pyplot as plt

plt.plot([0,2,1,4,9]) # In a sage file (e.g. in VSC with sage extension), this has no effect.

Fig. 17: Solve a matrix equation and create the LaTeX code of the equation

Page 31

1 Introduction into the CAS SageMath

Here is the result of the LaTeX commands generated by latex():

A ∗ x = b :


0 −1 −1 1
1 1 1 1
2 4 1 −2
3 1 −2 2

 ∗


x1
x2
x3
x4

 =


0
6

−1
3



A ∗ x = b :


0 −1 −1 1
1 1 1 1
2 4 1 −2
3 1 −2 2

 ∗


2

−1
3
2

 =


0
6

−1
3



1.7.4 Within a LaTeX document use Sage code handled by SageTeX()

This is – compared to Subsection 1.7.3 – the more exciting part.

Suppose you have a TEX distribution on your machine. Then you can enter SageMath code directly into LATEX
documents, you can then run this code and embed the result automatically in the generated (usually: pdf)
output.

For this, you need the package SageTeXwhich has to be included in the header of the TEXfile via \usepackage{ �
�sagetex}. MikTEX brings sagetexwith it, while in case you have TEXLive orMacTEX, you can get the package
and the documentation here: https://ctan.org/pkg/sagetex?lang=en.

The TEX file you want to apply SageTeX to should be located in the same folder as the SageTeX files that you
downloaded as a zip folder and then extracted. Alternatively, the SageMath installation also comes with this
package, but you have to do some additional work to use it, see https://doc.sagemath.org/html/en/referen
ce/misc/sagetex.html.

If you have a LATEX document that uses this package, the generation of the pdf is done in three steps as follows:

• pdflatex file.tex−→ the file file.sagetex.sage is created as well as the files file.aux, file.log,

file.pdf.

• sage file.sagetex.sage−→ sage is run on the SageMath code that was generated in the last step and
written to file.sagetex.sage. Here the three files file.sagetex.[sage.py, scmd, sout] are generated.

• Again call pdflatex file.tex−→ file.pdf is finished.

This workflow is summarized in Fig. 18.

.tex .sage .tex- - -
pdflatex sage pdflatex

Fig. 18: Workflow with SageTeX

Remark: For experienced LATEX users and bigger LaTeX projects we recommend to use arara34 to deal with
34 arara by Paulo Cereda is a TeX automation tool based on rules written at the beginning of the main tex file of a LaTeX project. You have
to write these rules about what arara should do into your LaTeX document by yourself. arara then determines its actions from these
rules – rather than automatically generating rules from indirect resources, such as log file analysis. arara requires a Java virtual machine.
See https://gitlab.com/islandoftex/arara and https://islandoftex.gitlab.io/arara/. Since 2024, arara is no longer part of the
MacTeX delivery, but can be installed there later.

Page 32

https://ctan.org/pkg/sagetex?lang=en
https://doc.sagemath.org/html/en/reference/misc/sagetex.html
https://doc.sagemath.org/html/en/reference/misc/sagetex.html
https://gitlab.com/islandoftex/arara
https://islandoftex.gitlab.io/arara/

1 Introduction into the CAS SageMath

workflows like in Fig. 18. We want to introduce arara with a minimal working example (MWE) – see SageMath
example 1.13. Try out entering arara -w mwe.tex in the terminal after saving theMWE example to a file named
mwe.tex. The result of this command is, that the number 32 is printed in the PDF.

The prerequisite is that “pdflatex” has access to the file “sagetex.sty” from the installed SageMath version. If this
is not the case, you can find instructions at https://doc.sagemath.org/html/en/tutorial/sagetex.html#s
ec-sagetex-install.

SageMath Example 1.13: Arara and sagetex

\documentclass{scrartcl}

% arara: pdflatex

% arara: sage: { files: [mwe.sagetex.sage]}

% arara: pdflatex

\usepackage{sagetex}

\begin{document}

$$\sage{2^5}$$

\end{document}

With SageTeX all the computational and LaTeX-formatting features of SageMath can be handled automatically.
The SageTeX package is a collection of TeXmacros35, that allow a LaTeX document to include instructions to
let SageMath compute and/or format various objects.

In the following sample, the LaTeX code for the matrix is created by the Sage code – the LaTeX file contains only
the following four lines:36

\begin{sagesilent}

var('x,y')

M = matrix([[i*x+j*y for i in range(3)] for j in range(3)])

\end{sagesilent}

The generated matrix then looks like this:

M :=

 0 x 2x
y x+ y 2x+ y

2 y x+ 2 y 2x+ 2 y


SageMath commands can also be used in interact samples (compare appendix 1.8.3 on page 36 and appendix
1.8.4 on page 37).

35Further details about SageTeXmacros can be found at: https://ctan.org/pkg/sagetex, https://doc.sagemath.org/html/en/tutor
ial/latex.html and https://doc.sagemath.org/html/en/tutorial/sagetex.html.
Besides SageTeX, there are also Python packages which can automate things in a LaTeX document. The most well known one is
PythonTeX (https://ctan.org/pkg/pythontex).
The almost 60-page document https://cryptool.org/download/ctb/PythonTex-by-Examples.pdf contains many examples and
testcases. PythonTeX is often used together with SymPy, a LaTeX package that allows you to also embed the results from a symbolic
maths package within a LaTeX document.
Alternative packages like pyLaTeX by Jelte Fennema, v1.3.4, 2020 or hybrid-latex by Leo Brewin, v0.1, 2018 are no more maintained.

36taken from https://phubert.github.io/sagetex-tutorial.pdf, page 8

Page 33

https://doc.sagemath.org/html/en/tutorial/sagetex.html#sec-sagetex-install
https://doc.sagemath.org/html/en/tutorial/sagetex.html#sec-sagetex-install
https://ctan.org/pkg/sagetex
https://doc.sagemath.org/html/en/tutorial/latex.html
https://doc.sagemath.org/html/en/tutorial/latex.html
https://doc.sagemath.org/html/en/tutorial/sagetex.html
https://ctan.org/pkg/pythontex
https://cryptool.org/download/ctb/PythonTex-by-Examples.pdf
https://phubert.github.io/sagetex-tutorial.pdf

1 Introduction into the CAS SageMath

1.8 SageMath with Jupyter and interact

With interact, SageMath programs become interactive – the impact of parameters on calculations can be
visualized dynamically. This is done in a very general way using Python functionality. “Therefore, nearly every
possible dependency could be shown.”37

Till now, we showed the result of the calculations as text, plot or as (animated) gif. With interact, the user is able
to manipulate predefined parameters and see the changed results instantaneously.

1.8.1 A typical sample with interact()

Figure 19 shows a slightly modified example from the SageMath tutorials38: In the two dropdown controls you
can change the length of both sides n and m of a rectangle, which is then shown. Then its area size is calculated
dynamically and the factors of the size are printed as text.

SageMath Example 1.14: Starting sample using interact in a Jupyter notebook

SageJupyter_sample020.sage: SageMath within a Jupyter notebook

@interact

def f(n=(1..10), m=selector([1..15],default=6)):

print("Area: n * m = {} = {}".format(n * m, factor(n * m)))

P = polygon([(0, 0), (0, n), (m, n), (m, 0)])

P.show(aspect_ratio=1, gridlines='minor', figsize=[3, 3], xmax=15, ymax=10)

Fig. 19: A starting sample using interact in a Jupyter notebook

For the interaction with the user there are currently eight interactive Sage widget controls:

• boxes
• sliders
• range sliders
• checkboxes
• selectors (drop-down lists or buttons)
• grid of boxes

37
https://www.sagemath.org/tour-graphics.html

38
https://more-sagemath-tutorials.readthedocs.io/en/latest/tutorial-start-here.html

Page 34

https://www.sagemath.org/tour-graphics.html
https://more-sagemath-tutorials.readthedocs.io/en/latest/tutorial-start-here.html

1 Introduction into the CAS SageMath

• color selectors
• plain text

In Fig. 19 on the previous page, two drop-down selectors are used. The first one for n is used implicitly, the
second one for m is called explicitly in order to add an option for setting the initial value (6) used at the beginning
(if no initial value is set, the first value in the list is used as default).

Many more details can be found on the following pages and at the links in the footnote.39

1.8.2 Technically – what are Decorators

Decorators are a construct in Python 3 that can be used to add a certain functionality to an existing function (or
method). A decorator takes in a function, adds some functionality and returns it. So the decorator acts as a
wrapper.40

The following two short examples are exactly the same –besides different notation. Because of better readability,
only the @way is used. This is just a “syntactic sugar” to implement the decorator function.

def myplot(f=x^2):

show(plot(f,(x,-3,3)))

myplot=interact(myplot)

@interact

def myplot(f=x^2):

show(plot(f,(x,-3,3)))

The short examples are taken from the SageMath documentation.41 The graph of a function fwill be plotted,
and the user can change the function f. We defined a new function myplot and made f a variable. To make
a “control” allowing the user to interactively enter the function f, we just preface the function myplot with
@interact. Note that we can still call the myplot function, even when we’ve used @interact. This is often
useful in debugging it: myplot(x^4).

It’s a convention to use the underscore “_” for throw-away names that we don’t care about like myplot. See the
next example and Fig. 20 on the following page. In the figure, the option aspect_ratio is used: Values smaller
than 1 squeeze the graph vertically which helps to reduce the needed vertical space. Then first _(x^2) is plotted
and then _(x^3).

@interact

def _(f=x^2):

show(plot(f,(x,-3,3)))

_(x^3)

@interact “magically” offers in the next cell for each argument of the unnamed function a control, where the
user can change the according argument. The result (calculation or plot) is adapted without having to click on
“Run” again.

Using the interact method, basic widgets (graphical controls already included in SageMath) can be displayed
automatically and linked to the parameters of user-defined functions. Widgets fromMatplotlib or from the
Jupyter notebook are more flexible and their usage is shown in SageMath example 1.17 on page 39.

39
https://more-sagemath-tutorials.readthedocs.io/en/latest/tutorial-start-here.html,
https://doc.sagemath.org/html/en/prep/Quickstarts/Interact.html,
https://wiki.sagemath.org/interact/,
https://wiki.sagemath.org/interact/graphics

40The parameters of the decorator function are the same as the parameters of function it decorates. So any number of parameters can be
used. In Python, this “magic” is done via function(*args,**kwargs), where args is the tuple of positional arguments and kwargs is the
dictionary of keyword arguments. See https://docs.python.org/3/tutorial/controlflow.html#defining-functions.

41
https://doc.sagemath.org/html/en/prep/Quickstarts/Interact.html

Page 35

https://more-sagemath-tutorials.readthedocs.io/en/latest/tutorial-start-here.html
https://doc.sagemath.org/html/en/prep/Quickstarts/Interact.html
https://wiki.sagemath.org/interact/
https://wiki.sagemath.org/interact/graphics
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
https://doc.sagemath.org/html/en/prep/Quickstarts/Interact.html

1 Introduction into the CAS SageMath

Fig. 20: Calling an unnamed function automatically via interact and then again directly

Widgets can be created either directly or through the interact function. Because it is convenient for quick use,
mostly the interact method is used. Interact takes a function as its first argument, followed by the arguments of
this function with their possible values. This creates widgets that allow to select those values, making a callback
with the current value for every selection.

1.8.3 Interact samples without graphics

@interact is mainly used to show interactive graphs, but it also can be used for showing parameterized text
output.

The following example42 factors a symbolic expression depending on the exponent n.

@interact

def _(n=(2,100,1), auto_update=False):

show(factor(x^n - 1))

Fig. 21: Calling a function without a graph via interact (using auto_update)

42from http://fe.math.kobe-u.ac.jp/icms2010-dvd/SAGE/www.sagemath.org/doc/reference/sagenb/notebook/interact.html

Page 36

http://fe.math.kobe-u.ac.jp/icms2010-dvd/SAGE/www.sagemath.org/doc/reference/sagenb/notebook/interact.html

1 Introduction into the CAS SageMath

Moving the slider in Fig. 21 on the preceding page changes the exponent. Here the recalculation and redraw is
only performed after the user pushes the “Run Interact” button (via setting the option auto_update to False).
Disabling this default makes sense for functions whose evaluation takes awhile or to prevent flickering because
normally the recalculation is started at each point where the slider is moved over.

The sample in Fig. 2243 builds an interact control set with three inputs: two slider inputs for a and y (running
through the range of integers from -5 to 15 and from 0 to 20), and a text input for the expression c. Note that
printing c shows its symbolic expression y+2 , while c(y) evaluates its value.
var('y')

@interact

def _(a=5, y=(0..20), c=y+2):

print("a+y:", a + y); print("c: ", c, "=", c(y))

Fig. 22: Function with 2 inputs and evaluating a symbolic expression via interact

1.8.4 Interact samples with graphics

Now some more examples are shown, which use interact for manipulating graphics.44

The sample in Fig. 23 on the following page and in SageMath example 1.15 is adapted and enhanced – from the
very good book [Fin11]. The curve 1/((x− a)e) = (x− a)−e has two interact parameters a, e. The graph
shows the poles at x = a for odd values of e and a flexible range of y values depending on the value of e. The
labels of the axes are set manually in LaTeX in the code cell.

SageMath Example 1.15: Graph with vertical pole and parameters for different curves (see Fig. 23)

SageJupyter_sample030.sage: SageMath within a Jupyter notebook

@interact

def _(a=slider([-5..5], default=2, label='Param a: '),

e=slider([-5..5], default=1, label='Param e: ')):

xs=0.15 # space in x direction shown left an right of the pole

pole_plot = plot(1 / ((x - a)^e), (x, a-(xs), a+(xs)), detect_poles='show')

pole_plot.ymax((100.0)^e)

pole_plot.ymin(-(100.0)^e)

print("min y = {0:.3f} // max y = {1:.3f}".format(pole_plot.ymin(), pole_plot.ymax()))

print("min x = {0:.3f} // max x = {1:.3f}".format(pole_plot.xmin(), pole_plot.xmax()))

pole_plot.axes_labels([r'x', r'$1/(x-a)^e$'])

43taken and modified from http://fe.math.kobe-u.ac.jp/icms2010-dvd/SAGE/www.sagemath.org/doc/reference/sagenb/notebook

/interact.html
44Many more examples can be found at:
https://wiki.sagemath.org/interact/misc

https://wiki.sagemath.org/interact/games

https://wiki.sagemath.org/interact/graph_theory

https://www.sagemath.org/tour-graphics.html

https://wiki.sagemath.org/art

Page 37

http://fe.math.kobe-u.ac.jp/icms2010-dvd/SAGE/www.sagemath.org/doc/reference/sagenb/notebook/interact.html
http://fe.math.kobe-u.ac.jp/icms2010-dvd/SAGE/www.sagemath.org/doc/reference/sagenb/notebook/interact.html
https://wiki.sagemath.org/interact/misc
https://wiki.sagemath.org/interact/games
https://wiki.sagemath.org/interact/graph_theory
https://www.sagemath.org/tour-graphics.html
https://wiki.sagemath.org/art

1 Introduction into the CAS SageMath

ctd. SageMath Example 1.15

pole_plot.show()

Fig. 23: Graph with vertical pole and parameters (compare Fig. 24)

Even a bit more flexible than SageMath example 1.15 on the preceding page is SageMath example 1.16 (without
figure): It has a similar functionality, but the function g() is defined before the unnamed function and so the
function name g can be used in the unnamed function instead of using its expression several times. This works
fine within plot() – and also within axes_labels the italic LaTeX presentation is shown for the evaluated g
function: The trick here – learned from ask.sagemath.org – is to get the string for the label of the y-axis via
concatenation: '$'+latex(g(a,e,x))+'$'.45

SageMath Example 1.16: Graph with vertical pole and parameters and generic function (without fig.)

SageJupyter_sample040.sage: SageMath within a Jupyter notebook

var('a, x')

g(a,x) = a*x^3

@interact

def _(a=slider([-5..5], default=2, label='Param a: ')):

p = plot(g(a,x),(x,-3,3), color='purple') # make the plot line purple

p.axes_labels(['x', '$a*x^3$'])

p.axes_labels(['x', eval('g()')])

p.axes_labels(['x', '$'+latex(g())+'$'])

show(p)

print("g: %s, g()=%s, g(a)=%s, g(a,x)=%s, g(a,1)=%d, g(a,2)=%d" % (g, g(), g(a), g(a,x), g(a,1), �
� g(a,2)))

#

g: (a, x) |--> a*x^3, g()=a*x^3, g(a)=2*x^3, g(a,x)=2*x^3, g(a,1)=2, g(a,2)=16

45Some parameters in the SageMath plot are still a bit unflexible. Using the underlying Mathplotlib directly can give more robustness.

Page 38

ask.sagemath.org

1 Introduction into the CAS SageMath

1.9 SageMath with Jupyter and Matplotlib interactive_output

The graphics (plots) in SageMath are created with the Python package Matplotlib.46 Matplotlib is the most
common graphics library for Python in general.

The most commonly used functions of matplotlib are directly accessible through Sage functions. So far we have
limited our examples to the graphics functions built into SageMath (see the Sage widgets in 1.8.1 on page 34).

Alternatively, you can either import the whole Mathplotlib package into SageMath (and then use its complete
functionality) or use the graphics functions (widgets or controls) from the Jupyter notebook, which are also
based onMathplotlib. In the following example we use the Jupyter widgets and achieve a nicer layout than with
the Sage widgets.

The previous sample in Fig. 23 and in SageMath example 1.15 on page 37 showed the controls below each other.
This is practical for a quick result, but doesn’t deliver a nice user interface. Now we reconstruct this example
using Jupyter widgets (ipywidgets)47.

The two ipywidgets.IntSlider act as input; ipywidgets.Label is used as output (instead of print). All four widgets
are initially generated independently. Then the widgets are inserted into a grid consisting of 2 · 3 = 6 cells.
The sliders take up the first two columns, the labels take the last column; Sliders are therefore twice as wide as
the labels. Labels are not only available for coordinate axes (like in the previous examples), but can be placed
anywhere. Label widgets display the value text but are not editable, which is intended here.

Not only g() but also myplot() is separately defined, so that the interactive function is relatively small: It calls
myplot() and assigns the slider input controls aa and ee to the input variables a and e of the myplot() function.

With the help of interactive_output the graphic is not output immediately, but created in an output widget. As
a result, the graphic could later be output several times per display.

Overall, the ipywidgets allow a much more flexible layout than the basic widgets integrated in SageMath.
However, the code is longer .

SageMath Example 1.17: Code for graph with widgets from ipywidgets (see Fig. 24)

SageJupyter_sample060.sage: SageMath within a Jupyter notebook

Widgets from ipywidgets and called via interactive_output

from ipywidgets import GridspecLayout, Layout, IntSlider, Label, interactive_output

var('a, e, x')

g(a,e,x) = 1 / ((x - a)^e)

Create the controls

aa = IntSlider(min=-5, max=5, value=2, description='Param a: ', layout=Layout(width='auto', height='auto'))

ee = IntSlider(min=-5, max=5, value=1, description='Param e: ', layout=Layout(width='auto', height='auto'))

label1 = Label(description="for_x", layout=Layout(display='flex', justify_content="center", border='1px �
�solid green'))

label2 = Label(description="for_y", layout=Layout(display='flex', justify_content="center", border='1px �
�solid green'))

Distribute the controls into a grid for better layout

grid = GridspecLayout(int(2), int(3))

grid[0,0:2] = aa

grid[1,0:2] = ee

grid[0,-1] = label1

grid[1,-1] = label2

46
https://matplotlib.org/

47See https://ipywidgets.readthedocs.io/en/latest/examples/Using%20Interact.html. Two very nice introductions to Jupyter
widgets can be found in https://www.elab2go.de/demo-py1/jupyter-notebook-widgets.php and https://kapernikov.com/ipywi

dgets-with-matplotlib/ (2020).

Page 39

https://matplotlib.org/
https://ipywidgets.readthedocs.io/en/latest/examples/Using%20Interact.html
https://www.elab2go.de/demo-py1/jupyter-notebook-widgets.php
https://kapernikov.com/ipywidgets-with-matplotlib/
https://kapernikov.com/ipywidgets-with-matplotlib/

1 Introduction into the CAS SageMath

ctd. SageMath Example 1.17

def myplot(a, e):

xs=0.15 # space in x direction shown to the left and right of the pole

pole_plot = plot(g(a,e,x), (x, a-(xs), a+(xs)), detect_poles='show')

pole_plot.ymax((100.0)^e)

pole_plot.ymin(-(100.0)^e)

Add spaces via the unicode character \xa0 ("nonbreaking space")

skip = ':\xa0\xa0\xa0\xa0'

s1 = 'x' + skip + "min = {0:.2f} \xa0 // \xa0 max = {1:.2f}".format(pole_plot.xmin(), pole_plot.xmax() �
�)

s2 = 'y' + skip + \

("min = {0:.0f} \xa0 // \xa0 max = {1:.0f}".format(pole_plot.ymin(), pole_plot.ymax()) if (�
�pole_plot.ymin()>100 or pole_plot.ymin()<-100)

else "min = {0:.2f} \xa0 // \xa0 max = {1:.2f}".format(pole_plot.ymin(), pole_plot.ymax()))

label1.value = s1

label2.value = s2

pole_plot.axes_labels(['x', '$'+latex(g())+'$'])

pole_plot.show()

out = interactive_output(myplot, {'a': aa, 'e': ee})

display(grid, out)

Fig. 24: Graph with widgets from ipywidgets (compare Fig. 23)

1.10 Further interact SageMath examples about cryptography

Besides the examples in this book, you can find at the link in Footnote 48 many simple examples, which present
the commands from the area of cryptography in SageMath with interact:48

1. Shift Cipher (Encryption and Decryption)
2. Affine Cipher (Encryption and Decryption)
3. Substitution Cipher
4. Playfair Cipher (Encryption and Decryption)
5. Frequency Analysis Tools

a) Letter Frequency Counter
b) Frequency Analysis Decryption Guesser

48
https://wiki.sagemath.org/interact/cryptography (created first at “Sage Days 103”, 7-9 August 2019)

Page 40

https://wiki.sagemath.org/interact/cryptography

1 Introduction into the CAS SageMath

6. Vigenère Cipher (Encryption and Decryption)
7. One-Time Pad (OTP)
8. Hill Cipher (Encryption and Decryption)
9. Modular Arithmetic (Preliminaries for RSA, Diffie-Hellman, ElGamal)

a) Modular Arithmetic Multiplication Table
b) Modular Exponentiation
c) Discrete Log Problem (Solving for x and for b)

10. RSA
a) RSA, from Alice’s Perspective
b) RSA, from Babette’s Perspective
c) RSA with Digital Signatures

1.11 The curve courses of MTWwith SageMath

In the international MysteryTwister49 (MTW, formerly MTC3) crypto puzzle competition, there are three
levels in which the awarded points for a solved task are automatically calculated using a formula. The level
specifies a base number of points, which the user gets at least and where the number of points converges to –
the longer the task has been published. How fast this approximation takes place depends on the level: the lower
the level, the faster (see https://mysterytwister.org/challenges/points-calculation/).

The according graph is visualized in Fig. 25 on the next page for the first 500 days. The graph is created with the
SageMath example 1.18.

The 3 curves of the 3 levels can be seen in blue – normalized to a base value of 100. With the slider you can select
the weight c in small steps to see in a red curve how quickly the “rate of fall” adjusts to the base value. This red
curve always moves on top of the other curves; and hides the blue curve of level 1 in Fig. 25, as c = 1.00 in level
1.

The base value is 50 % of the maximum value (here in the graph it is always 200; in MTW it is 200, 2000, and
20000). Each of the three levels starts with its maximum value. After 10 days (L1/L2/L3) are each at (55/74/86)
% of the maximum value. Level 1 (L1) reaches 50 % after just after 101 days. After 500 days (L2/L3) are each at
(57/70) % of the maximum value.

SageMath Example 1.18: Code generating the graph for MTW points over time

SageJupyter_sample050.sage: SageMath within a Jupyter notebook

MTW formular: points for one challenge after d days

c,d = var('c, d')

def f(c, d):

r = 1 - (1 / ((2^(1-c)) * ((d+1)^c)))

return (r)

def g(c,d):

100 / f(c,d)

@interact

def _(c = slider(0, 2, step_size=0.05, default=1)):

g1 = 100 / f(1, d)

p1 = plot(g1, (1, 500), thickness=1, color='blue')

g025 = 100 / f(0.25, d)

p025 = plot(g025, (1, 500), thickness=1, color='blue')

g01 = 100 / f(0.1, d)

49
https://mysterytwister.org/

Page 41

https://mysterytwister.org/challenges/points-calculation/
https://mysterytwister.org/

1 Introduction into the CAS SageMath

ctd. SageMath Example 1.18

p01 = plot(g01, (1, 500), thickness=1, color='blue')

g = 100 / f(c, d) # 100 = 10*10^i, where i=1 (so all curves use level 1 base value)

the x-axis variable is d and runs from day 1 to 500

p = plot(g, (1, 500), thickness=2, color='red')

(p1+p025+p01+p).show(title='MTW curve courses for level L1, L2, and L3')

Fig. 25: Graph about MTW points over time

1.12 More professional Sage programs

In the literature and also here, you can often find short code examples for SageMath. But it is also possible to
write very professional programs with Sage. This is mainly due to the fact that you can use in Sage programs all
the possibilities of Python 3.

In SageMath example 2.8.19 of the CrypTool book you can see that to some extent. The analysis program

• has the typical structure of a Python program with a clear main function at the end.

• breaks down all tasks into manageable functions.

• parses the command line with argparse.

• contains test data (here in a dictionary).

• supports a verbose mode, which can be used to output internal processes (inner workings) and log
information ad hoc.

• contains comments, usage info, and versioning.

1.13 Further hints for SageMath in this book

Some more hints:

• To get the version of your SageMath environment: version()

• To move quickly to the SageMath examples in this book,

Page 42

1 Introduction into the CAS SageMath

– either look in the index at SageMath -> Code examples,

– or have a look at Chapter 2 on page 45

• The SageMath examples in this book can be found at the CrypTool website for download. Further details
at the end of the overview in Chapter 2 on page 45.

All links of this appendix have been confirmed at June 5, 2024.

Acknowledgments

I would like to take this opportunity to thank Doris Behrendt for her thorough and constructive proofreading
of this chapter.

Page 43

2 Lists of Figures, Tables, Code Examples, etc.

2 Lists of Figures, Tables, Code Examples, etc.

2.1 List of Figures

1 SageMath console from the command line (terminal) 7
2 Creating a SageMath file with Jupyter in a browser . 7
3 Website for the SageMath standard documentation (https://doc.sagemath.org/html/en/) 13
4 Output after dot with tab completion . 15
5 Index . 16
6 Search among those commands that begin with the letter a. 16
7 Typical generic sequence of cells within a Jupyter Notebook 18
8 Typical sequence of cells within a Jupyter Notebook for Sage code with text output within a

browser and in VSC . 19
9 Typical sequence of cells within a Jupyter Notebook for Sage code with plot output within a

browser and in VSC . 20
10 Surroundings of a Jupyter Notebook1 . 21
11 SageMath example shown in an editor with code highlighting 24
12 Plot output from code in Fig. 13 in three extra windows 26
13 Typical sequence of cells within a Jupyter Notebook for code Sage with LaTeX axpressions

within a browser and in VSC . 27
14 latex() and show() in SageMath commands within a Jupyter notebook 28
15 Usage of %%latex() in a Jupyter notebook . 29
16 Usage of text and code in a code cell of the Jupyter notebook 30
17 Solve a matrix equation and create the LaTeX code of the equation 31
18 Workflow with SageTeX . 32
19 A starting sample using interact in a Jupyter notebook 34
20 Calling an unnamed function automatically via interact and then again directly 36
21 Calling a function without a graph via interact (using auto_update) 36
22 Function with 2 inputs and evaluating a symbolic expression via interact 37
23 Graph with vertical pole and parameters (compare Fig. 24) 38
24 Graph with widgets from ipywidgets (compare Fig. 23) 40
25 Graph about MTW points over time . 42

2.2 List of Tables

1 Overview about the SageMath calling possibilities (user interfaces) 6
2 Overview about the interconnection between SageMath and LaTeX 24

2.3 List of SageMath Examples

1.1 Small samples from different areas in mathematics (1) 8
1.2 Small samples from different areas in mathematics (2) 10

1With small changes taken from https://mlsummit.ai/blog/jupyter-notebooks-fuer-lehre-und-entwicklung-alles-im-blick-n

otizbuch-fuer-entwickler/

Page 44

https://doc.sagemath.org/html/en/
https://mlsummit.ai/blog/jupyter-notebooks-fuer-lehre-und-entwicklung-alles-im-blick-notizbuch-fuer-entwickler/
https://mlsummit.ai/blog/jupyter-notebooks-fuer-lehre-und-entwicklung-alles-im-blick-notizbuch-fuer-entwickler/

2.3 List of SageMath Examples

1.3 SageMath help (Welcome) . 12
1.4 SageMath help (for single function) . 14
1.5 SageMath help (expand with Tab key) . 15
1.6 Program to print all member functions of a SageMath object 15
1.7 Function definition in file with extension .sage . 22
1.8 load . 22
1.9 attach . 23
1.10 iload . 23
1.11 Create html code containing Sage expressions and LaTeX commands 29
1.12 Code to generate the LaTeX command of an equation 30
1.13 Arara and sagetex . 33
1.14 Starting sample using interact in a Jupyter notebook 34
1.15 Graph with vertical pole and parameters for different curves (see Fig. 23) 37
1.16 Graph with vertical pole and parameters and generic function (without fig.) 38
1.17 Code for graph with widgets from ipywidgets (see Fig. 24) 39
1.18 Code generating the graph for MTW points over time 41

All SageMath examples of this book can be found on the CrypTool website:
https://www.cryptool.org/en/ctbook/sagemath

The names of the SageMath script files contain first the chapter number and then the running number of the
script within that chapter, e. g. chap09_sample110.sage.

All examples have been tested with the SageMath versions 9.3 (release date 2021-05-09) under Windows, 9.5
(release date 2022-01-30) under Linux, and 10.0 (release date 2023-05-23) under macOS.

Page 45

https://www.cryptool.org/en/ctbook/sagemath

3 Literature

3 Literature

[Fin11] Craig Finch. Sage Beginner’s Guide. PACKT Publishing, 2011 (cit. on p. 37).

Page 46

4 Index

A
analysis

frequency, 40
arara, 32

C
cipher

affine, 40

D
decorator, 35

H
Hill, 41

K
kwargs, 35

L
logarithm problem

discret, 41

M
modular arithmetic, 41
MTW, 41

formula, 41
my_import, 23

O
OTP, 41

P
Playfair, 40
Python, 5

R
RSA, 41

S
SageMath, 5

code examples, 5, 45
SageTeX, 32
shift cipher, 40
substitution, 40
syntactic sugar, 35

V
Vigenère, 41

47

	Table of Contents
	1 Introduction into the CAS SageMath
	1.1 The three typical user interfaces of SageMath
	1.2 Examples using the built-in mathematical functions in SageMath
	1.3 Getting help when using SageMath
	1.3.1 Getting help from websites
	1.3.2 Getting help via help(), ?, ??, or search_src
	1.3.3 Using tab completion
	1.3.4 The comprehensive command list: The SageMath index

	1.4 Using the Jupyter notebook
	1.5 The kernel of a Jupyter notebook
	1.6 Writing code with SageMath in the Sage console or via starting a Sage script in the terminal
	1.7 SageMath and LaTeX
	1.7.1 LaTeX and SageMath on the console
	1.7.2 LaTeX and SageMath within a Jupyter notebook
	1.7.3 Within a LaTeX document use Sage commands generated by latex()
	1.7.4 Within a LaTeX document use Sage code handled by SageTeX()

	1.8 SageMath with Jupyter and interact
	1.8.1 A typical sample with interact()
	1.8.2 Technically – what are Decorators
	1.8.3 Interact samples without graphics
	1.8.4 Interact samples with graphics

	1.9 SageMath with Jupyter and Matplotlib interactive_output
	1.10 Further interact SageMath examples about cryptography
	1.11 The curve courses of MTW with SageMath
	1.12 More professional Sage programs
	1.13 Further hints for SageMath in this book
	Acknowledgments

	2 Lists of Figures, Tables, Code Examples, etc.
	2.1 List of Figures
	2.2 List of Tables
	2.3 List of SageMath Examples

	3 Literature
	4 Index

