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C H A P T E R 1C H A P T E R 1

Ciphers and Attacks Against Them

For centuries, plaintext messages were encrypted by the military, by diplomats, and
by alchemists, and much less frequently by businesses and the general population.
The goal of cryptography was to protect the privacy between sender and receiver.
Since the 1970s, further goals have been added to achieve integrity, authenticity,
and non-repudiation, and also to compute on encrypted data in the cloud or to
achieve quantum-computer resistance.

The science that deals with encryption is called cryptology—divided into the
branches of cryptography (designing secure encryption procedures) and cryptanal-
ysis (breaking encryption procedures). In reality, however, these branches are
closely interrelated and the terms cryptography and cryptology are often used
interchangeably. Therefore, cryptology is currently subdivided into fields like sym-
metric cryptography, public-key cryptography, hardware and embedded systems
cryptography, theoretical cryptology, and real-world crypto [1].

The importance of cryptology continues to grow as our society becomes more
and more dependent on information technology. Although cryptology and infor-
mation security are interdisciplinary fields of research, mathematics now plays the
largest role in cryptology. Finally, learning about cryptology can also be fun and
entertaining.

The special thing about this book is that you can always try out the procedures
right away—by using the links (in the footnotes) to the programs from the CrypTool
project, from OpenSSL, or from SageMath. All these programs are open-source.

In this book, the basics are covered in great detail, then from the very extensive
field of cryptology certain (current) topics are selected (like RSA, ECC, or lattices).
This makes this book accessible to a wide audience, not just only for those interested
in the natural sciences.

This chapter introduces the topic in amore descriptive waywithout usingmath-
ematics. To do so, it uses modern methods (RSA, AES) as examples. Then we dive
deepen, for example, the property, how many possible keys (key space) different
methods have (Section 1.6) and what are the best attacks against known methods
(Section 1.7). Recommended books are presented in Section 1.10. In Section 1.11
you will find screenshots of how to use AES in various programs. Classic methods
are presented in Chapters 2 and 3.

The purpose of encryption is to change data (plaintext messages) in such a way
that only an authorized recipient is able to reconstruct the plaintext. This allows
us to transmit encrypted data without worrying about it getting into unauthorized
hands. Authorized recipients possess a secret information—called the key—which
allows them to decrypt the data while it remains hidden from everyone else. An
attacker cannot only try to break a cipher: She still can disturb the connection

1
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2 Ciphers and Attacks Against Them

(e.g., denial-of-service attack) or tap metadata (who is communicating when with
whom).

Plaintext is the data processed as input by the encryption method. This data can
be text, but also binary data such as an image or an executable file. The encryption
method is called a cipher. The output is called ciphertext. With modern ciphers the
output is always binary data. Figure 1.1 shows this notation graphically.

1.1 Importance of Cryptology

With the use of the internet and wireless communication, encryption technolo-
gies are used (mostly transparently) by everyone. Cryptographic algorithms secure
ATMs and the privacy of messengers, allow anonymity for voters, but also help
criminals. Cryptography is dual-use, as are many human innovations.

However, cryptography is not only used today, but has been for centuries by
governments, the military, and diplomats. The side with a better command of these
technologies could exert more influence on politics and war with the help of secret
services. This book touches on history only twice: when introducing the earlier
cipher methods for didactical reasons in Chapter 2, and in Chapter 3 when explain-
ing the real application of earlier methods. You can gain an understanding of how
important cryptologywas and still is by considering the following two examples: the
BBC documentary film War of the Letters [2] and the debates around the so-called
crypto wars.

The next two sections discuss the differences between symmetric (see
Section 1.2) and asymmetric (see Section 1.3) methods for encryption.

1.2 Symmetric Encryption

For symmetric encryption, both the sender and recipient must be in possession
of a common (secret) key that they have exchanged before actually starting to
communicate (over another channel, out of the band). The sender uses this key

Figure 1.1 Common notations when using ciphers.
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1.2 Symmetric Encryption 3

to encrypt the message and the recipient uses it to decrypt it. This is shown in
Figure 1.2.

All classical ciphers are of the symmetric type. Examples can be found within
the CT programs, in Chapter 2 of this book, or in [3]. In this section, however, we
want to consider only modern symmetric mechanisms.

The main advantage of symmetric algorithms is the high speed with which data
can be encrypted and decrypted. The main disadvantage is the high effort needed
for key distribution. In order to communicate with one another confidentially, the
sender and recipient must have exchanged a key using a secure channel before
actually starting to communicate. Spontaneous communication between individ-
uals who have never met therefore seems virtually impossible. If everyone wants
to communicate with everyone else spontaneously at any time in a network of
n subscribers, each subscriber must have previously exchanged a key with each
of the other n − 1 subscribers. A total of n(n − 1)/2 keys must therefore be
exchanged.

The current standard formodern symmetric ciphers is the Advanced Encryption
Standard (AES).

Figure 1.2 Symmetric or secret-key encryption.
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4 Ciphers and Attacks Against Them

1.2.1 AES1

Before AES, the most well-known modern symmetric encryption procedure was
the Data Encryption Standard (DES). The DES algorithm was developed by IBM
in collaboration with the National Security Agency (NSA), and was published as
a standard in 1975. Despite the fact that the procedure is relatively old, no effec-
tive attack on it has yet been detected (what “effective” exactly means depends on
the security definition—see Section 1.8). The most effective way of attacking DES
consists of testing (almost) all possible keys until the right one is found (brute-force
attack). Due to the relatively short key length of effectively 56 bit (64 bits, which
however include 8 parity bits),2 numerous messages encrypted using DES have in
the past been broken. Therefore, the procedure cannot be considered secure any
longer. Alternatives to the DES procedure include Triple-DES (TDES, 3DES) and
especially AES.

The standard among symmetric methods today is AES. The associated Rijndael
algorithm was declared the winner of the AES competition on October 2nd, 2000,
and thus succeeds the DES procedure. Since then, the AES has been subjected to
extensive research and has so far resisted all practical attempts at attack.

Further information about AES can be found in Section 9.2.7. Section 1.11
presents how the AES is animated in CTO, and how the AES is executed in CT2
and with OpenSSL.

1.2.2 Current Status of Brute-Force Attacks on Symmetric Algorithms

The current status of brute-force attacks on symmetric encryption algorithms can
be explained with the attack on the block cipher RC5-64. A key length of 64 bit
means at most 264 = 18,446,744,073,709,551,616 or about 18 quintillion (U.S.)
(= 18 · 1018) keys to check.

Brute-force (exhaustive search, trial-and-error) means to completely examine
all keys of the key space, which means no special analysis methods have to be
used. The attacker knows only the ciphertext, and so he performs a ciphertext-only
attack that requires the weakest knowledge prerequiste of all attacks. Therefore,
the ciphertext is decrypted with all possible keys3 and for each resulting text it is
checked to determine whether this is a meaningful plaintext.4 (See Section 1.6.)

1. - Using CTO in the browser, AES can be seen in two plugins: as “AES Animation” https://www
.cryptool.org/en/cto/aes-animation and via “AES (step-by-step)” https://www.cryptool.org/en/cto/aes-step-
by-step.
- Using CT1 Indiv. Procedures F Visualization of Algorithms F AES you can find three visualizations for
this cipher.
- Using the search string AES in CT2 Startcenter F Templates you can find a plugin performing AES step by
step.

2. As a unit in formulas, we write “bit” in lower case and without the plural “s.” See Section B.2.
3. - Using CT1 Analysis F Symmetric Encryption (modern) you can perform brute-force attacks of modern

symmetric algorithms.
- Using CT2 Templates F Cryptanalysis F Modern you also can perform brute-force attacks. The Key-
Searcher is a highly powerful component used within these templates, which can distribute the calculations
to many different computers.

4. If the plaintext is written in a natural language and at least 100 bytes long, this check also can be performed
automatically. To achieve a result in an appropriate time with a single PC you should mark only at bits of
the key as unknown. On a current PC in 2022, CT1 tries for AES 24 bit in about 20 seconds, but with 32
bit it takes 1:45 h. Compare screenshots in Section 1.6.
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1.3 Asymmetric Encryption 5

Companies like RSA Security provided so-called cipher challenges in order to
quantify the security offered by well-known symmetric ciphers such as DES, 3DES,
or RC5 [4, 5]. They offered prizes for those who managed to decipher ciphertexts,
encrypted with different algorithms and different key lengths, and to unveil the
symmetric key (under controlled conditions).5

It is well-known that the old standard algorithm DES with a fixed key length of
56 bit is no longer secure: This was already demonstrated in January 1999 by the
Electronic Frontier Foundation (EFF). With their specialized computer Deep Crack
they cracked a DES-encrypted message within less than a day.

The currently known record for strong symmetric algorithms unveiled a key
that was 64-bit long. The algorithm used was RC5, a block cipher with variable
key size.

The RC5-64 challenge was solved in July 2002 by the distributed.net team
after 5 years [6]. In total 331,252 individuals cooperated over the internet to find
the key. More than 15 quintillion (= 15 ·1018) keys were checked until the right key
was found. This was about 85% of the whole search space.

Therefore, symmetric algorithms using keys of size 64 bit are (even if they have
no cryptographic weakness) no longer appropriate to keep sensitive data private.

The BSI requires a security level of 120 bits for modern symmetric ciphers that
will be used after 2022 (see [7], page 17f). Not only is AES-128 recommended, but
details like suitable block modes and padding methods are also specified.

1.3 Asymmetric Encryption

In the case of asymmetric encryption (also called public-key encryption), each par-
ticipant has their own pair of keys consisting of a secret key (called private key)
and a public key. The public key, as its name implies, is made public—for example,
within a certificate (see Section 7.5.2) or in a key directory on the internet (this type
of billboard is also called a directory or sometimes public-key ring).

Figure 1.3 shows the process of asymmetric encryption and decryption.
If Alice6 wants to communicate with Bob, she looks for Bob’s public key and

uses it to encrypt her message (plaintext) for him. She then sends this ciphertext
to Bob, who is able to decrypt it again using his private key. As only Bob knows
his private key, only he can decrypt messages addressed to him. Even Alice who
sends the message cannot restore the plaintext from the (encrypted) message she
has sent. In reality, asymmetric methods are not used to encrypt the whole message
but only a session key (see Section 1.4). Asymmetric ciphers are designed in a way
that the public key cannot be used to derive the private key from it.

Such a procedure can be demonstrated using a series of thief-proof letter boxes.
If I have composed a message, I then look for the letter box of the recipient and post

5. Unfortunately, in May 2007 RSA Inc. announced that they will not confirm the correctness of the not-
yet-solved RC5-72 challenge. Alternatively, a wide spectrum of both simple and complex, and both
symmetric and asymmetric crypto riddles are included in the international cipher contest MysteryTwister:
https://www.mysterytwister.org.

6. In order to describe cryptographic protocols, participants are often named Alice, Bob, … (see [8, p. 23]).
Alice and Bob perform all 2-person-protocols where Alice will initiate the protocol and Bob answers. The
attackers are named Eve (eavesdropper) and Mallory (malicious active attacker).
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6 Ciphers and Attacks Against Them

Figure 1.3 Asymmetric or public-key encryption.

the letter through it. After that, I can no longer read or change the message myself,
because only the legitimate recipient has the key for the letter box.

The advantage of asymmetric procedures is the easier key management. Let’s
look again at a network with n subscribers. In order to ensure that each participant
can establish an encrypted connection to each participant, each participant must
possess a pair of keys. We therefore need 2n keys or n pairs of keys. Furthermore,
no secure channel is needed before messages are transmitted, because all the infor-
mation required in order to communicate confidentially can be sent openly. In this
case, you simply have to pay attention to the accuracy (integrity and authenticity)
of the public key. Nevertheless, the requirements for the key generation are not triv-
ial. What could go wrong is explained, for example, in Section 5.12.5.4. Besides
that, nowadays also (public-key) infrastructures themselves are targets of cyberat-
tacks. A disadvantage of pure asymmetric procedures is that they take a lot longer
to perform than symmetric ones (see Section 1.4).
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1.4 Hybrid Procedures 7

The most well-known asymmetric procedure is the RSA algorithm,7 named
after its developers Ronald Rivest, Adi Shamir, and Leonard Adleman. The RSA
algorithm was published in 1978. The concept of asymmetric encryption was first
introduced by Whitfield Diffie and Martin Hellman in 1976. It is worth noting
that the concept was known at the secret services Government Communications
Headquarters (GCHQ) and National Security Agency (NSA) several years prior to
its independent rediscovery by Diffie and Hellman. Today, the ElGamal procedures
also play a decisive role, particularly the Schnorr variant in the Digital Signature
Algorithm.

The German Federal Office for Information Security (BSI) requires a security
level of 120 bit for processes used beyond 2022. Applied to RSA, the corresponding
technical guideline recommends a key length of 3,000 bit (see [7], page 18, comment
on Table 1.2).

1.4 Hybrid Procedures8

In order to benefit from the advantages of symmetric and asymmetric techniques
together, hybrid procedures are usually used (for encryption) in practice.

In this case the bulk data is encrypted using symmetric procedures. The key used
for this is a secret session key generated by the sender randomly that is only used
for this message. This session key is then encrypted using the asymmetric procedure
and transmitted to the recipient together with themessage. Recipients can determine
the session key using their private keys and then use the session key to decrypt the
message.

In this way, we can benefit from the feasible key management of asymmet-
ric procedures (using public/private keys) and we benefit from the efficiency of
symmetric procedures to encrypt large quantities of data (using secret keys).

1.5 Kerckhoffs’ Principle

In 1883, the Dutch cryptographer Auguste Kerckhoffs formulated six principles for
the construction of secure military encryption procedures. The second one, Kerck-
hoffs’ principle or Kerckhoffs’ maxim, is now regarded as the principle of modern
cryptography. It states that an encryption scheme should be secure even if every-
thing about the scheme is known except the key used. Kerckhoffs’ principle is often
contrasted with “security through obscurity,” in which the encryption algorithm
must also be kept secret.

7. The RSA algorithm is extensively described within this book in Section 5.10. The topical research results
concerning RSA are described in Section 5.12. In Section 6.5 the RSA algorithm is more deeply reasoned
from number theory: The RSA plane is a model to illustrate the processes in this algorithm using pictures
of rectangles.

8. - Using CT1 Encrypt/Decrypt F Hybrid you can follow the single steps and its dependencies with concrete
numbers. The variant with RSA as the asymmetric algorithm is graphically visualized; the variant with ECC
uses the standard dialogs. In both hybrid cases AES is used as the symmetric algorithm.
- Using JCT Algorithm Perspective F Hybrid Ciphers also offers hybrid methods like ECIES.
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8 Ciphers and Attacks Against Them

Kerckhoffs’ principle was reinterpreted several times. For example, Claude
Shannon formulated that one should design encryption systems under the assump-
tion that an enemy knows the system exactly from the very beginning (Shannon’s
maxim).

1.6 Key Spaces: A Theoretical and Practical View

For good encryption procedures used today, the time needed to break an encryption
is so long that it is almost impossible to do so. Such procedures are considered (prac-
tically) secure—from an algorithm’s point of view. After the knowledge gathered
by Edward Snowden, there were many discussions debating whether encryption is
secure. In [9] is the result of an evaluation, which cryptographic algorithms can
be relied on—but only according to current knowledge. The article investigates:
Which cryptosystems can—despite the reveal of the NSA/GCHQ attacks—still be
considered as secure? Where have systems been intentionally weakened? How can
we create a secure cryptographic future? What is the difference between math and
implementation?

The key space of a cipher is an important indicator for the security of a cipher. In
a monoalphabetic substitution (MASC; also called simple substitution) for instance,
using an alphabet of length of k, the key space is k!. For AES-128 it is 2128.

A (sufficiently) large key space (approx. 2100) is a necessary prerequisite for
a secure cipher, but not a sufficient condition: The MASC has a large key space
(with an alphabet of 26 characters approx. 288.4 that corresponds to the number of
possible ciphertext alphabets), but it has been cracked with frequency analysis for
centuries.

The key space is used to calculate the effort required for a brute-force (BF)
attack (i.e., for the systematic testing of all possible keys). If the key space is so small
that an attacker can carry out a complete BF attack, the procedure is broken—not
only theoretically but also practically.

In the case of a BF attack, the attacker decrypts the ciphertext (or parts of it)
with every possible key (see Section 1.2.2). Then the found plaintext is evaluated.
How surprisingly well fitness algorithms can recognize correct natural texts can be
seen in Figures 1.49 and 1.5.10 CT1 uses similar fitness functions as the solvers and
analyzers in CT2.

Whether an attacker really has to try the maximal, theoretical key space is
questionable, at least with the older ciphers. For this reason, the practical key space
introduced by Ralph Simpson for historic cipher devices and thework factor, which
is also known as attack time, are considered.

1.6.1 Key Spaces of Historic Cipher Devices

Key spaces of historic cipher devices are often reported in the popular press as a
gargantuan number designed to impress the reader about the incredible strength
of the encryption. This is often a lead-in to the story of the amazing ingenuity of

9. CT1 Analysis F Symmetric Encryption (modern) F AES (CBC).
10. CT2 Templates F Cryptanalysis F Modern F AES Known-Plaintext Analysis (2).
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1.6 Key Spaces: A Theoretical and Practical View 9

Figure 1.4 Brute-force analysis of AES in CT1 with partly known key.

the codebreakers who broke that encryption. Of course, they were all eventually
broken.

For instance, the key space for the infamous Enigma I machine is larger than
the number of atoms in the universe. According to Table 1.1, the theoretical key
space of the Enigma is around 3 · 10114, while the number of atoms in the universe
is around 1077 (according to Table 4.13).

There are two main problems with key spaces of historic cipher devices. The
first problem is that key space can be a misleading measure for the strength of
the encryption. The reason for the confusion on this point arises because the key
space of a modern symmetric cipher system, in contrast, usually provides a good
measure for the strength of the encryption. But historic devices are mechanical or
electromechanical, which results in limitations on the randomness of the encryp-
tions. This means that methods can be developed to break that encryption without
the need for brute force. Remember, key space is only a measure of the brute force
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1.6 Key Spaces: A Theoretical and Practical View 11

required to break an encryption, without taking into account any methods used by
cryptanalysts to shortcut (many) parts of that key space.

The second problem with key spaces of historic devices is due to the wild vari-
ations often reported for the very same device. This variation is usually due to
differences in base assumptions, but those assumptions are not always stated.

Another thing to consider about key spaces is that cryptanalysis methods for
some historic devices were not developed for many decades or even centuries after
their invention. As with all things crypto-related, cryptanalysis methods are not nec-
essarily made public. As an example, the Vigenère disk, whichwas invented in 1466,
was reported by Scientific Americanmagazine to be unbreakable in 1917. This arti-
cle was published the same year that Joseph Mauborgne, U.S. Army Chief Signal
Officer, boasted that his cryptographers could decrypt the Vigenère disk faster than
the enemy could decrypt their own messages.

Despite the problems highlighted, a study of the key spaces of historic cipher
devices is a useful tool to better understand the mind of the cipher inventor, user,
and codebreaker. So with modernmethods, we can discount andmalign the value of
key spaces of historic devices, but that alone would miss the point of understanding
why historical decisions were made based on the strength of the encryption implied
by these large key spaces.

1.6.2 Which Key Space Assumptions Should Be Used

After selecting a common set of assumptions, the key spaces of historic devices need
to be calculated so they can be compared. Since the key space quoted most often
originated from the NSA document [10] about the Enigma, that set of assumptions
was used to develop the chart of historic key spaces (Table 1.1). The NSA doc-
ument was written by Ray Miller and first published in 1995. In this document,
Miller describes a maximum and a practical key space, but unfortunately he did
not explicitly define the used assumptions.

1.6.2.1 Maximum Key Space vs Practical Key Space vs Work Factor

Miller used the term maximum key space for the theoretical maximum number of
settings that would need to be tested for a brute-force attack. He assumed that the
enemy captured the device, as per Kerckhoffs’ principle, but any field-replaceable
parts are unknown or could be changed, such as the rotors and reflectors. So all
possible wirings of rotors and reflectors would have to be cryptanalyzed and any
number of possible plugboard cables could be used.

The practical key space is also a theoretical number of settings but assumes that
the captured machine and all field-replaceable parts are known and being used. This
means that the wiring of the rotors and reflector are known but the rotors selected
to be inserted into the machine and the order of those rotors are not known. This
also means the reflector adds no cryptographic strength at all, since its wiring is
known. Also, any user-imposed limitations are known and exploited, such as the
Germans inWW2mostly used 10 plugboard cables. These factors all help to reduce
the practical key space compared to the maximum key space.

Another term (not used by Miller, but closely related to the key space) is work
factor. This is the amount of work effort really required to break an encryption.
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12 Ciphers and Attacks Against Them

This number is usually smaller than the practical key space because any known
cryptanalysis techniques are used as shortcuts. For the Enigma, this means that
Rejewski’s method of separating the cryptanalysis of the plugboard from the rotors
and reflector greatly reduced the total number of settings that needed to be tested.
Some of these cryptanalysis techniques were not known at the time of use or were
not known by the users of these cipher devices.

Work factor is a concept more commonly used for the modern cipher systems.
For the historical devices, there is very little available on work factors. It depends on
the size of the message or number of messages captured. And it depends on the state
of the cryptanalytic techniques that could be applied. For example: Although the
Enigma machine has a huge theoretical key space, the Turing-Welchman Bombe
only had to check about 422,000 settings in order to break the Enigma.11 This
work factor is what is called “attack time” when comparing the best attacks against
modern ciphers in Table 1.3. For DES the work factor is drastically smaller (243)
than the practical key space, and for AES it is around 2 bits smaller (2254.4).

1.6.2.2 Key Space Assumptions Defined

The objective is to have one common set of assumptions to compare all the his-
toric cipher devices and to use the assumptions that seem to have the most popular
acceptance. Since Miller did not explicitely state his assumptions, they had to be
reverse-engineered. A careful reading of the NSA document yields the following
assumptions.

The maximum key space, as calculated by Miller, has three assumptions:

1. The base machine is captured and known to the enemy (per Kerckhoffs’
principle);

2. Field-replaceable parts can be changed, so are not known (e.g., rotor and
reflector wiring);

3. A “message setting” will be sent with each message, separate from the fixed
machine setting.

The practical key space, as calculated by Miller, has four assumptions:

1. The base machine is captured and known to the enemy (per Kerckhoffs’
principle);

2. Field-replaceable parts are also captured and known;

3. User-imposed limitations are known (e.g., always using 10 plugboard
cables);

11. Why only 422,000? The British Bombe only tested for rotor order and rotor settings; ring settings and
plugboard settings were then manually determined. With three rotors chosen from five, there are 5·4·3 = 60

possible rotor orders. German procedures, however, did not allow any three rotor order to be repeated in
the same month, which reduced the 60 possible orders at the beginning of the month to 30 by the end of
the month. In addition, the Germans did not permit any individual rotor to be in the same position on the
following day, reducing the 60 possible rotor orders to 32. Combined, these two rules reduced the possible
orders to 32 at the beginning of the month, declining to 16 at the end of the month, or on average 24 rotor
orders. This average rotor order multiplied with the 263 rotor settings yielded to 24 · 17,576 = 421,824

settings tested by the Bombe for a full run.
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1.6 Key Spaces: A Theoretical and Practical View 13

4. A “message setting” will be sent with each message, separate from the fixed
machine setting.

1.6.2.3 Explanation of the NSA Key Space Assumptions

These assumptions detailed above seem reasonable and straightforward, except for
possibly the last assumption of both the maximum and practical key spaces: A
“message setting” will be sent with the message, separate from the fixed machine
setting. The meaning and effect of this assumption requires further explanation.

For the Enigma, all possible wirings of the rotors are included in the max-
imum key space. Also, Miller includes the rotational starting positions of the
rotors. Including the rotor starting position in the key space—besides it is already
accounted for in all possible wirings—can be considered as redundant.

For instance, if a rotor is in position “A” and a particular wiring scheme is
determined to be correct, that same wiring scheme could be advanced one position
and now this new wiring scheme works when the rotor is moved to position “B.” So
all wiring schemes should yield 26 correct solutions as you rotate the rotor through
the 26 positions. It seems you should just ignore the rotor starting position for the
three rotors, which accounts for a contribution to the key space of 263. For this
reason, many others have reported the Enigma key space without this factor.

We don’t go deeper here into Enigma. There are many books and articles about
this rotor machine and its history. A good summary of its design (flaws) and another
approach calculating its relevant key space can be found in [11].

By including the rotor setting in the key space, Miller was allowing for a slightly
larger key space that would break all daily messages after cryptanalysis of the first
message. All subsequent messages using the same machine setting could then be
decrypted in real time, just as the enemy would decrypt their own message.

Miller’s rationale of the rotor position applies to all the rotor-based historic
cipher devices, including the mechanical devices, like the Hagelin M-209. For this
machine, all possible pin settings on each rotor are analyzed and included in the
key space. So knowledge of the rotor rotational position is not necessary to break a
message. The pin settings are part of the machine setting and fixed for the day, and
the rotor setting is part of the message setting, which changes with every message.
Again, just like in the case of the Enigma, the rotor positions must be known to
break all daily messages in real time.

1.6.3 Conclusion of Key Spaces of Historic Cipher Devices

Having a clearly defined set of assumptions for key spaces, the key spaces could be
calculated accordingly.

Table 1.1 lists 34 historic and 4modern cipher systems, showing the maximum
and practical key spaces for each one, using that same set of assumptions. This
table was first presented to the International Conference on Cryptographic History
(ICCH) group [12] by Ralph Simpson in Decmber 2022. The key spaces for some
of these devices have not been previously reported, such as the Hebern, Japanese
Purple machine, NEMA, KL-7, Transvertex HC-9, Russian VIC, and Hagelin CD-
57. Most of the other historic cipher devices required new calculations to match
the maximum and practical assumptions listed above.
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Table 1.1 Key Space Sizes for 34 Historic and 4 Modern Cipher Systems

Year Cipher Maximum Key Space Practical Key Space
600 BCE Monoalphabetic substitution 4.03 · 1026 288 4.03 · 1026 288

50 BCE Caesar 2.50 · 101 25 2.50 · 101 25

1466 Vigenère (repeating keyword – 15 char.) 1.68 · 1021 271 1.68 · 1021 271

1586 Vigenère (autokey – 314 char. message) 2.00 · 10444 21476 2.00 · 10444 21476

1854 Playfair 6.20 · 1023 279 6.20 · 1023 279

1860s Wheatstone Cryptograph 4.03 · 1026 288 4.03 · 1026 288

1912 Lugagne Transpositeur 1.30 · 10532 21768 1.32 · 1013 244

1912 M-94 cylinder cipher 3.45 · 10666 22214 3.88 · 1026 288

1916 M-138A strip cipher 3.69 · 10799 22656 1.95 · 1059 2197

1918 ADFGX 4.19 · 1047 2158 4.19 · 1047 2158

1918 ADFGVX 1.01 · 1064 2213 1.01 · 1064 2213

1922 Hebern 5-rotor 1.27 · 10140 2466 4.56 · 1010 235

1924 Kryha 2.02 · 1053 2177 1.78 · 1029 297

1926 Enigma Swiss K 1.60 · 10101 2336 1.85 · 109 231

1930 Lugagne Le Sphinx 1.30 · 10532 21768 2.43 · 1024 281

1931 Abwehr Enigma G 7.17 · 10121 2405 4.82 · 1010 235

1932 Enigma I 3.28 · 10114 2380 4.31 · 1022 275

1937 SIGABA 1.82 · 10285 2941 5.95 · 1028 296

1939 Japanese Purple 3.81 · 1059 2198 1.45 · 1031 2104

1939 Japanese JN-25 codebook (100 words) 1.00 · 1012 240 8.25 · 1010 236

1941 Lorenz SZ40/SZ42 1.05 · 10170 2565 1.05 · 10170 2565

1941 SG-41 “Hitler Mill” 4.24 · 1051 2171 4.24 · 1051 2171

1942 M-209 pin & lug 6.16 · 1060 2202 6.02 · 1058 2195

1942 Enigma M4 2.33 · 10145 2483 3.13 · 1025 285

1942 T-52d Geheimschreiber 7.23 · 10213 2710 8.11 · 1023 279

1943 Typex Mark 22 1.82 · 10195 2649 5.51 · 1054 2182

1947 NEMA 5.99 · 10164 2551 1.83 · 1019 264

1952 Hagelin C-52 1.68 · 10117 2389 7.17 · 1057 2192

1952 Hagelin CX-52 1.17 · 10123 2409 1.10 · 10104 2346

1952 KL-7 5.87 · 10431 21434 1.70 · 1034 2114

1950s Transvertex HC-9 2.96 · 1071 2237 4.39 · 1069 2231

1953 VIC paper & pencil 9.09 · 1040 2136 1.00 · 1027 290

1956 Fialka 2.82 · 10458 21523 6.24 · 1077 2258

1957 Hagelin CD-57 1.52 · 10103 2343 1.49 · 1060 2200

1976 DES (56 bit) 7.21 · 1016 256 7.21 · 1016 256

1977 RSA-4096 2.22 · 101225 24071 2.22 · 101225 24071

1992 AT&T TSD 3600-E Clipper chip 1.21 · 1024 280 1.21 · 1024 280

2001 AES-256 1.16 · 1077 2256 1.16 · 1077 2256

Courtesy of Ralph Simpson.

It is important to remember that these key spaces are still not a good sole indi-
cator of the cryptographic strength of the encryption method—examples for these
criticisms are monoalphabetic substitution (288), Enigma I (275), and Playfair (279).
But using a common set of assumptions will at least add a level of consistency
among all these disparate devices.

1.7 Best Known Attacks on Given Ciphers

Tables 1.2 and 1.3 contain the best attacks known today for well-known classical
and modern ciphers. For modern procedures, the effort (number of steps or attack
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time) is also given in Table 1.3. To our knowledge, this is the first time such a
complete table is created.

For symmetric ciphers, the key space derived from the key length is an impor-
tant indicator (see Section 1.6). It is used to calculate the effort required for a BF
attack, the maximum effort that an attacker can have.

The following applies to AES-128 (see Table 1.3): The key length is 128 bits.
The key space is 2128 and so is the theoretical attack time. The best known attack
(biclique attack) reduces this maximum effort to 2126.1 steps. This difference of
around 2 in the exponent means that the attack is about 4 times faster than a BF
attack on average. This shows that AES is vulnerable in principle, but this attack is
not at all relevant to practical security.

1.7.1 Best Known Attacks Against Classical Ciphers

The historical ciphers shown in Table 1.2 represent different periods in the history
of cryptography, ranging from simple Caesar ciphers to more complex machine-
assisted systems like Enigma. These selections are based on their historical signif-
icance. The attack types and methods shown in the table are the currently best
known computerized methods for attacking these ciphers. All of the hand ciphers
are vulnerable to simulated annealing and hill climbing. Composed ciphers, in
our example here ADFGVX, need more sophisticated methods. With ADFGVX,
a divide-and-conquer attack can be used to break substitution and transposi-
tion independently. Also noteworthy is SIGABA, since it can be attacked with
a meet-in-the-middle attack. Additionally, all shown hand ciphers (substitution,
transposition, and composed ciphers) can today be attacked in a pure ciphertext-
only scenario. An exception are nomenclature ciphers, since the nomenclature
elements (code words) can often only be decrypted when having either the original
key or enough context to deduce them. Also, the chances of successfully attack-
ing cipher machines, such as the Enigma and Typex, are enhanced when a crib (a
partially known plaintext) is available. Only attacks on SIGABA still require the
complete plaintext to be successful.

1.7.2 Best Known Attacks Against Modern Ciphers

Table 1.3 presents a selection of modern ciphers and the best attacks against them.
The table includes historically significant ciphers such as DES and FEAL, ISO stan-
dards like AES, Camellia, and SNOW 2, national standards like GOST and SM4,
and ciphers that were actively used in industrial solutions such as KeeLoq and A5.1.
Cipher names typically encompass a family of encryption methods rather than refer-
ring to a single algorithm. These algorithms usually differ in the size of the key used
and, in the case of block ciphers, the size of the data block. It is important to note
that the best attacks against various versions of a cipher may differ. For the sake of
brevity, we provide a single example from each cipher family and present the most
successful attack against it.

In the right-most column of Table 1.3, the term “attack time” is used. “Time” is
an established term used in modern cryptography. In order to understand what the
attack time—as a measure for the resistability of a cipher—means, see Section 1.8
which introduces attack costs and different attack types.
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16 Ciphers and Attacks Against Them

Table 1.2 Best Known Attacks Against 17 Historical Ciphers

Cipher Attack
Requirements

(Best) Cryptanalysis Methods References

Substitution ciphers
Caesar PCO Brute force, frequency analysis [13]
Monoalphabetic substitution PCO Hill climbing, frequency analysis [13]
Homophonic substitution PCO Hill climbing / simulated

annealing
[14]

Nomenclatures PCO Manual (deduced by context; or
nomenclature available)

[15, 16]

Polyalphabetic substitution PCO Hill climbing / simulated
annealing / (Friedman + Kasiski)

[13]

Playfair PCO; crib Simulated annealing [17, 18]
Code books PCO; crib/KP Manual (deduced by context;

availability of similar code book)
[19]

Chaocipher PCO Hill climbing / simulated
annealing

[20]

Transposition ciphers
Scytale PCO Brute force [13]
Columnar transposition PCO Brute force (short keys) / hill

climbing / simulated annealing
[21]

Double columnar transposition PCO Hill climbing / simulated
annealing; IDP attack

[22]

Composed
ADFGVX PCO DAC + hill climbing / simulated

annealing
[23]

Machines
Enigma PCO, crib DAC; hill climbing / simulated

annealing; Turing Bombe
[24, 25, 26]

Typex PCO, crib DAC; hill climbing / simulated
annealing; Turing Bombe

[24, 25, 26]

SZ42 PCO, crib Testery methods and hill climbing [27]
M209 PCO, crib Simulated annealing / hill

climbing
[28, 29]

SIGABA KP Meet in the middle; hill climbing /
simulated annealing

[30, 31]

PCO = pure ciphertext-only, KP = known-plaintext, DAC = divide and conquer.

1.8 Attack Types and Security Definitions

If you are interested in the definitions used in modern cryptography, this section
explains them with the fewest amount of mathematics as possible. Also, the rela-
tionship between the various definitions is declared—something which often falls
short in courses. We believe that only understanding the differences between the
various concepts enables learners to grasp the idea and apply it correctly later.

1.8.1 Attack Parameters

In cryptography, a security parameter is a way of measuring of how hard it is
for an adversary to break a cryptographic scheme. Attack parameters describe the
conditions available for the attacker.
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Table 1.3 Best Known Attacks Against 36 Modern Ciphers

Cipher Attack Types (Best) Cryptanalysis Methods Attack
Time

Block ciphers
DES Single key. KPA. Full Linear [32, 33] 243

3DES (TDEA). 3-key
version [34]

Single key. KPA. Full Meet-in-the-middle [34] 2112

AES-128 (Rijndael)
[35]

Single key. CCA. Full Biclique [36] 2126.1

Camellia-128 [37] Single key. CPA. 11/18 rounds Truncated differential [38] 2121.3

MISTY1 [39] Single key. CPA. Full Integral [40, 41] 2107.9

KASUMI [42] Related-key. CCA. Full Boomerang [43] 232

HIGHT [44] Single key. CCA. Full Biclique [45] 2126.4

CAST-128 [46] Single key. CPA. 9/16 rounds Differential [47] 273

SEED-128 [48] Single key. CPA. 8/16 rounds Differential [49] 2122

PRESENT [50] Single key. CPA. 26/31 rounds Truncated differential [51] 270

CLEFIA-128 [52] Single key. CPA. 14/18 rounds Truncated differential [38] 2108

LEA-128 [53] Single key. CPA. 13/24 rounds Differential [54] 2127

SM4 [55] Single key. KPA. 24/32 rounds Linear [56] 2126.6

GOST 28147-89 [57]
(Magma)

Single key. CPA. Full Guess then truncated
differential [58]

2179

GOST R 34.12-2015
(Kuznechik) [59]

Single key. CCA. 5/10 rounds Meet-in-the-middle [60] 2140

KeeLoq [61] Single key. KPA. Full Slide and meet-in-the-middle
[62]

244.5

Simon64/128 [63] Single key. KPA. 31/44 rounds Multidimensional linear [64] 2120

Speck64/128 [63] Single key. CPA. 20/27 rounds Differential [65] 293.56

FEAL-32 [66] Single key. CPA. 31/32 rounds Differential [67] 263

Twofish-128 [68] Single key. CPA. 7/16 rounds Saturation [69] 2126

Stream ciphers
RC4 Variable-key. Plaintext

recovery. COA
Statistical [70] 231

A5/1 [71] Single key. KPA. Full Time-memory-data trade-off
[72]

224

A5/2 [73] Single key. KPA. Full Time-memory-data trade-off
[72]

216

Chacha [74] Single key. KPA. Chosen IV.
7/20 rounds

Differential [75] 2255

Salsa20 [76] Single key. KPA. Chosen IV.
8/20 rounds

Differential [75] 2255

Crypto-1 [77] Single key. KPA. Full Algebraic [78] 232

Grain-128 [79] Single key. KPA. Chosen IV.
Full

Dynamic cube attack [80] 274

Trivium [81] Single key. KPA. Chosen IV.
799/1152 rounds

Dynamic cube attack [82],
see also footnote 1

262

Rabbit [83] Not known See also footnote 2
Enocoro 128v2 [84] Distinguishing. KPA. Chosen

IV. 22/96 rounds
Higher order differential [85] 216

SNOW 2-128 [86] Single key. KPA. Chosen IV.
14/32 rounds

Cube [87] 2162.86

MUGI [88] Distinguishing. KPA. Chosen
IV. 21/32 rounds

Differential [89] 261.59

ZUC 1.6 [90] Not known See also footnote 3
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18 Ciphers and Attacks Against Them

Table 1.3 Continued

Cipher Attack Types (Best) Cryptanalysis Methods Attack
Time

Public-key encryption
RSA [91] Single key. COA. For

RSA-250 (829-bit number)
Number field sieve [92, 93],
see also footnote 4

268.5

ElGamal [94] Single key. CCA Trivial algebraic Instant
NTRUEncrypt [95] Single key. COA Hybrid [96] (Lattice reduction

and combinatorial search)
PB, see
also
foot-
note 5

PB = parameter-based.

1. Another attack claiming to break 855 rounds [97] of Trivium has been questioned in [98].

2. We are not aware of any attacks faster than brute force. Rabbit has four initialization rounds. The values within
the cipher become balanced after two rounds [83], hence there is a trivial distinguishing attack against at least
one round of the cipher.

3. There exist attacks against earlier versions of the cipher. The cryptanalysis of the final version made by the
designers is secret to the best of our knowledge.

4. Our upper-bound estimation: In [93], the attack time is given as 2, 700 core years of computations using Intel
Xeon Gold 6130 CPU (each 2.1 GHz). To convert this attack time to the RSA-250 encryptions, we would need
to know how much time is required on average to apply one encryption on the mentioned processor. For a rough
estimate, we assume that one encryption requires less time than one integer operation as tested in [99].

5. The actual attack time depends on the specific parameter choices. See [100] for more details.

Attack definition. Before proceeding to the discussion about various attack types
(see Section 1.8.1), it’s essential to clarify the concept of an attack against a modern
cipher. We start this explanation with Kerckhoffs’s principle (see Section 1.5). This
principle emphasizes that a cryptosystem should be secure even if all the system
details, excluding the secret key, are known to the attacker.

However, the principle brings up the term “secure.” To formulate the definition
of security, we use ideas about the infeasibility of distinguishing—see Sections 1.8.2
and 1.8.3. In a nutshell, a cryptographic attack is an algorithm that aims to
demonstrate the lack of security in a given cryptosystem.

Attack costs. When analyzing how difficult it is to apply a cryptographic attack,
the computational complexity of the corresponding algorithm is evaluated. The
computational complexity is the amount of resources needed to run the algorithm.
There are typically three main resources considered: time, memory, and data.

• Time complexity of the attack, or just attack time, is an estimated upper
limit of the number of operations required to successfully break a cipher.
Time is the primary resource taken into account. If “computational complex-
ity” is mentioned without further specification, it typically refers to “time
complexity.”

• Memory complexity is the storage space needed to execute the attack.

• The data complexity refers to the amount of data (plaintext, ciphertext, or
both) that the attacker needs access to in order to carry out the attack.

Attack time. The attack time is generally expressed in the number of a partic-
ular cipher’s encryptions. This is done in order to demonstrate by which factor
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1.8 Attack Types and Security Definitions 19

the corresponding attack is faster than the brute-force attack. As discussed in
Section 1.2.2, the key-space size has a direct relation to the attack time of the brute
force. Testing each of the keys requires the corresponding encryption algorithm to
run once completely. So if the key (in binary representation) length is L, and all
possible variants of the key lead to different ciphertexts, then the key space size is
2L . It means that in order to certainly break a cipher, 2L encryptions are always
enough. This determines the attack time of the exhaustive search.

Different attacksmay not require running the encryption algorithm itself, but to
perform other computational operations. In this case, an estimation is done on how
many of such operations require the time equivalent to the time of one encryption.
Then the whole number of operations needed to apply the attack is divided over
the number of operations equating to a single encryption. This results in the time
complexity for the current attack measured in encryptions.

Security parameter. A cryptographic attack is considered to be successful if it
requires less costs than defined by the security parameter set by the designers of
a cryptosystem. A security parameter measures the level of difficulty for an adver-
sary to break a cryptographic scheme. It is often expressed in bits. For example,
one can say that a certain scheme offers κ-bit security if the attack time is of O(2κ)
encryptions. The O() notation (also called big O notation or Bachmann–Landau
notation or asymptotic notation) describes an upper bound on the time complexity
of an algorithm. Essentially, it gives the worst-case scenario for how the run time
grows as the input size increases. Here we don’t need the big O notation, which
is used to describe the limiting behavior of a function when the argument tends
towards a particular value. But here in the table, we use the concrete versions of
the ciphers and provide the complexities with a constant argument.

In the context of symmetric encryption schemes, the security parameter is typ-
ically equal to the key size. This is because the brute-force attack sets the minimum
limit for the security parameter. However, the security parameter can be lower than
the key size if an attack faster than the brute force is known at the stage of the
design of a cipher. This is a common situation for public-key encryption schemes.

Goal. Inmodern cryptology, different classifications of cryptanalytical attacks exist.
By the goal of the attacker we differentiate between key-recovery attacks and dis-
tinguishing attacks. The key-recovery attacks aim to obtain the actual encryption
or decryption key, compromising the security of the cryptographic system com-
pletely. On the other hand, distinguishing attacks focus on the ability to differentiate
encrypted data from truly random data, indicating deviations or weaknesses in the
cipher that may lead to key-recovery attacks.

Single/multiple keys. Cryptanalytic attacks also vary based on the attacker’s abil-
ity to observe different numbers of encryption instances related to distinct keys.
Single-key attacks assume access to the ciphertexts encrypted under the same
key. Variable-key attacks assume access to ciphertexts encrypted under multiple
unknown keys. This often mirrors real-world situations where a cipher’s user must
change the key after a certain number of encryptions. If an attacker gains access
to several corresponding ciphertexts, he can use this information as an advantage
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20 Ciphers and Attacks Against Them

in attempting to break any of the corresponding encryptions. Related-key attacks
assume that an attacker has knowledge of a certain mathematical relationship that
exists between different secret keys and that she can observe the corresponding
ciphertexts. Although at first glance, such a scenario can be seen as too unrealis-
tic, several cryptosystems were broken using related-key attacks in the real world
(e.g., [43]).

Access to data (ciphertext-plaintext pairs). The cryptographic attacks can be
divided into the following four main categories based on the type of access to the
ciphertext and plaintext (assuming the key is always unknown):

• Ciphertext-only attacks (COA) assume access only to ciphertexts without
knowledge of corresponding plaintexts;

• Known-plaintext attacks (KPA) involve pairs of known plaintext and their
corresponding ciphertext, aiming to recover the secret key;

• Chosen-plaintext attacks (CPA) allow the attacker to choose arbitrary plain-
texts and obtain their ciphertexts, providing flexibility in analyzing the
encryption algorithm;

• Chosen-ciphertext attacks (CCA) enable the attacker to choose arbitrary
ciphertexts and obtain their plaintexts, possessing the power to manipulate
ciphertexts during decryption.

Additionally, attacks differ based on specific mathematical methods, such as
differential cryptanalysis (analyzing how differences between inputs of the ciphers
affect resultant differences between outputs), linear cryptanalysis (exploiting lin-
ear relationships in the encryption process), meet-in-the-middle, biclique, integral,
boomerang, cube, and other attacks. All these methods are unique, so we refer to
the provided references for a comprehensive explanation.

1.8.2 Indistinguishability Security Definitions

The attack types CPA and CCA have a direct relationship with the cryptographic
security definitions IND-CPA, IND-CCA1, and IND-CCA2. These definitions play
a crucial role in the provable security branch of cryptography. This field focuses on
proving mathematically the security of the cryptographic schemes. This is achieved
by demonstrating that breaking a certain scheme would require solving a problem
that is widely known to be difficult, such as factoring large numbers or computing
discrete logarithms.

Indistinguishability under chosen-plaintext attack (IND-CPA). In this model, an
attacker is allowed to choose arbitrary plaintexts and obtain the corresponding
ciphertexts from the encryption oracle as many times as he needs. Then the adver-
sary chooses two distinct challenge messages and sends them to the encryption
oracle, which returns a ciphertext of just one of them called challenge ciphertext.
After that, the attacker is allowed to perform any number of additional computa-
tions and encryptions. An encryption scheme is considered secure if the attacker
can’t guess to which plaintext the challenge refers to with the probability higher
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than |1/2 + η| where η is negligible. Clearly, the attacker cannot choose the same
messages for the challenge for which he gets the ciphertexts from the oracle. This
security definition can be applied to both symmetric and asymmetric encryption
schemes, although formally they are described differently [101]. However, in case
of deterministic asymmetric encryption schemes, an attacker has access to the pub-
lic key, which means that he can easily distinguish which ciphertext was produced
by which message by encrypting the messages by himself. Therefore, the definition
is only applied to probabilistic public-key encryption schemes where randomness is
used in the encryption process. This implies that the samemessage encrypted several
times under the probabilistic encryption scheme results in different ciphertexts.

Indistinguishability under chosen-ciphertext attack, also known as nonadaptive or
lunchtime attack (IND-CCA1). This security definition imposes a higher level of
security than IND-CPA. In this model, an attacker can choose both the plaintexts
and obtain their corresponding ciphertexts from the oracle, and also decrypt arbi-
trary ciphertexts and get the corresponding plaintexts. The further procedure is
similar to the IND-CPA case. However, in the case of IND-CCA1 after the adversary
gets the challenge the decryption oracle becomes unavailable.

Indistinguishability under adaptive chosen-ciphertext attack (IND-CCA2). This is
the strongest definition providing the highest level of security. It allows the attacker
to continue to interact with the decryption oracle even after the challenge ciphertext
is received.

When considering modern cryptographic encryption primitives, selecting the
best attack is not a straightforward task. In Table 1.3, we have kept the informa-
tion concise and prioritized key-recovery attacks requiring minimal computation
and being faster than brute-force, which is a universal attack method against any
encryption algorithm. By this prioritizing, we have left out other complexities such
as data and memory costs (e.g., number of required plaintext-ciphertext pairs).

Single-key scenarios are typically targeted, except for two exceptions in our
table: the related-key attack against Kasumi cipher and the variable-key attack
against RC4. If the full cipher is not compromised, we aim to select attacks that
break as many rounds as possible. We only refer to distinguishing attacks against
MUGI and Enocoro as we are not aware of any published key-recovery attacks.

1.8.3 Security Definitions

Modern cryptography is heavily based on mathematical theory and computer
science practice. Cryptographic algorithms are designed around computational
hardness assumptions, making such algorithms hard to break in practice by any
adversary.

There are different approaches (categories) to define the security of crypto-
systems.

Most commonly, two fundamental approaches are used for formally defining
the security of an encryption scheme [102]:

• The first one is semantic security, which implies that it is infeasible for an
attacker to learn any information about the plaintext from the ciphertext;
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• The second definition determines security as the infeasibility of distinguish-
ing between encryptions of two given messages.

In both definitions of security, the term “infeasible” rather than “impossible”
is used. This is because generic attacks exist against almost every known encryption
scheme (with the exception of the one-time-pad). One such universal attack, namely
a brute force, was discussed in Section 1.2.2. Brute-force attacks can be extended
to time-memory trade-off (TMTO) attacks, a broader class of attacks, which in
certain cases allow to reduce the key-recovery time by increasing the memory cost.
See Table 1.3 for an in-depth discussion of different attack types.

Another main category in literature defines security depending on the adver-
sary’s capabilities (e.g., Cryptography 101 [103, Chap. 1.2.2]):

Computational, conditional, or practical security. A cipher is computationally
secure if it is theoretically possible to break such a system, but it is infeasible to
do so by any known practical means. Theoretical advances (e.g., improvements
in integer factorization algorithms) and faster computing technology require these
solutions to be continually adapted.

Even using the best known algorithm for breaking it will require so many
resources (e.g., 1,000,000 years) that essentially the cryptosystem is secure.

So this concept is based on assumptions of the adversary’s limited computing
power and the current state of science.

A typical example of a pragmatically secure procedure is AES: No practicable
attack is known on it. Even so, AES is theoretically broken, which just means it can
be broken with less effort than a brute-force attack. This effort is still unrealistically
high. See Section 1.7.

Information-theoretical or unconditional security. A cipher is considered uncondi-
tionally secure if its security is guaranteed no matter how many resources (time,
space) the attacker has. Even if the adversary has unlimited resources he is unable
to gain any meaningful data from a ciphertext.

The only information-theoretically secure schemes that provably cannot be bro-
ken even with unlimited computing power are the one-time pad (OTP) or variants
of it.

Figure 1.6 shows that it may be impossible to determine the correct plaintext
from a OTP (if the OTP method has been applied correctly and if all keys have
the same likelihood). The example in this figure uses an 8-character long given
ciphertext: 11 1B 1E 18 00 04 0A 15. The hex values correspond to the ASCII
values of the letters: For example, the letter C has the numerical value 67 (decimal),
which is 43 in hex representation.

There are many meaningful words with eight letters and for each there is a
correct key. So an attacker cannot determine alone from the ciphertext which is the
correct key and which is the correct plaintext word. In other words, with different
keys the same ciphertext can lead to different meaningful plaintexts and so, in this
case, it cannot be distinguished which plaintext is the correct one.12

12. The OTP procedure is discussed in more detail in Section 2.2.4 in item “One-time pad.”
Also see Figure 9.12, where a corresponding example with text strings is built with SageMath, and the

XOR method is explained.
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Figure 1.6 Illustration of the information-theoretically secure OTP scheme.13

As the OTP is information-theoretically secure it derives its security solely
from information theory and is secure even with unlimited computing power at
the adversary’s disposal. However, OTP has several practical disadvantages (the
key must be used only once, must be randomly selected, and must be at least
as long as the message being protected), which means that it is hardly used
except in closed environments such as for the hot wire between Moscow and
Washington.

Two more security concepts are sometimes used:

• Provable security. This means that breaking such a cryptographic system is
as difficult as solving some supposedly difficult problem, such as discrete log-
arithm computation, discrete square root computation, or very large integer
factorization.

Example: Currently we know that RSA is at most as difficult as factor-
ization, but we cannot prove that it’s exactly as difficult as factorization.
So RSA has no proven minimum security. Or in other words, we cannot
prove that if RSA (the cryptosystem) is broken, then factorization (the hard
mathematical problem) can be solved.

The Rabin cryptosystem was the first cryptosystem that could be proven
to be computationally equivalent to a hard problem (integer factorization).

• Ad-hoc security. A cryptographic system has this security feature if it is not
worth trying to break the system because the effort to do so is more expensive
than the value of the data that would be obtained by doing so. Or an attack
can’t be done in sufficiently short time (see [104]).

Example: This may apply if a message relevant to the stock market will
be published tomorrow, and you would need a year to break it.

13. Source of the four photos: https://pixabay.com/.
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1.9 Algorithm Types and Self-Made Ciphers

Here, two aspects of crypto procedures are mentioned briefly, which are often not
discussed early enough: types of algorithms and the thinking up of new algorithms.

1.9.1 Types of Algorithms

Algorithms can be categorized as follows:

• Random-based. Algorithms can be divided up into deterministic and heuris-
tic methods. Often students only become aware of deterministic methods,
where the output is uniquely determined by the input. On the other hand,
heuristic methods make decisions using random values and the results are
only correct with a certain probability. One can differentiate even more
precisely between randomized algorithms, and probabilistic and heuris-
tic methods, but these subtleties are not important for understanding the
contrast to deterministic methods.

Random looms large in cryptographic methods. Keys have to be selected
randomly, which means that at least for the key generation “random”
is necessary. In addition, some methods, especially from cryptanalysis, are
heuristic.

• Constant-based. Many modern methods (especially hash methods and sym-
metric encryption) use numeric constants. Their values should be plausible,
and they shouldn’t contain back doors. Numbers fulfilling this requirement
are called nothing-up-my-sleeve numbers.

1.9.2 New Algorithms

It happens again and again that someone without deeper knowledge of adequate
design concepts comes up with a “new” encryption procedure. However, reality
shows that this is not a good idea. That’s why people usually learn early not to design
their own cryptosystem if they hope that the fact that it is not known will protect
them. There are many reasons for this, including that it only takes one disgruntled
employee or any other malicious actor to reveal the secrets that make the scheme
secure. Designing secure cryptographic schemes is extremely difficult. It is incredibly
easy to create something that looks secure, but actually leaks information.

Offering prize money and just single ciphertexts is unprofessional—serious
researchers have little time and will not spend any effort on it (perhaps they give it
to students as an exercise for didactic reasons). Modern best practice is that if you
want to create a new encryption scheme, first publish it with a detailed explanation
of how it works, its advantages, and any evidence of its security. Then you can see
if anyone can find any weaknesses. This is not a quick process—you should expect
it to take years.

1.10 Further References and Recommended Resources

Here are some good cryptography books that can serve as useful background on var-
ious topics in order from beginners (history) to intermediate (applied) to advanced
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(theory-focused):

• David Kahn: The Codebreakers, 1995.

• Elonka Dunin and Klaus Schmeh: Codebreaking: A Practical Guide, 2nd ed,
2023.

• Simon Singh: The Code Book, 2000 [105].

• Bruce Schneier, Applied Cryptography, Protocols, Algorithms, and Source
Code in C, 2nd ed, 1996 [8].

• Christof Paar and Jan Pelzl: Understanding Cryptography, 2009 [106].

• David Wong: Real-World Cryptography, 2020 [107] (our favorite).

• Jean-Philippe Aumasson: Serious Cryptography, 2017 [108].

• Mike Rosulek: The Joy of Cryptography, 2021.

• Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno: Cryptography
Engineering, 2010.

• Dan Boneh and Victor Shoup: AGraduate Course in Applied Cryptography,
v0.6, 2023.

• Mark Stamp and RichardM. Low: Applied Cryptanalysis: Breaking Ciphers
in the Real World, 2007 [109].

• Rolf Oppliger, Cryptography 101, 2021 [103].

• Jonathan Katz and Yehuda Lindell: Introduction to Modern Cryptography,
3rd ed, 2020.

• Douglas R. Stinson: Cryptography – Theory and Practice, 3rd ed, 2006
[110].

Besides the information in these books and in the following chapters, there is
also a good number of websites and the online help of all CrypTool variants that
contain many details about encryption methods.

The book by Bruce Schneier [8] offers an easy overview of the different encryp-
tion algorithms. For a more in-depth introduction, in addition to the book by Rolf
Oppliger [103], we also recommend the books by David Wong [107], Jean-Philippe
Aumasson [108], and Douglas R. Stinson [110].

1.11 AES Visualizations/Implementations

AES is now probably the most widely used modern encryption algorithm world-
wide. AES is a secure, standardized, symmetrical process that encrypts data, for
example, in Wi-Fi and browser connections. The AES-192 and AES-256 variants
are approved for top-class government documents in the United States.

In the following sections, first an AES animation is presented in CTO; and
then AES is executed directly—once in CT2 and twice with OpenSSL (once on the
command line of the operating system and once in the OpenSSL WebAssembly
plugin in CTO).
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1.11.1 AES Animation in CTO14

Figure 1.7 shows that the modern encryption algorithm receives both inputs (the
key and the plaintext) in binary form and creates the output in binary form. Like
most modern (block) ciphers, the algorithm contains a key scheduling part where
from the given key (also called session key, master key, or cipher key) the round
keys are generated, and another part where then the actual encryption is carried
out using the generated round keys.

Figures 1.7 to 1.8 are taken from the AES animation in CrypTool-Online
(CTO). Figure 1.9 is from CT1, but the image is also part of the CTO animation.

1.11.2 AES in CT2

After these visualizations, we want—in a concrete example—to encrypt a plaintext
of length 128 bits (one block) with a 128-bit key with AES in CBC mode. From the

Figure 1.7 AES visualization from CTO (part 1).

14. https://www.cryptool.org/en/cto/aes-animation.
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Figure 1.8 AES visualization from CTO (part 2).

Figure 1.9 AES visualization by Enrique Zabala from CT1.
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received ciphertext we are only interested in the first block (if the plaintext doesn’t
fill up a complete block, for the sake of simplicity, here we use zero padding).

For demonstration, we do it once with CT2 and twice with OpenSSL.15

The plaintext AESTEST1USINGCT2 is converted to hex (41 45 53 54
45 53 54 31 55 53 49 4E 47 43 54 32). Using this and the key
3243F6A8885A308D313198A2E0370734 the AES component creates the cipher-
text, which is in hex: B1 13 D6 47 DB 75 C6 D8 47 FD 8B 92 9A 29 DE 08.

Figure 1.10 shows the encryption of one block in CT2.16

1.11.3 AES with OpenSSL at the Command Line of the Operating System

OpenSSL Example 1.1 achieves the same result as CT2 with OpenSSL from the
(Windows) command line.

OpenSSL Example 1.1: AES Encryption (Of Exactly One Block and Without
Padding)

>openssl enc -e -aes-128-cbc -K 3243F6A8885A308D313198A2E0370734 -iv 00 �
� 000000000000000000000000000000 -in klartext-1.hex -out klartext-1. �
� hex.enc

>dir
06.07.2016 12:43 16 key.hex
20.07.2016 20:19 16 klartext-1.hex
20.07.2016 20:37 32 klartext-1.hex.enc

Figure 1.10 AES encryption (here exactly 1 block and without padding) in CT2.

15. OpenSSL is a widespread free open-source crypto library that contains the command line tool openssl.
Using OpenSSL you can try out the functionality on many operating systems.
You can find an introduction into the CLI openssl (e.g. at https://www.cryptool.org/en/documenta-

tion/ctbook/).
16. This is similar to the following template: CT2 Templates F Cryptography F Modern F Symmetric F AES

Cipher (Text Input).
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Note: As OpenSSL Example 1.2 shows, with a little effort, pipes, and the tool
xxd, this can be achieved also in a Bash shell and without using temporary files:17

OpenSSL Example 1.2: AES Encryption (Without Temporary Files) With Bash

$ echo 0: 41 45 53 54 45 53 54 31 55 53 49 4E 47 43 54 32 | xxd -r | �
� openssl enc -e -aes-128-cbc -nopad -K 3243F6A8885A308D313198A2E03707 �
� 34 -iv 00000000000000000000000000000000 | xxd -p

b113d647db75c6d847fd8b929a29de08

$ echo -n AESTEST1USINGCT2 | openssl enc -e -aes-128-cbc -nopad -K 3243 �
� F6A8885A308D313198A2E0370734 -iv 00000000000000000000000000000000 | �
� xxd -p

b113d647db75c6d847fd8b929a29de08

1.11.4 AES with OpenSSL within CTO18

As CTO has integrated a WebAssembly-based version of OpenSSL, this also can
be done locally in your browser without the need to install OpenSSL. While Linux
systems mostly have OpenSSL on board, Windows systems or smart phones don’t.
For such systems this plugin is helpful.

For the example in Figure 1.11 we store the message AESTEST1USINGCT2
in a file called “klartext-1.hex.” Then we upload this file from the file system of
the operating system into a virtual file system in the browser: This upload is done
in the tab “Files” of the OpenSSL plugin. Then in the OpenSSL plugin the same
openssl command is executed as before in the terminal (see Section 1.11.3). And
if you download the resulting file klartext-1.hex.enc and compare it with the result
from the terminal, you see both are identical.

1.12 Educational Examples for Symmetric Ciphers Using
SageMath

Section 1.12.1 shows the SageMath implementation of a cipher (called Mini-
AES) stripped for didactic purposes. Further publications with ciphers reduced for
didactic reasons are listed in Section 1.12.2.

1.12.1 Mini-AES

The SageMath module crypto/block_cipher/miniaes.py supports Mini-AES to
allow students to explore the inner working of a modern block cipher.

Mini-AES, originally described in [111], is a simplified variant of AES to be
used for cryptography education.

Here is a short list about how Mini-AES was simplified compared to AES:

17. xxd creates a hex dump of a given file or of standard input. With the option “-r” it converts hex dump
back to its original binary form.

18. https://www.cryptool.org/en/cto/openssl.
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Figure 1.11 AES encryption using OpenSSL in the browser.

• The AES has a block size of 128 bits, and supports key sizes of 128, 192,
and 256 bits. The number of rounds is 10, 12, or 14 for the three different
key sizes, respectively.

Mini-AES has a 16-bit block size, a 16-bit key size, and 2 rounds.

• The 128-bit block of the AES is expressed as a matrix of 4 × 4 bytes, in
contrast to Mini-AES expressing its 16-bit block as a matrix of 2×2 nibbles
(half-bytes).

• The AES key schedule takes the 128-bit secret key and expresses it as a group
of four 32-bit words.
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The Mini-AES key schedule takes the 16-bit secret key and expresses it as a
group of four nibbles (4-bit words).

How to use Mini-AES is exhaustively described at this SageMath ref-
erence page: https://doc.sagemath.org/html/en/reference/cryptography/sage/cryp-
to/block_cipher/miniaes.html.

SageMath Example 1.1 was originally taken from the release tour of SageMath
4.119 and calls the implementation of the Mini-AES.

SageMath Example 1.1: Encryption and Decryption with Mini-AES

print("\n# CHAP01 -- Sage-Script-SAMPLE 010: =========")

# (1) Encrypting a plaintext using Mini-AES
from sage.crypto.block_cipher.miniaes import MiniAES
maes = MiniAES()
K = FiniteField(16, "x")
MS = MatrixSpace(K, 2, 2)

P = MS([K("x^3 + x"), K("x^2 + 1"), K("x^2 + x"), K("x^3 + x^2")]); �
� print("(1) P:\n",P, sep="")

key = MS([K("x^3 + x^2"), K("x^3 + x"), K("x^3 + x^2 + x"), K("x^2 + x �

� + 1")]); print("key:\n",key, sep="")

C = maes.encrypt(P, key); print("C:\n",C, sep="")

# decryption process
plaintxt = maes.decrypt(C, key)
print(plaintxt == P)

# (2) Working directly with binary strings
maes = MiniAES()
bin = BinaryStrings()
key = bin.encoding("KE"); print("\n(2) key:\n",key, sep="")

P = bin.encoding("Encrypt this secret message!"); print("P:\n",P,sep �
� ="")

C = maes(P, key, algorithm="encrypt"); print("C:\n",C,sep="")
plaintxt = maes(C, key, algorithm="decrypt")
print(plaintxt == P)

# 3) Or working with integers n such that 0 <= n <= 15:
maes = MiniAES()
P = [n for n in range(16)]; print("\n(3) P:\n",P, sep="")
key = [2, 3, 11, 0]; print("key:\n",key, sep="")

P = maes.integer_to_binary(P)
key = maes.integer_to_binary(key)
C = maes(P, key, algorithm="encrypt"); print("C:\n",C, sep="")
plaintxt = maes(C, key, algorithm="decrypt")
print(plaintxt == P)

19. See https://mvngu.wordpress.com/2009/07/12/sage-4-1-released/.
Further example code for Mini-AES can be found in [112].
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Further details concerning cryptosystems within SageMath (e.g., about the Sim-
plified Data Encryption Standard (SDES)) can be found in the thesis of Minh Van
Nguyen [113].

1.12.2 Symmetric Ciphers for Educational Purposes

Compared to public-key ciphers based on mathematics, the structure of AES and
most other modern symmetric ciphers (like DES, IDEA, or Present), is very complex
and cannot be explained as easily as RSA.

So, simplified variants of modern symmetric ciphers were developed for educa-
tional purposes in order to allow beginners to perform encryption and decryption
by hand and gain a better understanding of how the algorithms work in detail.
These simplified variants also help to understand and apply the corresponding
cryptanalysis methods.20

The most well-known of these variants are SDES21 and Simplified-AES (S-
AES)22 by Ed Schaefer and his students [115], and Mini-AES (see Section 1.12.1):

• Edward F. Schaefer: A Simplified Data Encryption Standard Algorithm
[116].

• Raphael Chung-Wei Phan: Mini Advanced Encryption Standard (Mini-
AES): A Testbed for Cryptanalysis Students [111].

• Raphael Chung-Wei Phan: Impossible Differential Cryptanalysis of Mini-
AES [117].

• Mohammad A.Musa, Edward F. Schaefer, StephenWedig: A Simplified AES
Algorithm and Its Linear and Differential Cryptanalyses [118].

• Nick Hoffman: A Simplified Idea Algorithm [119].

• S. Davod. Mansoori, H. Khaleghei Bizaki: On the Vulnerability of Simplified
AES Algorithm Against Linear Cryptanalysis [120].
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