
Detection of Classical Cipher Types with
Feature-Learning Approaches

Ernst Leierzopf∗1, Vasily Mikhalev2, Nils Kopal2, Bernhard Esslinger2,
Harald Lampesberger1, and Eckehard Hermann1

1 University of Applied Sciences Upper Austria, Hagenberg, Austria
*ernst.leierzopf@ins.jku.at

{Harald.Lampesberger,Eckehard.Hermann}@fh-hagenberg.at
2 University of Siegen, Germany

{Vasily.Mikhalev,Nils.Kopal,Bernhard.Esslinger}@uni-siegen.de

Abstract. To break a ciphertext, as a first step, it is essential to identify
the cipher used to produce the ciphertext. Cryptanalysis has acquired
deep knowledge on cryptographic weaknesses of classical ciphers, and
modern ciphers have been designed to circumvent these weaknesses. The
American Cryptogram Association (ACA) standardized so-called clas-
sical ciphers, which had historical relevance up to World War II. Iden-
tifying these cipher types using machine learning has shown promising
results, but the state of the art relies on engineered features based on
cryptanalysis. To overcome this dependency on domain knowledge, we
explore in this paper the applicability of the two feature-learning algo-
rithms long short-term memory (LSTM) and Transformer, for 55 classi-
cal cipher types from ACA. To lower the necessary data and the training
time, various transfer-learning scenarios are investigated. Over a dataset
of 10 million ciphertexts with a text length of 100 characters, Transformer
correctly identified 72.33% of the ciphers, which is a slightly worse re-
sult than the best feature-engineering approach. Furthermore, with an
ensemble model of feature-engineering and feature-learning neural net-
work types, 82.78% accuracy over the same dataset has been achieved,
which is the best known result for this significant problem in the field of
cryptanalysis.

Keywords: cipher-type detection · classical ciphers · neural networks ·

transfer learning · ensemble learning.

1 Introduction

In machine learning, classification is a problem of assigning data objects to the
predefined categories by recognizing category-specific regularities in the data.
There are various approaches of how neural networks can be applied to solve
this problem. One way is to first manually preprocess the raw data and to cal-
culate features which are then used by neural network for classification. In this
paper, the term feature engineering (FE) is used when referring to this approach.
It can be very efficient in many cases as it allows to use the domain knowledge



2 Leierzopf et al.

when constructing the features. Domain knowledge in the field of cipher type
detection is based on statistical measures. For example it is known that transpo-
sition ciphers have similar frequency distributions as the English language, but
with different letters. Substitution ciphers are also distinguishable, because of
the different algorithms used for encryption. However, the feature-engineering
approach struggles from two main drawbacks: i) It requires a long and costly
process of defining and testing different features. ii) It only works for problems
where domain knowledge is available.

Another approach is to use neural networks which have a built-in mechanism
for detecting regularities in data. This approach is often referred to as feature
learning (FL). Examples of feature-learning architectures are recurrent neural
networks (RNN) like long short-term memory (LSTM) [6], and Transformer-
based neural networks [19].

This paper compares FE and FL approaches applied to the problem of clas-
sification of (a large synthetic set of) classical ciphers, which were historically
relevant up to World War II. Current research focuses on the automated digiti-
zation, analysis, and decryption of encrypted historical documents [15]. Ciphers
(or encryption algorithms) are a method to protect information (plaintext) by
converting it to ciphertext. Ideally, only someone who knows the secret (key)
is able to decipher a ciphertext. Therefore, strong encryption algorithms are
used to achieve a high level of security and information privacy. However, if a
cipher has weaknesses, a cryptanalyst (or attacker) could break it and recover
the original information from the ciphertext without knowledge of the key. If the
attacker has access only to the ciphertext (ciphertext-only attack), the first step
is to determine which cipher was used to produce it. Then further techniques
are applied for recovering the information. For this reason, cipher-type classifi-
cation is a crucial part of cryptanalysis. Note, that modern ciphers are designed
in such a way that it is extremely difficult to distinguish their ciphertexts from
randomly generated data [7]. Therefore, classification of modern ciphers is usu-
ally impossible with the FE approach. On the other hand, a FL approach can
potentially detect regularities in ciphertexts which are not detected by common
methods yet. As classical ciphers usually have many weaknesses, FE approaches
can be very effective for their classification as we demonstrated in [13].

This work investigates how well FL approaches perform when applied to this
cipher-type-detection problem. For this research, a large amount of ciphertexts
was generated using 56 classes – 55 different classical ciphers standardized by the
American Cryptogram Association (ACA)[2] and one plaintext class. Without
any feature pre-computation, these ciphertexts were provided as raw data to the
LSTM and Transformer neural networks to detect the cipher type used to pro-
duce them. Also ensemble models with FE-only approaches, FL-only approaches
and combined FE and FL approaches, were evaluated.

We also evaluate whether transfer learning is applicable to this kind of clas-
sification problem. Our results show: If a feed-forward neural network (FFNN)
is trained to classify a certain number of ciphers and if at a later step previously
not included ciphers are provided to it, then the learning process becomes much



Detection of Classical Cipher Types with Feature-Learning Approaches 3

faster compared to training the complete model again. In other words, transfer
learning can be successfully applied to this problem and catastrophic forgetting
does not happen.

To summarize, our key contributions are:

– We demonstrate the feasibility of the FL approaches to the problem of clas-
sical cipher-type detection.

– By using the combination of various techniques in an ensemble model, we
achieve the accuracy of 82.78% which is the best state-of-the art-result for
this problem.

– We show that transfer learning is applicable here, which means that the
knowledge gained through our experiments can also be helpful for the dif-
ferent related problems.

2 Related Work

We described in [13] the state-of-the-art feature map for all ACA ciphers and the
according hyperparameters for the FE approaches FFNN, random forests (RF)
and näıve Bayes networks (NBN). As a result it is shown that RF needs the
smallest amount of training data in order to achieve acceptable results (about
1.5% data of the FFNN). Different optimizers and activation functions were
tested with the baseline FFNN. The best and most comparable results were
achieved with the Adam optimizer and the ReLU activation function. Out of
the total 27 different features, which were tested one by one, 20 were used for
the final feature map [13].

All relevant related work in the field of classical cipher-type detection is listed
in Table 1. All results in Table 1 are based on FE to classify cipher types. They
are, however, not directly comparable, because every listed work uses their own
set of cipher types, features and datasets. For example, in [1] a very high accu-
racy of 99.60% is shown. However, this result is achieved by using ciphertexts
which are 1 million characters long. Such a length is unrealistic for any practical
scenario of classical ciphers usage. In other works [9, 10, 18], the classification is
done among a very small number of cipher types – from 3 to 6, as compared to
56 types considered in this research. The most notable related works are from
Nuhn and Knight [17] and from the authors [13] who solve the classification
problem for the comparable number of ciphers – 50 and 56 respectively. Nuhn
and Knight achieved an accuracy of 58.50% for 50 ACA ciphers using a neural
network with a linear classifier and a Stochastic Gradient Descendent (SGD)
optimizer with default parameters. To accomplish this, they used 58 features
and 1 million ciphertexts with random lengths in 20 epochs for training [17]. Be-
sides neural networks, other technologies like Support Vector Machines (SVM),
Hidden Markov Models (HMM), Decision Trees (DT) and multi-layer classifiers
were used in the listed work. Multi-class classification in SVMs can only be
achieved by using many one-vs-one binary classifiers. This is the reason for the
long training times of the SVM and the reason why it is not implemented in our
current solution.



4 Leierzopf et al.

Results from the work of Sivagurunathan et al. [18], where the three classical
ciphers Playfair, Hill and Vigenère were analyzed with a simple neural network,
coincide with the results of Kopal [9]. Both discovered the difficulty of classifying
(distinguishing) the Hill and Vigenère ciphers, because of their similar statistical
values.

A multi-layer classifier has been introduced by Abd and Al-Janabi [1] to clas-
sify plaintexts and ten different cipher types. The impressive results of over 99%
accuracy are lessened by the enormous ciphertext length of about one million
characters, which is the equivalent of an average book with 500 pages. Cipher-
texts with these lengths are seldom. Based on the DECODE database, described
in [14, 15], the majority of encrypted historic manuscripts is only between a few
lines and some pages of ciphertext long. As of the end of May 2021, the DECODE
database contains more than 2,600 records of encrypted historic manuscripts and
keys.

N. Krishna [10] developed approaches that have not yet been used by other
authors for the four ciphers Simple Substitution, Vigenère, Transposition and
Playfair. An important point for comparison is that the Hill cipher was not used
here. The first approach, a support vector machine (SVM), uses the ciphertexts
of length 10 to 10,000 characters, which are mapped in a number range, as
training data. The SVM uses the implementation of the Sklearn Library3 with a
10-fold-stratified-cross-validation and a one-vs-rest classifier for the calculation
of the confusion matrix. This means that 9 out of 10 datasets were used for
training and 1 dataset for testing in order to find the most suitable class. In
the second and third approach, a Hidden Markov Model (HMM) was trained for
1,000 ciphertexts per class. In the second approach, this was used as input for
a convolutional neural network, and in the third approach it was used as input
for an SVM. The first approach achieves an accuracy of 100% with a text length
of 200 characters, the second 71% with a text length of 155 characters and the
third 100% with a text length of 155 characters.

Author Accuracy Ciphertext Dataset #Cipher Cipher Technology
in % Length Size Types Category

Abd [1] 99.60 1M N/A 11 classical 3-level-classifier
Kopal [9] 90 100 4,500 5 classical FFNN

Krishna [10] 100 155 4,000 4 classical SVM, HMM
Leierzopf [13] 80.24 100 200M 56 classical FFNN, RF, NBN
Nuhn [17] 58.50 random 1M 50 classical Vowpal Wabbit

Sivagurunathan [18] 84.75 1,000 900 3 classical FFNN
Table 1. Summarized results and attributes of related work in the field of cipher-type
detection (M = million)

3 Sklearn Library: https://scikit-learn.org/stable/



Detection of Classical Cipher Types with Feature-Learning Approaches 5

3 Neural Cipher Identifier

During this research, the software suite “Neural Cipher Identifier (NCID)” which
trains and evaluates different FE-neural-network based classifiers like FFNN,
DT, RF and NBN, was extended by two FL approaches. Further details are
described in [13]. The NCID software [12] is available as open-source and can be
productively run for free to determine the cipher type of a given ciphertext.4

This section contains a short summary and the advances with respect to the
previous work [13]. Basically, with the NCID software suite different types of
neural networks can be trained to classify ciphertexts produced by various ci-
phers. The cipher types and the corresponding key lengths can be configured as
well as the type of neural network to be used. The trained model gets multiple ci-
phertexts and predicts their cipher type. The data is generated with an extended
data loader and 14 GB of English texts from the Gutenberg project5, which can
be used for research purposes free of charge. The data loader loads plaintexts
with the specified length range, converts all letters to lowercase and filters all
characters not included in the alphabet consisting of 26 lowercase characters.
The produced ciphertext is encoded as an array of indices of the alphabet and
used to calculate all features in FE approaches and directly in FL approaches. In
general, neural networks need a fixed input length. The length of the ciphertext
is not relevant in the FE approach, because the number of features and their
lengths are always the same. In case of FL neural networks, an input is padded
by repeating the ciphertext if it is not long enough. The FL neural networks
should be trained with the maximal length of the expected ciphertexts, as the
text easily can be extended by itself, however information is lost when the text
needs to be shortened. Multiple neural network types based on Keras6 compo-
nents (FFNN) and Sklearn7 components (DT, RF, NBN) are implemented. Also
a 1-dimensional convolutional neural network has been implemented and tested,
however, no notable results have been achieved with it.

3.1 Long Short-Term Memory

Hochreiter and Schmidhuber [6] describe that RNN struggle to detect long-range
dependencies in sequential data, because of their short-term memory structure.
Therefore, important information can be lost during processing long sequences.
To overcome this problem, the long short-term memory (LSTM) was introduced
[6], which uses cell states and various gates to keep or forget information. New
data is filtered with the forget gate. The old hidden state together with the
current input form the new hidden state by calculating several mathematical
operations. The last hidden state is also the prediction of the LSTM. The forget
gate uses the sigmoid activation function to decide which information should be

4 https://www.cryptool.org/ncid
5 https://www.gutenberg.org/
6 Keras: https://keras.io/
7 Sklearn: https://scikit-learn.org/stable/



6 Leierzopf et al.

kept and which should be forgotten. Intuitively, with the sigmoid functions values
near 0 are not important, but values near 1 are kept. The input gate updates
the cell state by passing the hidden state and current input into a sigmoid
function. The sigmoid output then is multiplied with the output of the tanh
function output of the hidden state and current input. The cell state is updated
by pointwise multiplication by the forget factor and a pointwise addition with
outputs of the input gate. The output gate decides what the new hidden state
should be. [6]

The implementation of LSTM is fully based on Keras components and uses
an embedding layer with the number of classes, which is 56, as input and an
output of 64 data points to create a dense representation of the ciphertext. The
LSTM layer uses 500 hidden units. The output is flattened and densed into
the number of classes. The softmax function finally decides on the prediction
by converting inputs into a probability distribution (all positive values from 0
to 1 which add up to 1) and sorting the indices of the classes by the resulting
probability.

Hyperparameter Grid Standard Best Result Accuracy in %

units [50, 100, 150, 200, 500] - 500 72.84 (68.50)
dropout [0, 0.2] 0 0 68.50

Table 2. Iterative grid search for LSTM

Table 2 shows the results of the iterative hyperparameter optimization for
the LSTM neural network. The grid search showed that a higher number of
units leads to better results. That’s about 2% per 50 units. Due to the high
computing time, however, the dropout and features were tested and compared
with only 200 units, which results are shown in the brackets. It could be shown
that the architecture leads to better results with a higher number of units, but
the computing time increases in direct proportion to it.

3.2 Transformer

RNN process a text sequentially and therefore require relatively high computa-
tional costs to capture relationships between pieces of information located far
away from each other in the sequence. The Transformer model [19] tackles this
problem by using a so-called self-attention mechanism which allows to measure
the influence of each word to all the other ones in the same sequence. A nice
property of self-attention is that each of the scores can be computed in parallel
and hence GPUs can be efficiently utilized for the training process.

There are various ways of how Transformer neural networks can be used
to solve the classification problem. The actual architecture of the Transformer-
based neural network is based on a Keras example [16]. This actual architecture
used for cipher-type classification works like described in the following:



Detection of Classical Cipher Types with Feature-Learning Approaches 7

As the first step, all of the words are converted into 128-dimensional vec-
tors using an embedding algorithm. Here, the vocabulary size is set to 20, 000
words. The resulted vectors are passed to the self-attention layer that is used to
find relations between one word vector (query) and all the other word vectors
(key tensors or just keys) in the same ciphertext. Multi-headed attention with
8 heads is used, which means that 8 sets of query/keys/values weight matrices
are utilized. For each of these sets, the dot product is calculated between the
given query and each of the key tensors, which results in the attention scores.
These scores are normalized by the softmax function to obtain attention prob-
abilities (all positive values from 0 to 1 which add up to 1). The value vectors
are multiplied by these probabilities and summed up together to produce the
output of the self-attention layer for the given query. These outputs are then
fed to a feed-forward neural network, with the hidden layer of size 1, 024 and a
ReLu activation function. This FFNN produces the output of the Transformer
layer. Therefore, for each time step one vector is received. The mean across all
time steps is calculated which is provided to another feed forward network on
top (with the softmax activation function) for ciphertext classification.

Hyperparameter Grid Standard Best Result Accuracy in %

pooling [Average, Max] - Average 58.73
ff hidden layer size [1, 5] 1 1 58.73

vocab size [20,000, 50,000] 20,000 20,000 58.73
ff dim [32, 64, 128, 256, 512, 1024] 32 1.024 61.96

embed dim [32, 64, 128, 256] 32 128 67.96
num heads [2, 4, 8, 16] 2 8 73.71

Table 3. Iterative grid search for Transformer neural networks

Table 3 shows the results of the iterative hyperparameter optimization for
the Transformer neural network. Due to computational limitations the ff dim
and embed dim parameters could not be further raised.

3.3 Learning-Rate Schedulers

The learning rate of a neural network optimizer can be described as the most im-
portant hyperparameter. Setting the learning rate too high means that a model
is delivering poor overall performance. A learning rate that is too low means
that a model has to train for a very long time before it converges. The Adam
optimizer has an internal mechanism for adapting the learning rate, but it works
stochastically and calculates a learning rate between 0 and the maximal value
which can be adjusted [11]. Different algorithms for adapting the learning rate
are discussed in this chapter. These make it possible to use a higher initial learn-
ing rate and thus significantly reduce the time required for a model to converge.
There are learning-rate schedulers that start with a very small learning rate and



8 Leierzopf et al.

search for the optimal learning rate in small steps in order to reduce it later on,
but these are not considered due to the increase in complexity.

The time-based decay learning rate scheduler (LRS) uses a small fixed factor
(decay) to adapt the learning rate after every batch (t) by multiplying it with the
number of ciphertexts trained (iter). The following equation shows a calculation
step after every batch [11].

lrt+1 = lrt ·
1

1 + decay · itert+1
(1)

The step-/drop-based decay LRS reduces the learning rate after a fixed num-
ber of epochs (drop), for example after every 10 epochs, by using a small decay.
The following equation shows a calculation step after every epoch (t) [11].

lrt = lr0 · decay⌊
t

drop⌋ (2)

Just like with the time-based decay LRS, the exponential decay lowers the
learning rate after every epoch by multiplying the initial learning rate with the
exponential of a small factor (k) multiplied with the number of epochs trained
(t). The main difference is that the exponential LRS reduces the learning rate
rapidly in the beginning and slowly in the end. In theory that should allow the
network to generalize better. The following equation shows a calculation step
after every epoch [11].

lrt = lr0 · e−kt (3)

The custom step-based decay LRS uses an early stopping mechanism, which
stops training as soon as no progress can be determined after 250 mini-batches.
The idea is to adjust the learning rate ahead of time in order to achieve further
progress. To do this, the learning rate is gradually reduced by a percentage as
soon as no progress is detected after 100 mini-batches.

In NCID, the time-based decay LRS (equation 1) and a custom step-based
decay LRS are implemented. The step-based decay LRS (equaton 2) and the
exponential LRS (equation 3) are not applicable in NCID, because they are
based on the number of epochs trained, but training examples are generated on-
the-fly and used only once, which means the epoch stays the same. The custom
step-based decay LRS is used by default. It is the safest option to use, because
it is only applied when no progress is made for a long time.

3.4 Transfer Learning

Transfer learning is the process of using obtained knowledge from solving one
problem and transferring this knowledge to a different (but related) one. For the
case of classical cipher type detection, this approach can be advantageous due
to the high diversity of the historical encrypted manuscripts and ciphers which
vary based on the age, language, length, presence of typos, etc. In this work,
such factors are out of the scope. However, we would like to understand if the
knowledge gained through our experiments can also be helpful for classifying



Detection of Classical Cipher Types with Feature-Learning Approaches 9

other, but similar, ciphers which slightly differ from the ones that we used for
training of the models. Transfer learning sometimes can be threatened by the
so-called catastrophic forgetting, where the additional training (retraining) with
a new set of classes causes known features (learned weights) to be forgotten [8].
As a first step, to determine whether catastrophic forgetting takes place in the
cipher-classification problem, we evaluated whether the knowledge obtained by
training the models to classify the ciphers from the smaller set, can be reused
when applied to the extended sets of encryption algorithms. In order to achieve
this, multiple FFNN base models were trained from scratch with 30 (B30), 35
(B35), 40 (B40) and 5 (B5) ciphers. The ciphers were selected and added alpha-
betically, whereas B5 only used those that were not used in B30. This results in
the following scenarios:

– Extension of B30 by 5 new ciphers (T35)
– Extension of B30 by 10 new ciphers (T40)
– Extension of B30 by 5 new ciphers, however, the ciphers are added in-

crementally in 5 steps, whereas the newest model becomes the new basis
(T35incremental)

– Training of a new model with 5 new ciphers, which are not included in B30,
which is used as a basis (T5)

Scenario Accuracy in % Converges after iterations in million

B30 94.44 261
B35 92.26 189
B40 85.24 166
B5 99.96 138
T35 92.28 76
T40 86.29 75

T35incremental 92.70 50-106
T5 99.98 91

Table 4. Results from the transfer learning tests

Table 4 shows that transfer learning leads to substantially less training data
needed for convergence and at least the same or better accuracy in all scenarios.
Especially when expanding models with a large number of classes, the amount
of data required drops to less than half. When comparing B35 to the scenarios
T35 and T35incremental, a better accuracy and lower amount of data needed for
convergence was achieved. Similarly B40 is compared to T40 and B5 is compared
to T5.

3.5 Ensemble Learning

An ensemble is a model that combines the predictions of two or more models.
These models can be trained in advance with the same or different datasets. The



10 Leierzopf et al.

prediction can be calculated using simple procedures such as a mean voting or
more complex procedures such as weighting the individual votes [4].

In NCID, mean voting and weighted voting are used as voting methods in the
ensemble models. The final two ensemble models combine three FE architectures
(FFNN, NB and RF) and two FL architectures (LSTM and Transformer). With
weighted voting, the probabilities with the respective statistics, i.e. Precision,
Recall, Accuracy, F1-Score and Matheus Correlation Coefficient, are calculated
in one voting. This is intended to ensure that the architectures that are better
for the respective classes are preferred. Based on statistical findings, FL archi-
tectures produce about 10-20 % better results, for example, for the Myszkowski
cipher, and FE architectures produce 10-20% better results, for example, for the
Beaufort cipher.

Multiple models were trained with different datasets and each one was eval-
uated with 10 million records of the same test dataset. Table 5 shows that the
FE&FL ensemble of models results in an improvement of 4% against the FE
ensemble (82.78-78.67%). Compared to FFNN (the model with the best sin-
gle performance), the FE-only ensemble does not improve the accuracy signifi-
cantly (78.67-78.31%). However, the ensemble of FL-only approaches improves
the recognition rate with about 4% (76.10-72.33%) compared to the best single
FL approach, which is the Transformer neural network.

Model Approach Accuracy in %

Weighted-Voting FE & FL Ensemble 82.78
Mean-Voting FE & FL Ensemble 82.67

Weighted-Voting FE-only Ensemble 78.67
FFNN FE 78.31

Weighted-Voting FL-only Ensemble 76.10
RF FE 73.50

Transformer FL 72.33
LSTM FL 72.16
NBN FE 52.79

Table 5. Comparison of different models analyzing ciphertexts of 100 characters length

4 Conclusion

The current state-of-the-art classifiers approach the cipher-type detection prob-
lem by engineering features based on domain knowledge (FE approach). In this
paper, we use an FL approach exploring the two neural networks, LSTM and
Transformer, without the reliance on domain knowledge. In terms of the number
and type of ciphers used, the results of this paper are mostly comparable with
the classifiers by Nuhn [17] and by Leierzopf et al.[13], while the other related
work use much smaller sets of ciphers or consider unrealistically long ciphertexts.



Detection of Classical Cipher Types with Feature-Learning Approaches 11

The best results for FL-only approaches were achieved with the Transformer
model, which shows an accuracy of 72.33%. Applied to the same test data,
this result is worse than the best FFNN FE approach [13], which achieved
78.31% accuracy. Using only a single model, FFNN outperforms the Transformer
and LSTM neural networks in our particular application. However, an ensemble
model, where 5 different neural network models are put together, improved the
result and achieved an accuracy of 82.78%. This improvement is an indication
that the FL approach detected some regularities in the data that were not ex-
plored by the FE approaches, which is an interesting result for the cryptanalysts.
The improvement is also validated by the results of the ensembles of FE-only ap-
proaches with 78.67% accuracy and FL-only approaches with 76.10% accuracy.
These results are summarized in Table 5.

The conclusion of this work is that the solely FE approach can be superior in
fields with domain knowledge, like the classical cipher type detection. However,
FL neural networks have the ability to extract unknown feature-types and can
thus be a valuable additional part improving the best known FE results.

The combined FE&FL ensemble models delivered better results than any
single neural network and the combination of only FE or only FL approaches.
The ensemble models use the strengths of the individual models without having
to spend additional computing time on training. Although the evaluation time
increases significantly due to the number of models used, the combined FE&FL
ensemble models lead to an improved recognition rate by another 4% which is a
strong result.

The experiments with different scenarios also showed that catastrophic for-
getting did not occur. This knowledge allows us to train a basic model, e.g. with
all ACA ciphers, and to use it as a basis for new models. Therefore, only the last
layer is exchanged with a layer of the needed output size and the pre-computed
weights are further trained. As a result, we achieved the same or better accuracy
with 40-60% less data and thus a much shorter training time.

Future work in this field should include the training of models with texts from
different languages or texts including errors. Another interesting further research
direction is to apply the FL approach to classification of modern ciphers which
are designed to be resistant against the FE approach. First successes in this
direction are achieved for instance by Gohr [5] against round-reduced versions
of the Speck32/64 block cipher [3]. One more approach for future research is
to combine different one-vs-one classifiers and add these to the decision making
process.

Acknowledgements

This work has been supported by the Swedish Research Council (grant 2018-
06074, DECRYPT – Decryption of historical manuscripts) and the University of
Sciences Upper Austria for providing access to the Nvidia DGX-1 deep learning
machine.



12 Leierzopf et al.

References

1. Abd, A., Al-Janabi, S.: Classification and Identification of Classical Cipher Type
using Artificial Neural Networks. In: Journal of Engineering and Applied Sciences.
vol. 14 (2019)

2. American Cryptogram Association: Cryptogram (2005),
https://www.cryptogram.org/ [visited 2021-04-14]

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual
Design Automation Conference. pp. 1–6. Association for Computing Machinery,
San Francisco California (June 2015)

4. Brownlee, J.: Why use ensemble learning? (October 2020),
https://machinelearningmastery.com/why-use-ensemble-learning/ [visited 2021-
04-14]

5. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In:
Annual International Cryptology Conference. pp. 150–179. Springer (2019)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9,
1735–1780 (1997)

7. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC press (2020)

8. Kemker, R., McClure, M., Abitino, A., Hayes, T., Kanan, C.: Measuring catas-
trophic forgetting in neural networks. 54 Lomb Memorial Drive, Rochester NY
14623 (November 2017), arXiv:1708.02072

9. Kopal, N.: Of ciphers and neurons–detecting the type of ciphers using artificial
neural networks. In: Proceedings of the 3rd International Conference on Historical
Cryptology HistoCrypt 2020. pp. 77–86. No. 171, Linköping University Electronic
Press (2020)

10. Krishna, N.: Classifying Classic Ciphers using Machine Learning. Master’s thesis,
San Jose State University, California, USA (May 2019)

11. Lau, S.: Learning rate schedules and adaptive learning rate methods for deep learn-
ing (December 2020), https://towardsdatascience.com/learning-rate-schedules-
and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1 [visited 2021-
04-14]

12. Leierzopf, E.: NCID - Neural Cipher Identifier (2021),
https://github.com/dITySoftware/ncid

13. Leierzopf, E., Kopal, N., Esslinger, B., Lampesberger, H., Hermann, E.: A mas-
sive machine-learning approach for classical cipher type detection using feature
engineering. In: HistoCrypt (accepted) (2021)

14. Megyesi, B., Blomqvist, N., Pettersson, E.: The DECODE Database: Collection of
Historical Ciphers and Keys. In: In Proceedings of the 2nd International Conference
on Historical Cryptology, HistoCrypt 2019. pp. 69–78. Linköping Electronic Press,
Mons, Belgium (June 2019)

15. Megyesi, B., Esslinger, B., Fornés, A., Kopal, N., Láng, B., Lasry, G.,
Leeuw, K.d., Pettersson, E., Wacker, A., Waldispühl, M.: Decryption of his-
torical manuscripts: the DECRYPT project. Cryptologia pp. 1–15 (2020),
dOI:10.1080/01611194.2020.1716410

16. Nandan, A.: Text classification with transformer (May 2020),
https://keras.io/examples/nlp/text classification with transformer/

17. Nuhn, M., Knight, K.: Cipher Type Detection. In: Conference on Empirical Meth-
ods In Natural Language Processing. pp. 1769–1773. Doha, Quatar (October 2014)



Detection of Classical Cipher Types with Feature-Learning Approaches 13

18. Sivagurunathan, G., Rajendran, V., Purusothaman, T.: Classification of Substitu-
tion Ciphers using Neural Networks. In: IJCSNS International Journal of Computer
Science and Network Security. vol. 10, pp. 274–279 (March 2010)

19. Vaswani, A., Shazeer, N., Parmer, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: 31st Conference on Neural Infor-
mation Processing Systems. Long Beach, CA, USA (2017)


