CRYPtOOL

CRYPTOLOGY WITH CRYPTOOL 1

Practical Introduction to Cryptography and Cryptanalysis

Scope, Technology, and Future of CrypTool 1.4.xx

www.cryptool.org

Prof. Bernhard Esslinger and the CrypTool Team (Updated: 19 September 2017, with release CT 1.4.40)

Content (I)

I. CrypTool and Cryptology – Overview

- 1. Definition and relevance of cryptology
- 2. <u>The CrypTool project</u>
- 3. Examples of classical encryption methods
- 4. Insights from cryptography development

II. Features of CrypTool 1

- 1. Overview
- 2. Interaction examples
- 3. Challenges for developers

III. Examples

- 1. Encryption with RSA / Prime number test / Hybrid encryption and digital certificates / SSL
- 2. Digital signature visualized
- 3. Attack on RSA encryption (small modulus N)
- 4. Analysis of encryption in PSION 5
- 5. Weak DES keys
- 6. Locating key material ("NSA key")
- 7. Attack on digital signature through hash collision search
- 8. Authentication in a client-server environment
- 9. Demonstration of a side channel attack (on hybrid encryption protocol)

Content (II)

III. Examples

- 10. RSA attack using lattice reduction
- 11. Random analysis with 3-D visualization
- 12. Secret Sharing using the Chinese Remainder Theorem (CRT) and Shamir
- 13. Implementation of CRT in astronomy (solving systems of linear modular equations)
- 14. Visualization of symmetric encryption methods using ANIMAL
- **15.** <u>Visualizations of AES</u>
- 16. Visualization of Enigma encryption
- 17. Visualization of secure email with S/MIME
- 18. Generation of a message authentication code (HMAC)
- 19. Hash demonstration
- 20. Educational tool for number theory and asymmetric encryption
- 21. Point addition on elliptic curves
- 22. Password quality meter (PQM) and password entropy
- **23.** Brute-force analysis
- 24. Scytale / Rail Fence
- 25. <u>Hill encryption / Hill analysis</u>
- 26. CrypTool online help / Menu tree of the program

IV. Project / Outlook / Contact

Content

I. CrypTool and Cryptology – Overview

II. Features of CrypTool 1

III. Examples

IV. Project / Outlook / Contact

Appendix

Relevance of Cryptography

Examples of Applied Cryptography

- Phone cards, cell phones, remote controls
- Cash machines, money transfer between banks
- Electronic cash, online banking, secure email
- Satellite TV, pay-per-view TV
- Immobilizer systems in cars
- Digital Rights Management (DRM), Cloud

- Cryptography is no longer limited to agents, diplomats, and the military.
 Cryptography is a modern, mathematically characterized science.
- The breakthrough of cryptography followed the broadening usage of the Internet
- For companies and governments it is important that systems are secure and that

users (i.e., clients and employees) are aware of and understand IT security!

Definition Cryptology and Cryptography

Cryptology (from the Greek kryptós, "hidden," and lógos, "word") is the science of secure (or, generally speaking, secret) communication. This security requires that legitimate users, a transmitter and a receiver, are able to transform information into a cipher by virtue of a key – that is, a piece of information known only to them. Although the cipher is inscrutable and often unforgeable to anyone without this secret key, the authorized receiver can either decrypt the cipher to recover the hidden information or verify that it was sent in all likelihood by someone possessing the key.

Cryptography was concerned initially with providing secrecy for written messages. Its principles apply equally well, however, to securing data flow between computers or to encrypting television signals. Today, the modern (mathematical) science of cryptology is not just a set of encryption mechanisms. It has since been applied to a broad range of aspects of modern life, including data and message integrity, electronic signatures, random numbers, secure key exchange, secure containers, electronic voting, and electronic money.

Source: Britannica (www.britannica.com)

A similar definition can be found on Wikipedia: http://en.wikipedia.org/wiki/Cryptography

Cryptography – Objectives

Confidentiality

Information can be made effectively unavailable or unreadable for unauthorized individuals, entities, and processes.

Authentication

The receiver of a message can verify the identity of the sender.

Integrity

Integrity ensures that data has not been altered or destroyed in an unauthorized manner.

Non-Repudiation

The receiver can prove that the message he or she received is precisely what the sender sent; the sender will have no means to deny any part of his or her participation.

The CrypTool Project

- Originated as an awareness program for a large bank (internal training) \rightarrow Employee education
- Developed in cooperation with universities (improvement of education) \rightarrow Media didactic approach and standard oriented
- See https://en.wikipedia.org/wiki/CrypTool
- **Target group:** End users, learners and teachers
- **Developers**
 - Developed by people from companies and universities in many different countries. _
 - \rightarrow Currently there are about 100 people working on CrypTool worldwide. Additional project members or applicable resources are always appreciated.

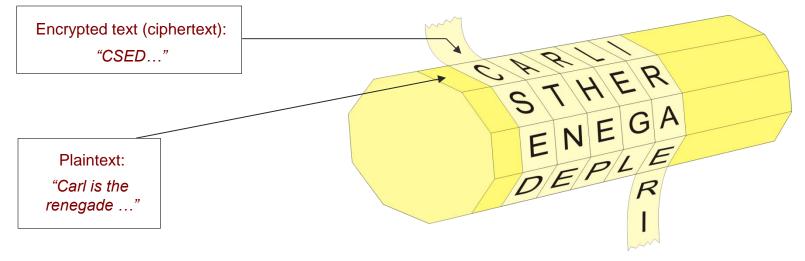
Some Awards

- (TTT Förderpreis / Sponsorship Award) 2004 TeleTrusT
- 2004 NRW (IT Security Award NRW)

2004 RSA Europe (Finalist of European Information Security Award 2004)

2008 "Selected Landmark" in initiative "Germany – Land of Ideas"

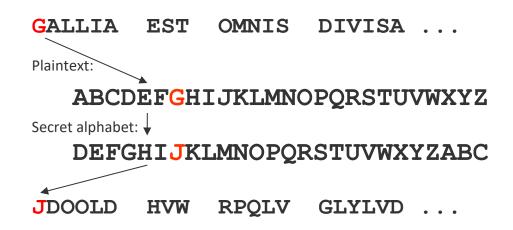
365 Landmarks in the Land of Ideas 2008

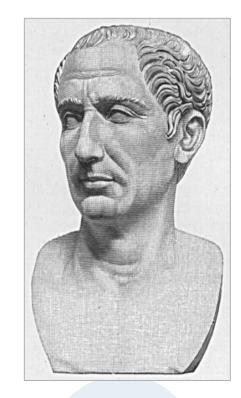

The CrypTool Project

- Some milestones
 - 1998 Project start over 50 person-years of effort have since been invested in CT1
 - 2000 CrypTool available as freeware
 - 2002 CrypTool available on the Citizen's CD of the BSI (German Information Security Agency)
 - 2003 CrypTool becomes open source hosting by University of Darmstadt
 - 2007 CrypTool available in German, English, Polish, and Spanish
 - 2008 .NET and Java versions started hosted by University of Duisburg and SourceForge
 - 2010 CT1 available in Serbian and Greek
 - 2010 CrypTool-Online (CTO) and MysteryTwister C3 (MTC3) published
 - 2011 .NET version (CT2) and Java version (JCT) published as 1st betas
 - 2012 New joined web portal for all 5 CT sub projects, called CrypTool portal (CTP)
 - 2014 CT 2.0 released (August 2014) hosted by University of Kassel and GitHub
 - 2017 CT1 also available in French and new release 1.4.40; CT 2.1 beta 1; relaunch of the CrypTool portal and of CTO

Examples of Early Cryptography (1)

Ancient encryption methods


- Tattoo on the shaven head of a slave, concealed by regrown hair
- Atbash (circa 600 B.C.)
 - Hebrew secret language, reversed alphabet
- Scytale from Sparta (circa 500 B.C.)
 - Described by Greek historian/author Plutarch (45 125 B.C.)
 - The sender and receiver each need a cylinder (such as a wooden rod) with the same diameter
 - Transposition (plaintext characters are re-sorted)



Examples of Early Cryptography (2)

Caesar encryption (mono-alphabetic substitution cipher)

- Caesar encryption (Julius Caesar, 100 44 B.C.)
- Simple substitution cipher

Attack: Frequency analysis (typical character allocation)

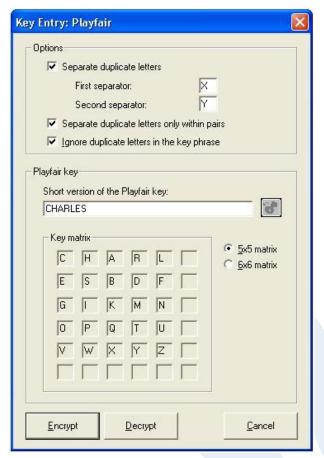
Presentation with CrypTool via the following menus:

- Animation: "Indiv. Procedures" \ "Visualization of algorithms" \ "Caesar"
- Implementation: "Crypt/Decrypt" \ "Symmetric (classic)" \ "Caesar / Rot-13"

Examples of Early Cryptography (3)

Vigenère encryption (poly-alphabetic substitution cipher)

- Vigenère encryption (Blaise de Vigenère, 1523-1596)
- Encryption with a keyword using a key table
- Example
 Keyword: CHIFFRE
 Encrypting: VIGENERE becomes XPOJSVVG
- The plaintext character (V) is replaced by the character in the corresponding row and in the column of the first keyword character (c). The next plaintext character (I) is replaced by the character in the corresponding row and in the column of the next keyword character (h), and so on.
- If all characters of the keyword have been used, then the next keyword character is the first key character.
- Attack (via Kasiski test; other tests also exist): Plaintext combinations with an identical cipher text combination can occur. The distance of these patterns can be used to determine the length of the keyword. An additional frequency analysis can then be used to determine the key.


Keyword character

					<u>.</u>																							
		ł	a	b	С	d	e	ſ	g	h	i	j						-	-	r	s	t	u	V	w	х	у	z
	Α	,	A	В	¢	D	Е	F	G	н	ĩ	J	к	L	М	Ν	0	Р	Q	R	s	Т	U	v	W	х	Y	Z
	В	1	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р	Q	R	s	Т	U	V	w	х	Y	Z	А
	С		С	D	E.	F	G	н	I	J	K	L	М	Ν	0	ŀ	Q	R	s	Т	U	v	W	х	Y	Z	Λ	в
	D	1	D	E	F	G	Н	I	J	ĸ	L	М	Ν	0	P	Q	R	s	Т	U	v	W	х	Y	Z	А	В	С
	É		E	F	G	Н	1	J	ĸ	L	М	N	0	Р	Q	R	s	T	U	v	W	Х	Y	Z	A	в	С	D
	F		F	G	н	1	J	к	L	М	N	0	Ρ	Q	R	s	Т	U	v	w	х	Y	Z	А	В	С	D	E
	G		G	н	I	J	к	L	М	N	0	P	Q	R	\mathbf{s}	т	U	v	W	х	Y	Z	Α	В	С	D	F.	F
	н	1	н	I	J	ĸ	L	М	Ν	0	P	Q	R	\$	T	U	v	W	х	Y	Z	Α	В	С	D	E	F	G
	1		I	J	ĸ	L	М	N	0	P	Q	R	s	Т	U	v	w	х	Y	Z	А	В	С	D	E	F	G	н
	J		J	ĸ	L	М	Ν	0	₽	Q	R	5	Т	U	v	W	х	Y	Z	A	В	С	D	Ε	F	G	Н	1
	к		ĸ	L	м	N	0	Р	Q	R	s	т	U	v	w	х	Y	z	A	В	С	D	E	F	G	Н	I	J
	L		I.	М	N,	0	P	Q	R	5	T	U	v	W	х	Y	Z	А	В	С	D	E	F	G	Н	I	J	к
	М	1	М	Ν	o	Р	Q	R	s	Ţ	U	v	W	х	Y	Z	А	в	С	D	E	ŀ	G	Н	I	J	ĸ	L
	Ν		N	0	P	Q	R	s	т	U	v	W	х	Y	z	А	B	Ć	D	E	F	G	н	ĩ	J	К	L	м
	0		0	Р	Q	R	s	т	U	v	W	х	Y	z	Α	В	С	D	E	F	G	Н	I	J	К	L	М	N
	P		P	Q	R	s	т	U	v	W	х	Y	Z	А	В	С	D	E	F	G	н	1	J	К	L	М	Ν	0
	Q		Q	R	s	т	U	v	W	х	Y	Z	A	в	С	D	Ε	F	G	н	I	J	К	L	М	Ν	0	P
	R		R	s	Ť	U	v	W	х	Y	z	А	в	С	D	E	F	G	Н	I	J	ĸ	L	М	N	0	P	Q
	s		s	Τ	Ū	v	w	х	Y	Z	A	В	С	Ð	Е	F	G	Н	I	J	ĸ	L	М	Ν	0	Р	Q	R
	Т		Т	U	v	W	х	Y	Z	۸	в	С	D	Έ	F	G	Н	1	J	к	L	М	Ν	0	P	Q	R	s
	Ľ		U	v	W	х	Y	Z	Λ	в	С	D	E	F	G	Н	I	J	K	L	М	Ν	0	Р	Q	R	5	т
	v):	٧	-W	х)Y	Z	A	В	С	D	E	F	G	Н	I	J	ĸ	L	М	Ν	0	Р	Q	R	s	Т	U
	W		w	х	Y	7	A	В	С	D	E	F	G	н	I	J	ĸ	L	М	Ν	0	Р	Q	R	ŝ	Т	U	v
	х		х	Y	z	А	В	×C,	D	E	F	G	н	1	J	к	L	М	Ν	0	P	Q	R	\$	Т	Ų	v	₩
	Y						С			~		н		-									s	Т	U	ν	W	х
	Z		Z	A	В	С	D	E	F	G	Н	1	J	ĸ	L	М	Ν	0	P	Q	R	s	Т	U	v	W	х	Ŷ
							T	abi	lea	u c	ari	rė,	dit		Ca	rré	i de	e V	'ige	snè	re	»						
												,			<	_												
																	_ `											
I	— Plaintext character Encrypted																											
	character																											

Examples of Early Cryptography (4)

Other classic encryption methods

- Homophone substitution
- Playfair (invented 1854 by Sir Charles Wheatstone, 1802-1875)
 - Published by Baron Lyon Playfair
 - Substitution of one character pair by another one based on a square-based alphabet array
- Transfer of book pages
 - Adaptation of the One-Time Pad (OTP)
- Turning grille (Fleissner)
- Permutation encryption
 - "Double Dice" (double column transposition)
 (Pure transposition, but very effective)

Cryptography in Modern Times

Developments in cryptography from 1870-1970

Classic methods

are still in use today

(since not everything can be done by a computer...)

 and their principles of transposition and substitution became the foundation of the design of modern symmetric algorithms, which combine simpler operations at a bit level (a type of multiple encryption or cipher cascade), use block ciphers, and/or use repeated uses of an algorithm over multiple rounds.

Encryption becomes

- more sophisticated,
- mechanized or computerized, and
- remains symmetric.

Example from the First Half of the 20th Century

Mechanical encryption machines (rotor machines)

Enigma Encryption (Arthur Scherbius, 1878-1929)

- More than 200,000 machines were used in WWII.
- The rotating cylinders encrypt every character of the text with a new permutation.
- The Polish Cipher Bureau broke the pre-war Enigma prototype as early as 1932.
- Based on this work, the later Enigma was broken only with massive effort. About 7000 cryptographers in the UK used decryption machines, captured Enigma prototypes, and intercepted daily status reports (such as weather reports).

Consequences of the successful cryptanalysis "The successful cryptanalysis of the Enigma cipher was a strategic advantage that played a significant role in winning the war. Some historians assert that breaking the Enigma code shortened the war by several months or even a year."

(translated from http://de.wikipedia.org/wiki/Enigma_%28Machine%29 - March 6, 2006)

Cryptography – Important Insights (1)

- Kerckhoffs' principle (first stated in 1883)
 - Separation of algorithm (method) and key e.g. Caesar encryption: Algorithm: "Shift alphabet by a certain number of positions to the left" The "certain number of positions" Kev:
 - Kerckhoffs' principle:

The secret lies within the key and not within the algorithm;

"security through obscurity" is invalid

One-Time Pad – Shannon / Vernam

- Theoretically completely unbreakable, but highly impractical (used by the red telephone*)

Shannon's concepts: Confusion and Diffusion

- Relation between M, C, and K should be as complex as possible (M=message, C=cipher, K=key)
- Every ciphertext character should depend on as many plaintext characters and as many characters of the encryption key as possible
- "Avalanche effect" (small modification, big impact)
- Trapdoor function (one-way function)
 - Fast in one direction, not in the opposite direction (without secret information)
 - Possessing the secret allows the function to work in the opposite direction (access to the trapdoor)

Examples of Breaches of Kerckhoffs' Principle

The secret should lie within the key, not in the algorithm

Cell phone encryption penetrated (December 1999)

"Israeli researchers discovered design flaws that allow the descrambling of supposedly private conversations carried by hundreds of millions of wireless phones. Alex Biryukov and Adi Shamir describe in a paper to be published this week how a PC with 128 MB RAM and large hard drives can penetrate the security of a phone call or data transmission in less than one second. The flawed algorithm appears in digital GSM phones made by companies such as Motorola, Ericsson, and Siemens, and used by well over 100 million customers in Europe and the United States." [...]

"Previously the GSM encryption algorithms have come under fire **for being developed in secret away from public scrutiny** -- but most experts say high security can only come from published code. Moran [GSM Association] said "it wasn't the attitude at the time to publish algorithms" when the A5 ciphers was developed in 1989, but **current ones being created will be published for peer review.**"

[http://www.wired.com/politics/law/news/1999/12/32900]

Netscape Navigator (1999)

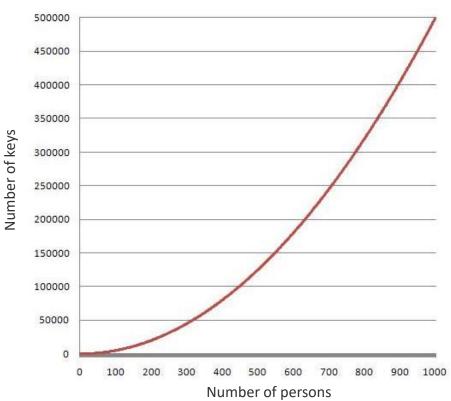
It stored email server passwords using a weak proprietary encryption method.

Sample of a One-Time Pad Adaptation

Clothes hanger of a Stasi agent with a secret one-time pad (source: *Spiegel Spezial, 1/1990*)

Menu: "Crypt/Decrypt" \ "Symmetric (classic)" \ "Vernam"

Key Distribution Problem


Key distribution for symmetric encryption methods

If **2 persons** communicate with each other using symmetric encryption, they **need one common secret key**.

If n persons communicate with each other, then they need $S_n = n * (n-1) / 2$ keys.

That is: **n = 100** persons require

- **S₁₀₀ = 4,950** keys; and
- n = 1,000 persons require
- **S**₁₀₀₀ **= 499,500** keys.
- ⇒ A factor of 10 more persons means
 a factor of 100 more keys.

Number of required keys

Cryptography – Important Insights (2)

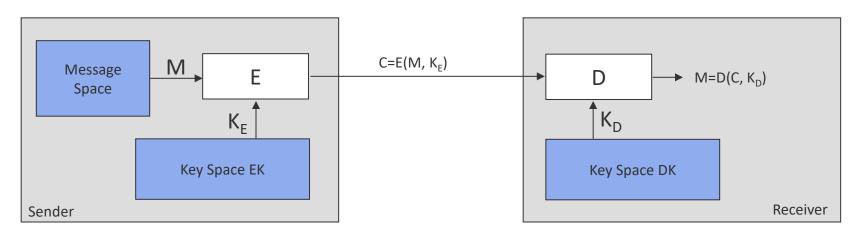
Solving the key distribution problem through asymmetric cryptography

Asymmetric cryptography

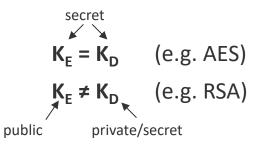
- For centuries it was believed that sender and receiver need to know the same secret.
- New idea: Every person needs a key pair (which also solves the key distribution problem).

Asymmetric encryption

- "Everyone can lock a padlock or drop a letter in a mail box."
- MIT, 1977: Leonard Adleman, Ron Rivest, Adi Shamir (well known as RSA)
- GCHQ Cheltenham, 1973: James Ellis, Clifford Cocks (publicly declassified December 1997)


Key distribution

- Stanford, 1976: Whitfield Diffie, Martin Hellman, Ralph Merkle (Diffie-Hellman key exchange)
- GCHQ Cheltenham, 1975: Malcolm Williamson


Security in open networks (such as the Internet) would be extremely expensive and complex without asymmetric cryptography!

Performing Encryption and Decryption

Symmetric und asymmetric encryption

- a) Symmetric Encryption:
- b) Asymmetric Encryption:

Cryptography – Important Insights (3)

Increasing relevance of mathematics and information technology

- Modern cryptography is increasingly based on mathematics
 - There are still new symmetric encryption methods, such as AES; these often feature better performance and shorter key length compared to asymmetric methods that are based purely on mathematical problems.
- The security of encryption methods heavily depends on the current state of mathematics and information technology (IT)
 - Computation complexity (meaning processing effort in relation to key length, storage demand, and data complexity)
 - → see RSA: Bernstein, TWIRL device, RSA-160, RSA-768 (CrypTool book, chapter 4.11.3)
 - Major topics in current research:
 Factorization of very large numbers, non-parallelizable algorithms (to counter quantum computers), protocol weaknesses, random generators, etc.)
- Serious mistake: "Real mathematics has no effects on war." (G.H. Hardy, 1940)
- Vendors have realized that security is an essential purchase criterion.
- Wrong believes:

Encryption /data privacy and intelligence / innovation are opposites.

Demonstration in CrypTool

- Statistic Analysis

- Encrypting twice is not always better:

Caesar: C + D = G (3 + 4 = 7) Vigenère: - CAT + DOG = FOZ [(2,0,19)+(3,14,6)=(5,14,25)] - "Hund" + "Katze" ="RUGCLENWGYXDATRNHNMH")

- Vernam (OTP)
- AES (output key, brute-force analysis)

Content

I. CrypTool and Cryptology – Overview

II. Features of CrypTool 1

III. ExamplesIV. Project / Outlook / ContactAppendix

Features of CrypTool 1

eLearning

1. What is CrypTool?

- Freeware program with graphical user interface
- Cryptographic methods can be applied and analysed
- Comprehensive online help (understandable without a deep knowledge of cryptography)
- Contains nearly all state-of-the-art cryptography functions
- Easy entry into modern and classical cryptography
- Not a "hacker tool"

2. Why CrypTool?

- Originated in an awareness initiative of a financial institute
- Developed in close cooperation with universities
- Improvement of university education and in-firm training

3. Target group

- Core group: Students of computer science, business computing, and mathematics
- But also for: computer users, application developers, employees, high school students, etc.
- Prerequisite: PC knowledge
- Preferable: Interest in mathematics and/or programming

Content of the Program Package

CrypTool program

- All functions integrated in a *single* program with consistent graphical interface
- Runs on Win32
- Includes cryptography libraries from Secude, cryptovision, and OpenSSL
- Long integer arithmetic via Miracl, APFLOAT and GMP/MPIR, lattice-based reduction via NTL (V. Shoup)

AES Tool

Standalone program for AES encryption (and creation of self-extracting files)

Educational game

"Number Shark" encourages the understanding of factors and prime numbers.

Comprehensive online help (HTML Help)

- Context-sensitive help available via F1 for all program functions (including menus)
- Detailed use cases for most program functions (tutorial)

Book (.pdf file) with background information

- Encryption methods Prime numbers and factorization Digital signatures Elliptic curves
- Bit ciphers Public-key certification Basic number theory Crypto 2020 Sage

Two short stories related to cryptography by Dr. C. Elsner

- "The Dialogue of the Sisters" (features an RSA variant as key element)
- "The Chinese Labyrinth" (number theory tasks for Marco Polo)

Authorware learning tool for number theory

English, German, Polish, Spanish, French, and Serbian

Features (1)

Cryptography

Classical cryptography

- Caesar (and ROT-13)
- Monoalphabetic substitution (and Atbash)
- Vigenère
- Hill
- Homophone substitution
- Playfair
- ADFGVX
- Byte Addition
- XOR
- Vernam
- Permutation / Transposition (Rail Fence, Scytale, etc.)
- Solitaire

Several options to easily comprehend cryptography samples from literature

- Selectable alphabet
- Options: handling of blanks, etc.

Cryptanalysis

Attack on classical methods

- Ciphertext only
 - Caesar
 - Vigenère (according to Friedman + Schroedel)
 - Addition
 - XOR
 - Substitution
 - Playfair
- Known Plaintext
 - Hill
 - Single-column transposition
- Manual (program supported)
 - Mono alphabetical substitution
 - Playfair, ADFGVX, Solitaire

Supported analysis methods

- Entropy, floating frequency
- Histogram, n-gram analysis
- Autocorrelation
- Periodicity
- Random analysis
- Base64 / UU-Encode

Features (2)

Cryptography

Modern symmetric encryption

- IDEA, RC2, RC4, RC6, DES, 3DES, DESX
- AES candidates of the last selection round (Serpent, Twofish, etc.)
- AES (=Rijndael)
- DESL, DESXL

Asymmetric encryption

- RSA with X.509 certificates
- RSA demonstration
 - For improved understanding of examples from literature
 - Alphabet and block length selectable

Hybrid encryption (RSA + AES)

Visualized as an interactive data flow diagram

Cryptanalysis

Brute-force attack on symmetric algorithms

- For all algorithms
- Assumptions:
 - Entropy of plaintext is small,
 - Key is partially known, or
 - Plaintext alphabet is known

Attack on RSA encryption

- Factorization of RSA modulus
- Lattice-based attacks

Attack on hybrid encryption

- Attack on RSA, or
- Attack on AES (side-channel attack)

Features (3)

Cryptography

Digital signature

- RSA with X.509 certificates
 - Signature as data flow diagram
- DSA with X.509 certificates
- Elliptic Curve DSA, Nyberg-Rueppel
 Hash functions
- MD2, MD4, MD5
- SHA, SHA-1, SHA-2, RIPEMD-160

Random generators

- Secude
- x2 mod n
- Linear congruence generator (LCG)
- Inverse congruence generator (ICG)

Cryptanalysis

Attack on RSA signature

- Factorization of the RSA module
- Feasible up to 250 bits or 75 decimal places (on standard desktop PCs)

Attack on hash functions / digital signature

 Generate hash collisions for ASCII based text (birthday paradox) (up to 40 bits in about five minutes)

Analysis of random data

- FIPS-PUB-140-1 test battery
- Periodicity, Vitányi, entropy
- Floating frequency, histogram
- n-gram analysis, autocorrelation
- ZIP compression test

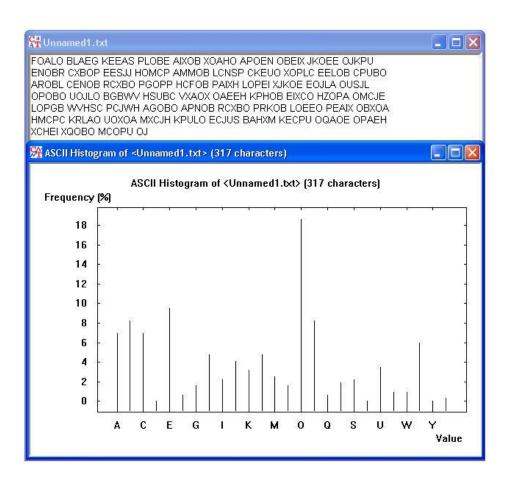
Features (4)

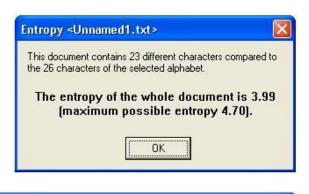
Visualizations / Demos

- Caesar, Vigenère, Nihilist, DES (all with ANIMAL)
- Enigma (Flash)
- Rijndael/AES (two versions with Flash, one with Java)
- Hybrid encryption and decryption (AES-RSA and AES-ECC)
- Generation and verification of digital signatures
- Diffie-Hellman key exchange
- Secret sharing (with CRT or Shamir)
- Challenge-response method (network authentication)
- Side-channel attack
- Secure email with the S/MIME protocol (with Java and Flash)
- Graphical 3D presentation of (random) data streams
- Sensitivity of hash functions regarding plaintext modifications
- Number theory and RSA cryptosystem (with Authorware)

Features (5)

Additional functions


- Different functions for RSA and prime numbers
- Homophone and permutation encryption (Double Column Transposition)
- PKCS #12 import and export for PSEs (Personal Security Environment)
- Hash generation of large files (without loading them)
- Flexible brute-force attacks on any modern symmetric algorithm
- ECC demonstration (as Java application)
- Password quality meter (PQM) and password entropy
- Manifold text options for the classic ciphers (see <u>example p. 99</u>)
- And plenty more...


Language Structure Analysis

Language analysis options available in CrypTool 1

Number of characters, n-gram, entropy

See menu "Analysis" \ "Tools for Analysis" \ ...

ection				
🖣 <u>H</u> istogram	No.	Charact	Frequency in %	Frequency
<u>Digram</u>	1	0	18.6120	59
	2	E	9.4637	30
<u>I</u> rigram	3	В	8.2019	26
4 -gram	4	P	8.2019	26
gian	5	A	6.9401	22
	6	A C X	6.9401	22
isplay of the 23	7	X	5.9937	19
	8	н	4.7319	15
ost common N-grams llowed values: 1-5000)	9	L	4.7319	15
nowed values. 1-3000)	10	J	4.1009	13
	11	U	3.4700	11
+ 1 P	12	ĸ	3.1546	10
<u>T</u> ext options	13	м	2.5237	8
	14	4	2.2082	8 7 6 5 5 3 3 2 2 2
	15	S	2.2082	7
	16	R	1.8927	6
Casarda Cat	17	G	1.5773	5
<u>C</u> ompute list	18	N	1.5773	5
	19	V	0.9464	3
	20	W	0.9464	3
<u>S</u> ave list	21	F	0.6309	2
	22	Q Z	0.6309	2
	23	Z	0.3155	1

Demonstration of Interactivity (1)

Vigenère analysis

The result of the Vigenère analysis can be manually reworked (changing the key length)

- 1. Encrypt the sample file with **TESTETE**
 - "Crypt/Decrypt" \ "Symmetric (classic)" \ "Vigenère"

Analysis of the encryption results:

- "Analysis" \ "Symmetric Encryption (classic)" \ "Ciphertext only" \ "Vigenère"
- Derived key length 7, derived key TESTETE
- 2. Encrypt starting sample with **TEST**
 - "Crypt/Decrypt" \ "Symmetric (classic)" \ "Vigenère"

Analysis of the encryption results:

- "Analysis" \ "Symmetric Encryption (classic)" \ "Ciphertext only" \ "Vigenère"
- Derived key length 8 incorrect **%**
- Key length automatically set to 4 (can also be adjusted manually)
- Derived key TEST

2^250 - 1

Demonstration of Interactivity (2)

Automated factorization

Factorization of a compound number with factorization algorithms

- The algorithms are executed in parallel (multi-threaded)
- Each algorithm has specific advantages and disadvantages; for example, some methods can only determine small factors

Factorization example 1

```
316775895367314538931177095642205088158145887517
=
```

3 * 1129 * 6353 * 1159777 * 22383173213963 * 567102977853788110597

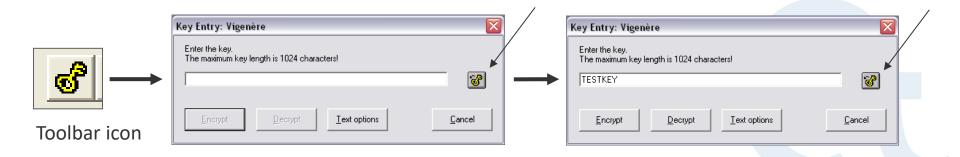
Factorization example 2

```
-
3 * 11 * 31 * 251 * 601 * 1801 * 4051 * 229668251 * 269089806001 * 4710883168879506001 *
5519485418336288303251
```

Menu: "Indiv. Procedure" \ "RSA Cryptosystem" \ "Factorization of a Number"

48-digit decimal number

75-digit decimal number


Concepts for a User-Friendly Interface

1. Context sensitive help (F1)

- F1 on a selected menu entry shows information about the algorithm/method.
- F1 in a dialog box explains the usage of the dialog.
- These assistants and the contents of the top menus are cross-linked in the online help.

2. Copying keys to the key entry dialog

- CTRL-V can always be used to paste contents from the clipboard.
- Stored keys can be copied from ciphertext windows via an icon in the toolbar. A corresponding icon in the key entry dialog can be used to paste the key into the key field. CrypTool uses an internal keystore, which is available for every method of the program. (This is particularly helpful for large "specific" keys, such as in homophone encryption.)

Challenges for Developers (Examples)

1. Allow additional functions to run in parallel

Factorization already uses multi-threading to run several algorithms at once

2. High performance

Locate hash collisions (birthday paradox) or perform brute force analysis

3. Consider memory limits

 In particular with regard to the Floyd algorithm (mappings to locate hash collisions) and quadratic sieve factorization
 Brute-Force Analysis of Rijndael (AES)

4. Time measurement and estimation

Display remaining time (e.g. while using brute force)

5. Reusability / Integration

- Forms for prime number generation
- RSA cryptosystem (switches the view after successful attack from public key user to private key owner)
- 6. Partially automate the consistency of functions, GUI, and online help (including different languages and the supported Windows operating systems)

Content

I. CrypTool and Cryptology – Overview

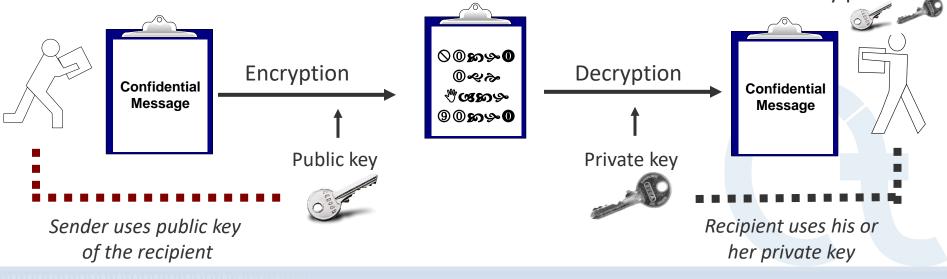
II. Features of CrypTool 1

III. Examples

IV. Project / Outlook / Contact

Appendix

CrypTool Examples


Overview of examples

- 1. Encryption with RSA / Prime number tests / Hybrid encryption and digital certificates / SSL
- 2. <u>Digital signature visualized</u>
- 3. Attack on RSA encryption (small modulus N)
- 4. <u>Analysis of encryption in PSION 5</u>
- 5. <u>Weak DES keys</u>
- 6. Locating key material ("NSA key")
- 7. Attack on digital signature through hash collision search
- 8. <u>Authentication in a client-server environment</u>
- 9. Demonstration of a side-channel attack (on hybrid encryption protocol)
- 10. <u>Attack on RSA using lattice reduction</u>
- 11. Random analysis with 3-D visualization
- 12. Secret Sharing using the Chinese Remainder Theorem (CRT) and Shamir
- 13. Implementation of CRT in astronomy (solving systems of linear modular equations)
- 14. Visualization of symmetric encryption methods using ANIMAL
- 15. <u>Visualizations of AES</u>
- 16. Visualization of Enigma encryption
- 17. Visualization of Secure Email with S/MIME
- 18. Generation of a message authentication code (HMAC)
- 19. Hash demonstration
- 20. Educational tool for number theory and asymmetric encryption
- 21. <u>Point addition on elliptic curves</u>
- 22. Password quality meter (PQM) and password entropy
- 23. Brute-force analysis
- 24. <u>Scytale / Rail Fence</u>
- 25. <u>Hill encryption / Hill analysis</u>
- 26. <u>CrypTool online help / Menu tree of the program</u>

Examples (1) Encryption with RSA

- Basis of the SSL protocol (access to protected websites), among others
- Asymmetric encryption using RSA
 - Every user has a key pair one public and one private key.
 - Sender encrypts with public key of the recipient.
 - Recipient decrypts with his or her private key.
- Usually implemented in combination with symmetric methods (hybrid encryption): The symmetric key is transmitted using RSA asymmetric encryption/decryption.

Encryption using RSA – Mathematical background / algorithm

- Public key: (n, e) [the modulus N is often capitalized]
- Private key: (d)

where

p, q are large, randomly chosen prime numbers with $n = p^*q$;

d is calculated under the constraints $gcd[\phi(n),e] = 1$; $e^*d \equiv 1 \mod \phi(n)$. Encryption and decryption operation: $(m^e)^d \equiv m \mod n$

- n is the modulus (its length in bits is referred to as the key length of RSA).
- gcd = greatest common divisor.
- $\phi(n)$ is Euler's totient function.

Procedure

- Transform the message into its binary representation
- Encrypt message block-wise such that m = m₁,...,m_k where for all m_j: 0 ≤ m_j < n; The maximum block size r should be chosen such that 2^r ≤ n (and 2^r-1 < n)

Hint: Attractive, interactive Flash animation about the basics of the RSA cipher: https://www.cryptool.org/images/ct1/presentations/RSA/RSA-Flash-en/player.html

Prime number tests – RSA requires the use of very large primes

- Fast probabilistic tests
- Deterministic tests

The prime number test methods can test whether a large number is prime much faster than the known factorization methods can divide a number of similar size into its prime factors.

For the AKS test the GMP / MPIR library (GNU Multiple Precision Arithmetic Library; Multiple Precision Integers and Rationals) was integrated into CrypTool.

There are many methods to check if a number is prime	
Most of these are probabilistic, meaning that they can degree of certainty.	only determine primality to a given adjustable
However, these methods are much faster than their of methods return a 100% mathematically certain result	
Algorithms for prime number test	
Miller-Rabin test	
C Eermat test	
C Solovay-Strassen test	
C AKS test (deterministic procedure)	
Prime number test	
	Load number from file
Number or	
formula to test: 2^255-1	
Result: 57896044618658097711785492	50434395392663499233282028201972879200
	, , , , , , , , , , , , , , , , , , ,
Test number Factorize number	Cancel

Remark: 2^255 - 1 = 7 * 31 * 103 * 151 * 2143 * 11119 * 106591 * 131071 * 949111 9520972806333758431 * 5702451577639775545838643151

Printing of current prime number records - Mersenne primes

The biggest known primes are so called Mersenne primes.

The currently 4th biggest one has 12,978,189 decimal digits and was discovered in 2008 by the GIMPS project.

The adjoining dialog allows to calculate and write all digits of such numbers very fast.

To do so the APFLOAT library was integrated into CrypTool.

Within the context menu of each input or output field of this dialog you can switch on and off the thousands separator.

Compute Mersenne N	umbers									
Base b:	2									
Exponent e:	43,112,609									
Result b^e - 1:	Result b^e - 1: 31647026933025592314345372394933751605410618843									
Result length:	12,978,189	(number of decim	als)							
Start computation]		Write result to file							
Cancel computation			Close							

Remark: 2^43,112,609 - 1 = 316,470,269 ... 697,152,511

Large numbers should not be marked and copied from the "Result" field – because of the performance of the GUI. Please use the button "Write result to file" in order to show the resulting number in its completeness within the CrypTool main window.

Menu: "Indiv. Procedures" \ "Number Theory – Interactive" \ "Compute Mersenne Numbers"

Hybrid encryption and digital certificates

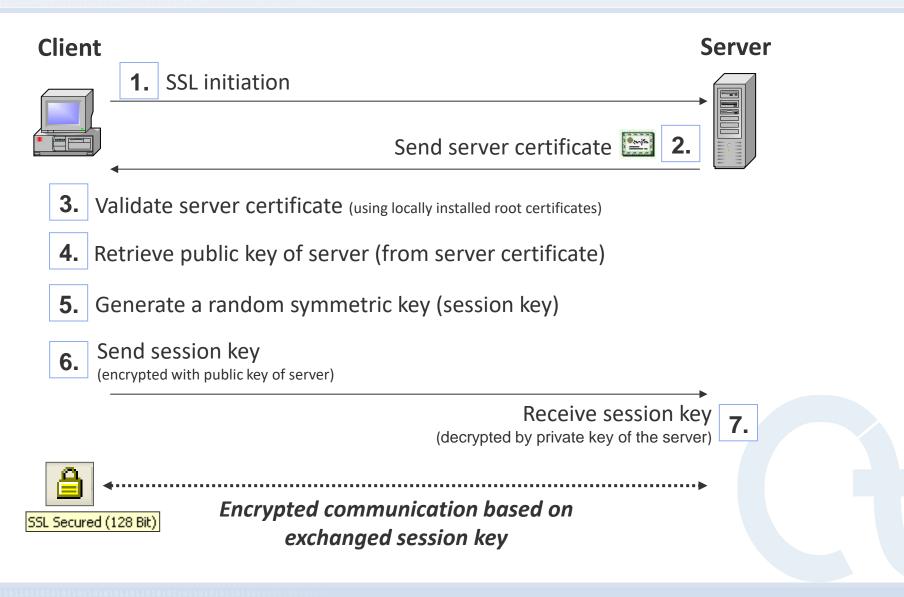
- Hybrid encryption combination of asymmetric and symmetric encryption
 - 1. Generation of a random symmetric key (session key)
 - 2. Session key is transferred protected by asymmetric key
 - 3. Message is transferred protected by session key
- Problem: Man-in-the-middle attacks does the public key of the recipient really belong to the recipient?
- Solution: digital certificates a central instance (e.g., GlobalSign, Let's Encrypt, VeriSign, SAP), trusted by all users, ensures the authenticity of the certificate and the associated public key (similar to a passport issued by a national government).
- Hybrid encryption based on digital certificates as foundation for secured electronic communication
 - Internet shopping and online banking
 - Secure email

Secured online connection using SSL and certificates

Deutsche Bank Online-Banking and -Brokerage - Mozilla Firefox		Certificate Viewer:"meine.deutsche-bank.de"
Eile Edit View Higtory Bookmarks Iools Help		
< 🔹 🔹 😪 🚱 👔 🔽 https://meine.deutsche-bank.de/mod/WebObjects/dbpbc.woa/273/wo/mTbs4519% 💌 🚊 Deutsche B	ank AG [DE] 🕨 💽 Google	General Details
Deutsche Version Your Investment & Finance Center	^	This certificate has been verified for the following uses:
db OnlineBanking	Leistung aus Leidenschaft. Deutsche Bank	SSL Client Certificate
		SSL Server Certificate
Login with PIN Login with WebSign / db SignaturCard		Issued To Common Name (CN) meine.deutsche-bank.de Organization (O) Deutsche Bank AG Organizational Unit (OU) <not certificate="" of="" part=""> Serial Number 3C:16:FE:D8:E8:58:7D:56:48:4B:EB:F4:11:F6:71:A5</not>
Branch (three-digit) Account (seven-digit) Sub-account (two-digit) PIN (five-digit) 00 00 1	2	Issued By Common Name (CN) VeriSign Class 3 Extended Validation SSL SGC CA Organization (O) VeriSign, Inc. Organizational Unit (OU) VeriSign Trust Network
Directly to vour Financial Status Session TAN for Brokerage ?		Validity Issued On 18.09.2007 Expires On 18.09.2008
IMPORTAILT Deutsche Bank never asks for a TAN on the login screen of do OnlineBanking	Execute Login >	Fingerprints C6:86:DE:47:38:3D:E6:FA:AD:D6:2A:1C:EF:50:78:D3:2A:E0:23:48 VD5 Fingerprint C6:86:DE:47:3B:3D:E6:FA:AD:D6:2A:1C:EF:50:78:D3:2A:E0:23:48
Security Advisory Currently there are attempts to obtain confidential customer access information via e-mail company e-mail sender addresses. These so-called 'phishing' attacks use forged e-mail companies known to and thusted by the customer. The customer is asked to provide confi access information either by e-mail reply or through a link leading to a forged website. The than may be misused without the customers knowledge. Please note that Deutsche Bank will never ask for your confidential or personal informatio account number, credit card number, PIN or TAN) via e-mail - never reply to such a reques Important: Deutsche Bank will nots ond you e-mails with links to the login screen of db Or Should you receive e-mail requesting you to follow a link to the login screen of db Or Should you receive e-mail requesting you to follow a link to the login screen of db Or Should you receive e-mail requesting you follow and to to comply with such a requestil instead please contact us at <u>security db@db.cor</u>	adresses of dential account information n (such as your sti nlineBanking! Banking you are	MD5 Fingerprint 51:1A:AE:C8:87:34:BA:E7:07:71:E9:88:42:D1:B4:5F
This means that the connection is authenticated (at least on one side and that the transferred data is stro encrypted.		Cured (128 Bit)

Attributes / fields of a certificate

	ile i	/ iew	er:	mei	ne.o	leut	sch	e-ba	nk.	de"							
eneral	Det	ails															
Certi	ifica	to U															
E Ve				•	Drim	seu C	ortifi	catio	5 Aut	borite							
	-					•			SL SG		•	,					
		-		utsch				.0110			•						
		mein	e.ue	utsen	ic-Dai	111.100	-										
Certificate Fields																	
Certi	ifica	te Fi	elds														_
	-Issuer												^				
-Validity																	
Not Before																	
		·P	Not A	fter													=
		Subj	ect														
	Ē	Subj	ect P	ublic	Key I	nfo											
			5ubje	ct Pu	blic K	ey A	lgorit	hm									
		2	Subje	ct's P	ublic	Кеу											
	Ė	Exte	nsior	IS													~
Field	Yalı	ue															
Siz	:e:	270) By	ytes	3 /	21	60 J	Bit	з								~
30				02					cb		dc	d6	1c	87	6f		
a9									6a		6e		b5	ae	36		
	f8			ca					d6		00		cc	fb			
			d0						14			ca a-					
9e be			b6 30		2α 79		fe 10		3b 8b		b9 bd		4a de		51 61		
				90 b6	. –				ob 7b					. –	ьт b9		
									95								-
																Clos	е


General attributes / fields

- Issuer (e.g., VeriSign)
- Requestor
- Validity period
- Serial number
- Certificate type / version (X.509v3)
- Signature algorithm
- Public key (and method)

Public key

Establishing a secure SSL connection (server authentication)

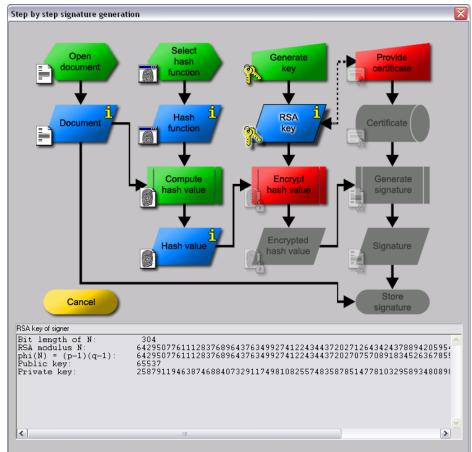
Establishing a secure SSL connection (server authentication)

General

- The example shows the typical SSL connection establishment in order to transfer sensitive data over the internet (e.g. online shopping).
- During SSL connection establishment only the server is authenticated using a digital certificate (authentication of the user usually occurs through user name and password after the SSL connection has been established).
- SSL also offers the option for client authentication based on digital certificates.

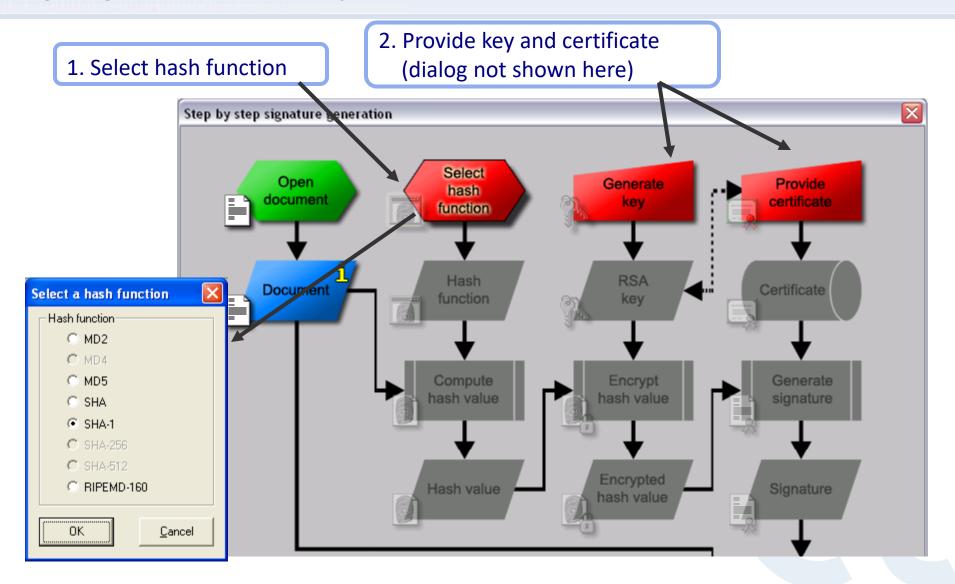
Remarks on establishing an SSL connection (see previous slide)

- Step 1: SSL Initiation the characteristics of the session key (e.g. bit size) as well as the symmetric encryption algorithm (e.g. 3DES, AES) are negotiated.
- Step 2: In a multi-level certificate hierarchy, the required intermediate certificates are also passed to the client.
- Step 3: The root certificates installed in the browser's certificate store are used to validate the server certificate.
- Step 5: The session key is based on the negotiated characteristics (see step 1).

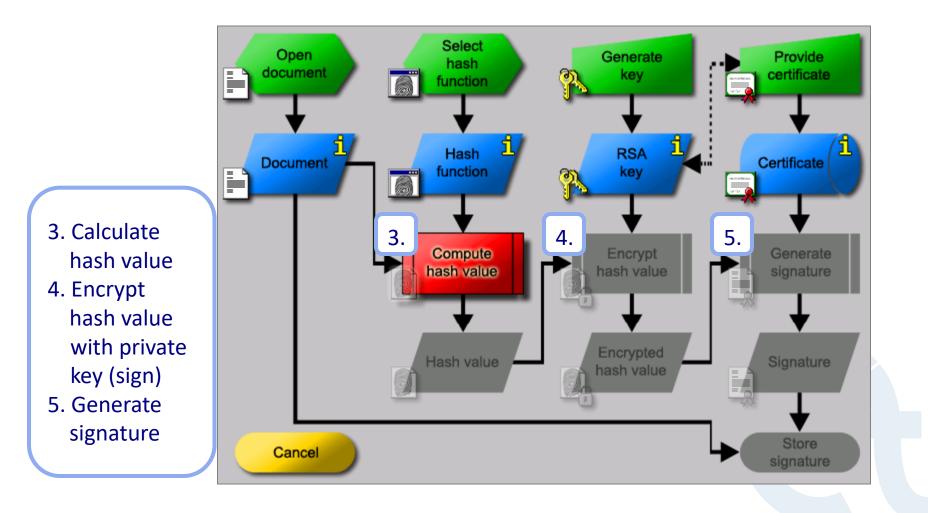

Digital signature visualized

Digital signature

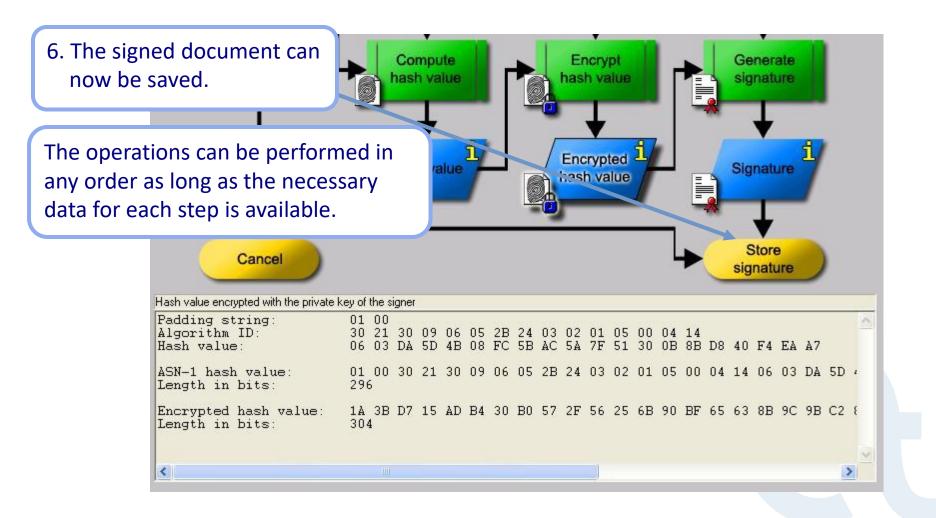
- Increasingly important
 - Equivalent to a handwritten signature (digital signature law)
 - increasingly used by companies, governments, and consumers
- Few actually know how it works


Visualization in CrypTool

- Interactive data flow diagram
- Similar to the visualization of hybrid encryption



Menu: "Digital Signatures/PKI" \ "Signature Demonstration (Signature Generation)"


Digital signature visualized: a) Preparation

Examples (2) Digital signature visualized: b) Cryptography

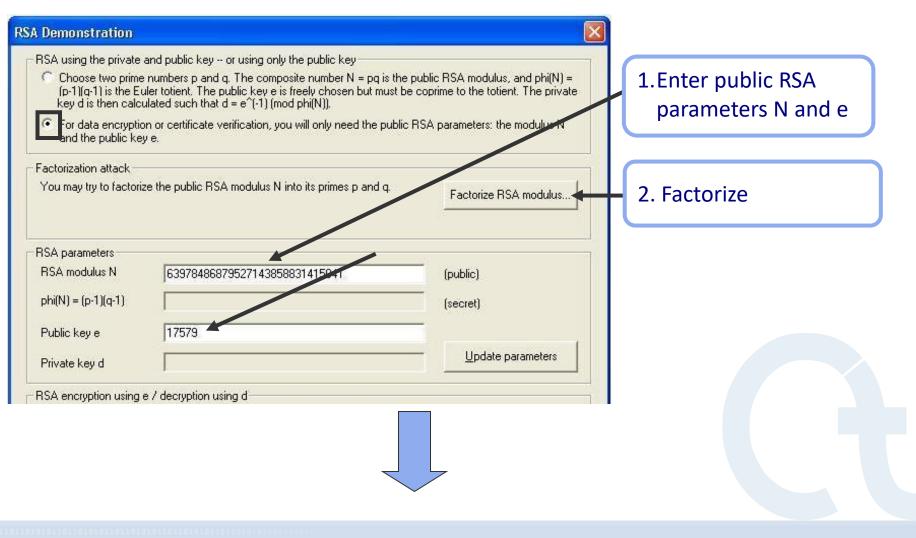
Digital signature visualized: c) Result

Attack on RSA encryption with short RSA modulus

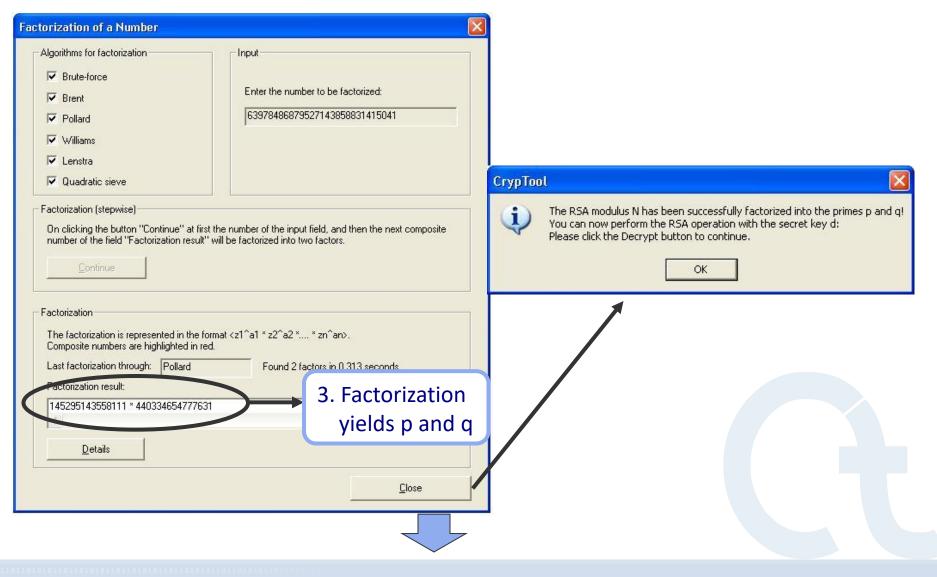
Example from Song Y. Yan, Number Theory for Computing, Springer, 2000

- Public key
 - RSA modulus N = 63978486879527143858831415041 (95 bits, 29 decimal digits)
 - public exponent **e = 17579**
- Ciphertext (block length = 8):
 - $C_1 = 45411667895024938209259253423,$
 - $C_2 = 16597091621432020076311552201,$
 - $C_3 = 46468979279750354732637631044,$
 - $C_4 = 32870167545903741339819671379$
- This text must be deciphered!

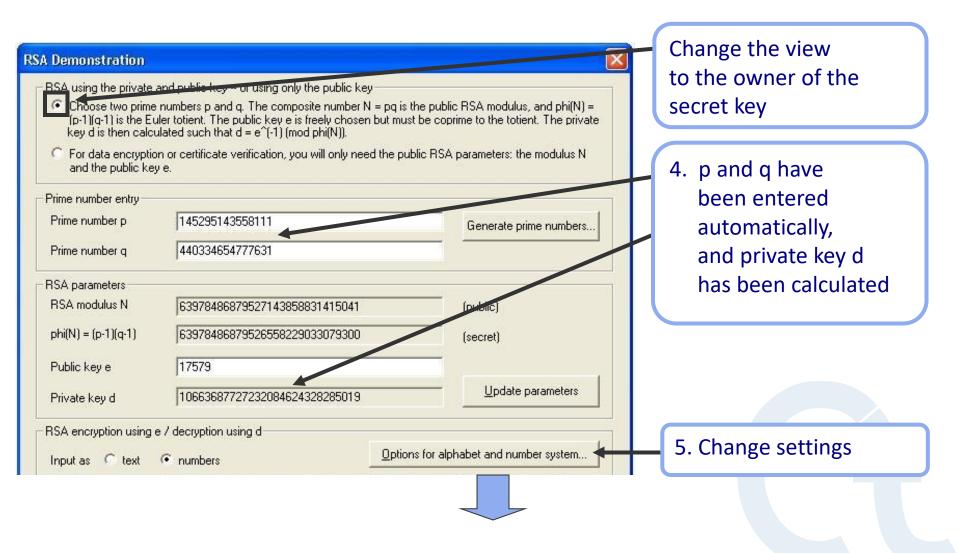
To perform the actual cryptanalysis (revealing the private key), the ciphertext is not actually necessary!


- **Solution using CrypTool** (further details in the examples section of the online help)
- Enter public parameters into "RSA cryptosystem" (menu: "Indiv. Procedures")
- Clicking the button "Factorize the RSA modulus" yields the two prime factors pq = N
- Based on that information the private exponent d=e⁻¹ mod (p-1)(q-1) can be determined
- Decrypt the ciphertext with d: M_i = C_i^d mod N

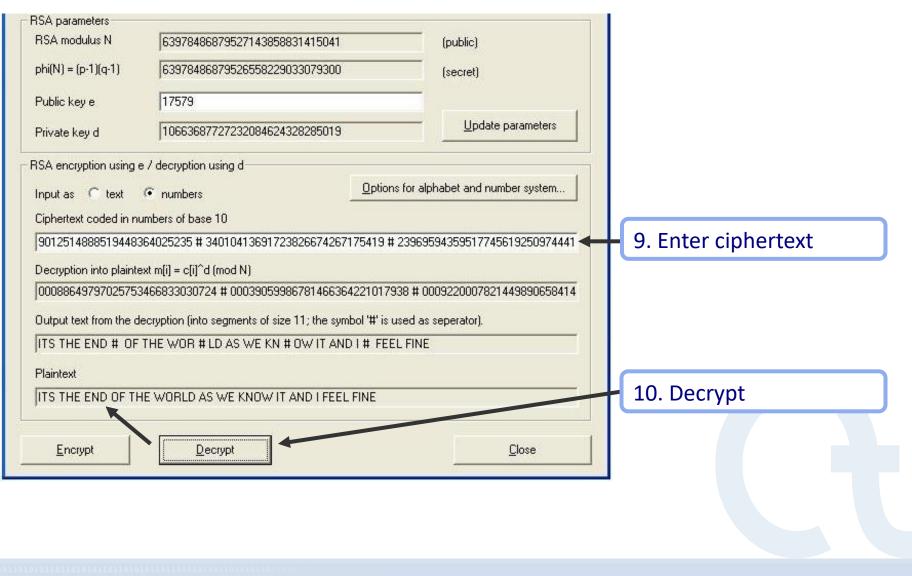
In CrypTool 1, this attack is only practical for RSA key sizes up to about 250 bits.


A successful attack means you could then digitally sign in someone else's name!

Short RSA modulus: Enter public RSA parameters


Menu: "Indiv. Procedures" \ "RSA Cryptosystem" \ "RSA Demonstration ..."

Short RSA modulus: Factorize RSA modulus


Short RSA modulus: Determine private key d

Short RSA modulus: Change settings

Options for the RSA Demonstration	
Alphabet options Alphabet options Alphabet options Alphabet Specify alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ	6. Select alphabet
RSA variant • Normal • Dialogue of the <u>S</u> isters	7. Select coding method
Method for coding a block into numbers	8. Select block length
The number of characters that are encrypted with each RSA operation. The maximum size of a block is limited by the bit length of the modulus N, the number of characters in the alphabet, and the uncoding method. Block length in characters: 11 (Maximum block length 11 characters)	
Number system The numbers for encryption and decryption will be represented in the following radix:	

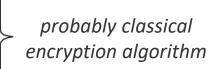
Short RSA modulus: Decrypt ciphertext

Analysis of encryption used in the PSION 5

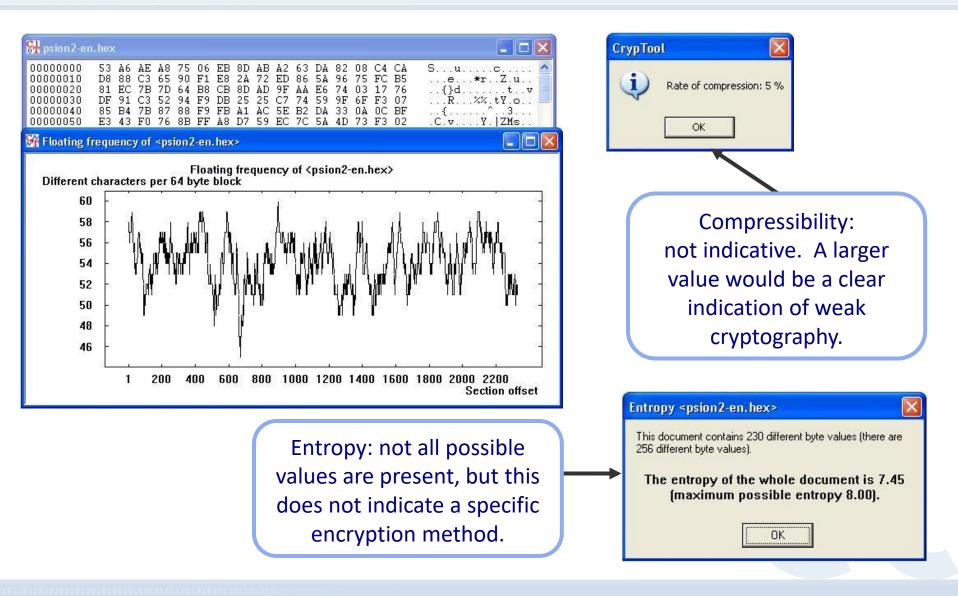
Practical application of cryptanalysis *Attack on the encryption option in the PSION 5 PDA word processing application*

Starting point: an encrypted file on the PSION

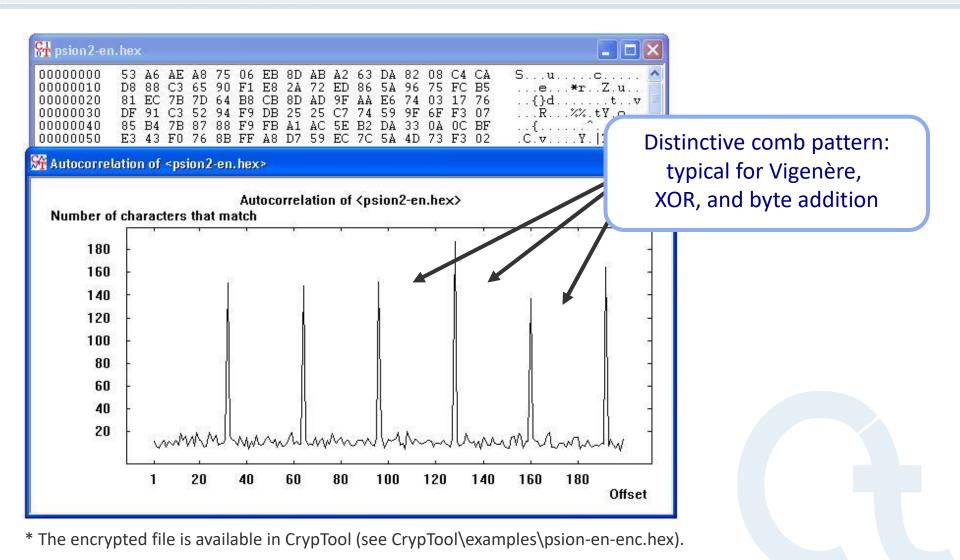
Requirements


Encrypted English or German text

Depending on method and key length, text of at least 100 bytes up to several kB


Procedure

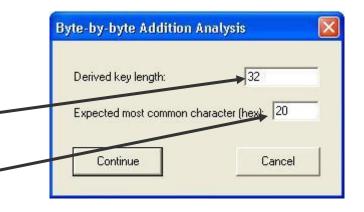
- Pre-analysis
 - entropy
 - floating entropy
 - compression test
- Auto-correlation
- Automated analysis with classical methods



PSION 5 PDA – determine entropy, compression test

PSION 5 PDA – determine auto-correlation

CrypTool 1.4.40


CrypTool 1.4.40

Examples (4)

PSION 5 PDA – automatic analysis

Automatic analysis using

- Vigenère: no success
- XOR: no success
- Byte addition
 - CrypTool calculates the key length using auto-correlation: 32 bytes —
 - The user can choose which character is expected to occur most frequently: the empty space = 0x20 (ASCII code)
 - Analysis calculates the most likely key (based on assumptions regarding distribution)
 - Result: good, but not perfect

								Deri	ved k	ey:							
	12	86	5B	34	14	98	87	71	39	ЗE	43	74	13	DB	A4	56	2
I	B1	23	A3	11	1E	D9	BF	B7	05	D3	13	E7	2D	4B	8E	95	1

PSION 5 PDA – results of automatic analysis

Results of automatic analysis under the assumption of "byte addition"

- Result is good, but not perfect: 25 out of 32 key bytes correct.
- The key length 32 was correctly determined.

🚰 Automatic Addition Analysis of <psion2-en.hex>, key: <12 86 5B 34 14 98 87 71 39 3..

						- P					100		-			-	
00000000	41	20	53	74	61	6E	64	1C	72	64	20	66	6F	2D	20	74	A Stand.rd fo- t 🧹
00000010	27	65	20	54	72	18	29	73	6D	1A	73	73	69	2A	6E	20	'e Tr.)sm.ssi*n 📗
00000020	6F	66	20	49	50	20	44	1C	74	61	67	72	61	28	73	20	of IP D.tagra(s 💄
00000030	2E	6E	20	41	76	20	1C	6E	20	F4	61	72	72	24	65	72	.n Av .n .arr\$er
00000040	73	2E	20	53	74	61	74	30	73	20	6F	66	20	2F	68	69	s. Stat0s of ∕hi
00000050	32	20	4D	65	6D	26	E9	20	54	19	69	73	20	28	65	6D	2 Mem&. T.is (em
00000060	6F	20	64	65	73	63	72	24	62	65	73	20	61	29	20	65	o descr\$bes a) e
00000070	37	70	65	72	69	24	20	6E	74	12	6C	20	6D	20	74	68	7peri\$ nt.l m th
00000080	6F	64	20	66	6F	72	20	2F	68	65	20	65	6E	1E	61	70	od for ⁄he en.ap
00000090	32	75	6C	61	74	20	2A	6E	20	20	66	20	49	0B	20	64	2ulat *n f I. d
04000000	61	74	61	67	72	61	6D	2E	20	69	6E	20	61	31	69	61	atagram. in alia
000000B0	2D	20	63	61	72	29	24	65	72	24	2E	20	54	23	69	73	- car)\$er\$. T#is
000000000	20	73	70	65	63	69	66	24	63	61	74	69	6F	29	20	69	specif\$catio) i
000000D0	32	20	70	72	69	24	1C	72	69	1D	79	20	75	2E	65	66	2 pri\$.ri.y u.ef
000000E0	75	6C	20	69	6E	20	4D	20	74	72	6F	70	6F	27	69	74	ul in M tropo'it
000000F0	20	6E	20	41	72	1C	1C		4E	16	74	77	6F	2D	6B	73	n Ar N.two-ks
00000100	2E	20	54	68	69	73	20	24	73	20	61	6E	20	20	78	70	. This \$s an xp
00000110	24	72	69	6D	65	25	2F	61	6C	DD	20	6E	6F	2F	20	72	\$rime%/al. no/ r 🖹

- The password entered was not 32 bytes long.
 → PSION Word derives the actual key from the password.
- Manual post-processing produces the encrypted text (not shown).

PSION 5 PDA – determining the remaining key bytes

First, copy the key to the clipboard during automatic analysis.

Then, in the automatic analysis hex dump:

- Determine incorrect byte positions, e.g. 0x1C at position 8
- Guess and write down corresponding correct bytes: "a" = 0x61

Next, in the encrypted initial file hex dump:

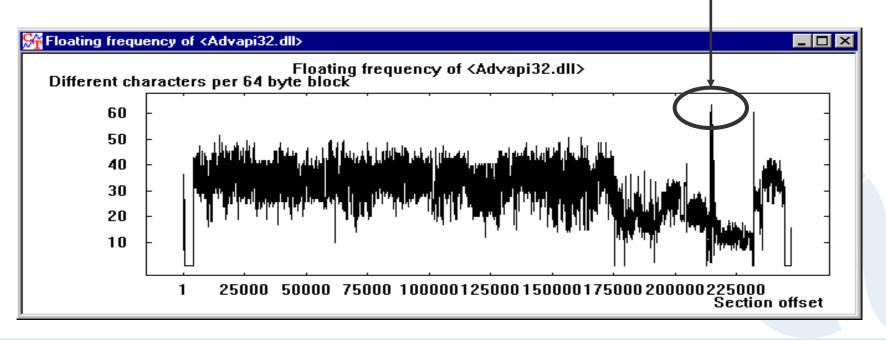
- Determine initial bytes from the calculated byte positions: 0x8D
- Calculate correct key bytes with CALC.EXE: 0x8D 0x61 = 0x2C

Finally, get the key from the clipboard:

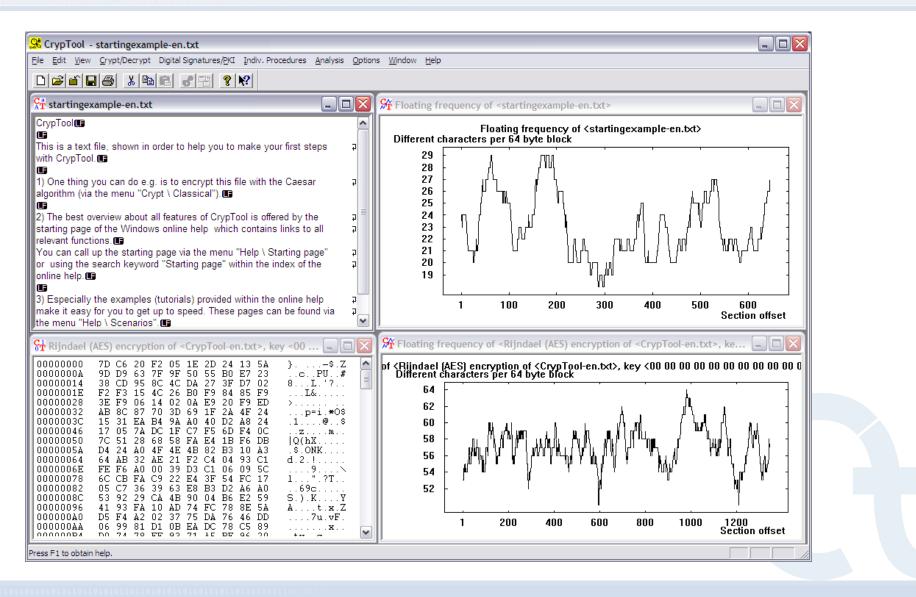
- Correct 12865B341498872C393E437413DBA456B123A3111ED9BFB705D313E72D4B8E95
- Decrypt encrypted initial document using byte addition
- Bytes at position 3, 3+32, 3+2*32, etc. are now correct

👫 Automatic	: Add	litio	n Ar	nalys	sis o	f <p< th=""><th>sion</th><th>12-e</th><th>n.he</th><th></th><th>key</th><th>: <1</th><th>2 86</th><th>6 5B</th><th>34</th><th>14 9</th><th>8 87 2C 39 🗧 4 🔳 🗖 🔰</th></p<>	sion	12-e	n.he		key	: <1	2 86	6 5B	34	14 9	8 87 2C 39 🗧 4 🔳 🗖 🔰
00000000	41	20	53	74	61	6E	64	61	72	64	20	66	6F	2D	20	74	A Standard fo- t
00000010	27	65	20	54	72	18	29	73	6D	14	73	73	69	2A	6E	20	'e Tr.)sm.ssi*n
00000020	6F	66	20	49	50	20	44	61	74	61	67	72	61	28	73	20	of IP Ďatagra(s
00000030	2E	6E	20	41	76	20	1C	6E	20	F4	61	72	72	24	65	72	.n Av .n .arrŝer
00000040	73	2E	20	53	74	61	74	75	73	20	6F	66	20	2F	68	69	s. Status of ⁄hi
00000050	32	20	4D	65	6D	26	E9	20	54	19	69	73	20	28	65	6D	2 Mem&. T.is (em 🚽

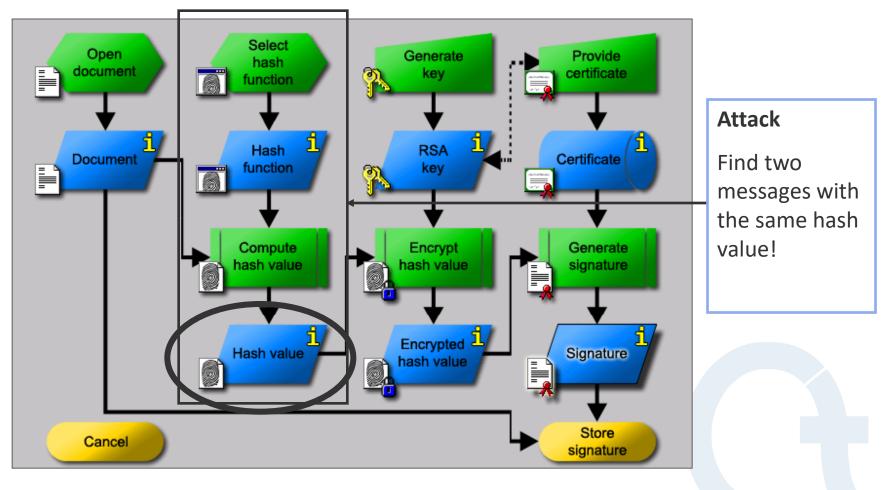
Examples (5) Weak DES key


🔀 CrypTool 1.4.30 - weak-DES.txt			
File Edit View Crypt/Decrypt Digital Sig	natures/PKI Indiv. Procedures Analysis Option	ns Window Help	
Symmetric (classic) Symmetric (classic) Symmetric (modern) Asymmetric Hybrid Weak-DES.txt	IDEA RC2 RC4 DES (ECB) DES (CBC) Triple DES (ECB)		
D ES weak key deme	Triple DES (CBC) Rijndael (AES) Shift + Strg + R	Key Entry: DES (ECB) Enter the key using hexadecimal characters (0.	.9, A. F).
	Further Algorithms	Key length: 64 bits (effectively 56 bits 💌	
	AES (self extracting)		8
Encrypting twice wi	1	<u>Encrypt</u>	ypt <u>C</u> ancel
returns the plaintex	rt.		
👫 weak-DES.txt			
DES weak key demo			
	<pre><weak-des.txt>, Schlüssel <01 01 01 01 </weak-des.txt></pre>		
	2E 70 A8 2D 3B A3 4B F0 76 6E 2B • <des (ecb)-verschlüsselung="" <weak-d<="" td="" von=""><td></td><td>0p;.K.vn+.+.&X+c1</td></des>		0p;.K.vn+.+.&X+c1
00000000 44 45 53 20 77	65 61 6B 20 6B 65 79 20 64 65 6D	6F 00 00 00 00 00 00 00 DE	S weak key demo

Locate key material


The function "Floating frequency" is suitable for locating key material and encrypted areas in files.

Background


- Key data is "more random" than text or program code
- Can be recognized as peaks in the "floating frequency"
- Example: the "NSA key" in advapi32.dll (Windows NT)

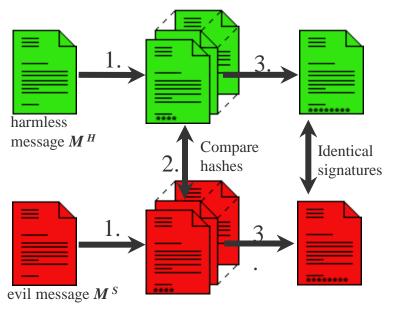
Floating frequency comparison

Attack on digital signatures

Menu: "Analysis" \ "Hash" \ "Attack on the Hash Value of the Digital Signature"

Attack on digital signature – idea (I)

Attack on the digital signature of an ASCII text by means of a hash collision search.


Idea:

- ASCII texts can be modified by changing/inserting non-printable characters without changing the visible content
- Modify two texts in parallel until a hash collision is found
- Exploit the birthday paradox (birthday attack)
- Generic attack applicable to all hash functions
- Can parallelized across many machines (not implemented in CrypTool)
- Implemented in CrypTool as part of the bachelor thesis
 "Methods and Tools for Attacks on Digital Signatures" (German), 2003.

Concepts :

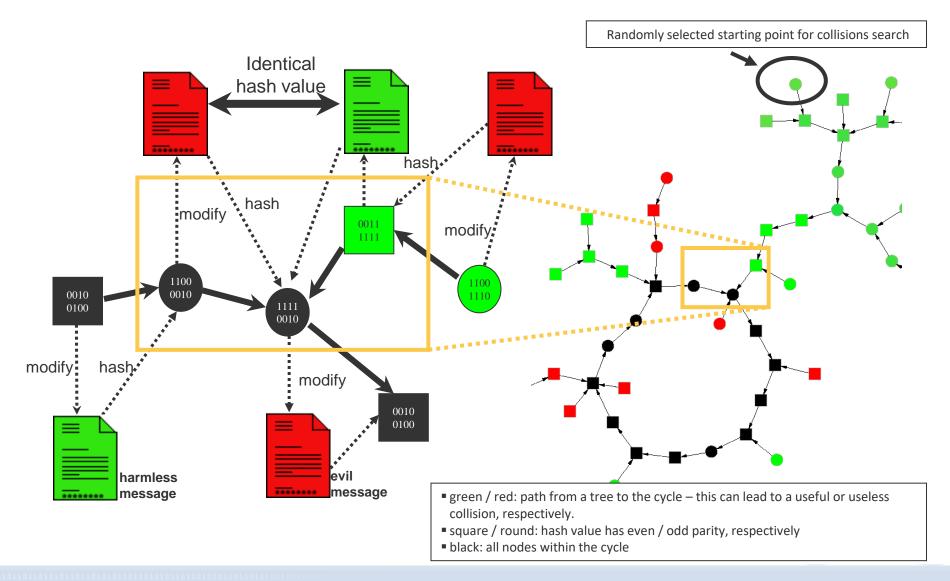
- Mappings
- Modified Floyd algorithm (constant memory consumption)

Attack on digital signature – idea (II)

- **1.** Modification: starting from a message M create N different messages $M_1, ..., M_N$ with the same "content" as M.
- 2. Search: find modified messages M_i^H and M_i^S with the same hash value.
- **3.** Attack: the signatures of those two documents M_i^H and M_i^S are the same.

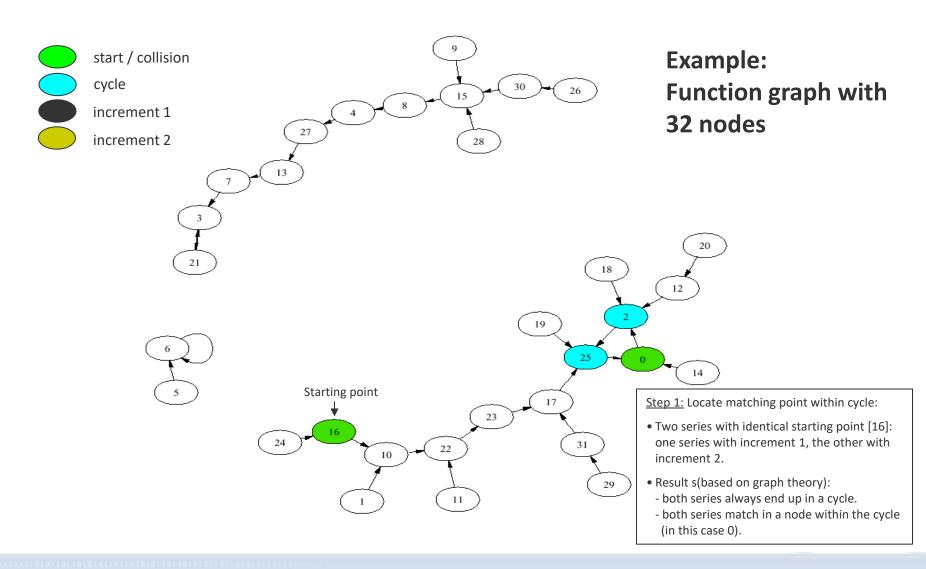
We know from the birthday paradox that for hash values of bit length n:

- search collision between M^H and M_1^S , ..., M_N^S :
- search collision between $M_1^H, ..., M_N^H$ and $M_1^S, ..., M_N^S$:

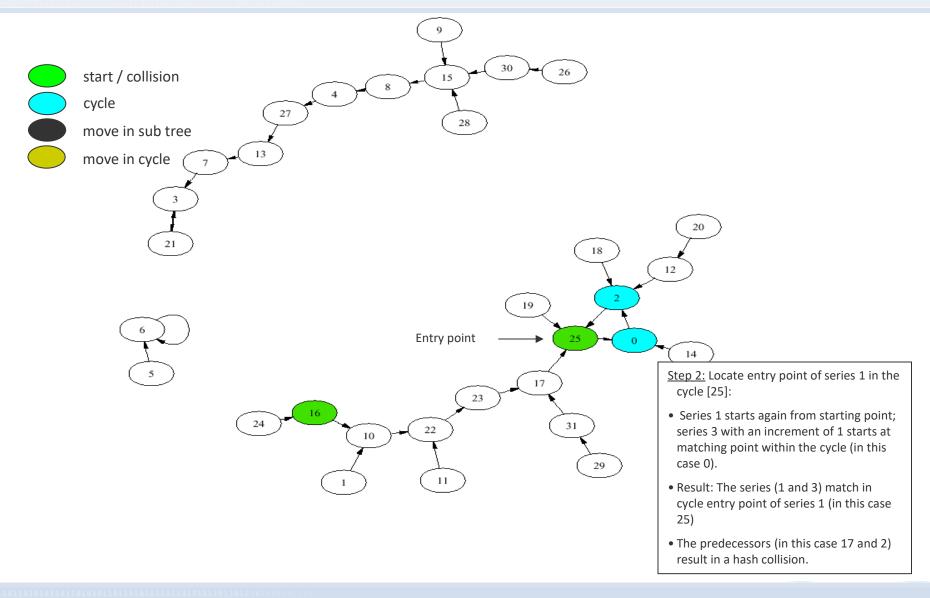

Estimated number of generated messages in order to find a hash collision.

 $N \approx 2^n$

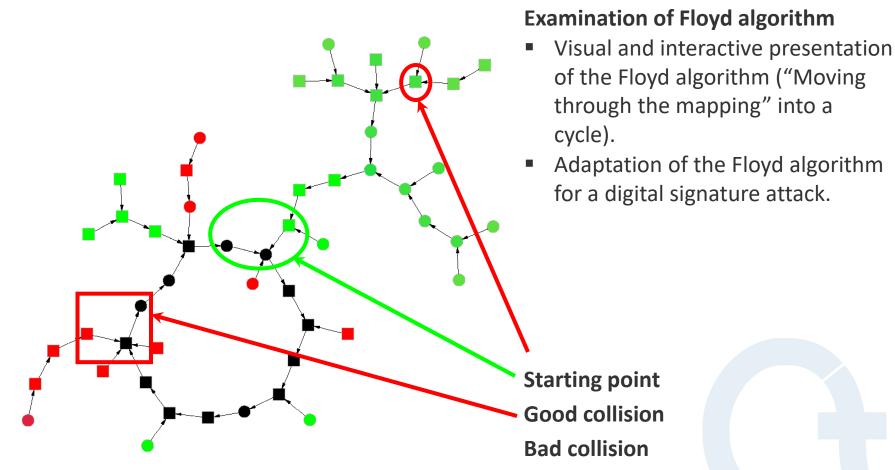
 $N \approx 2^{n/2}$


Locate Hash Collisions (1)

Mapping via text modifications

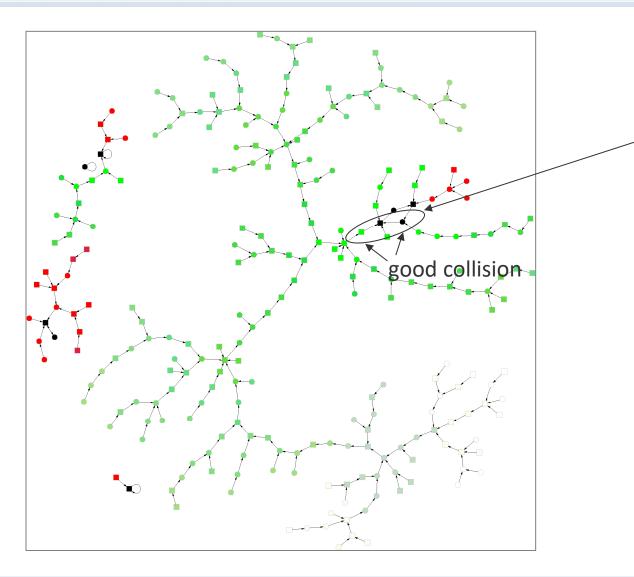

Locate Hash Collisions (2)

Floyd Algorithm: Meet within the cycle


Locate Hash Collisions (3)

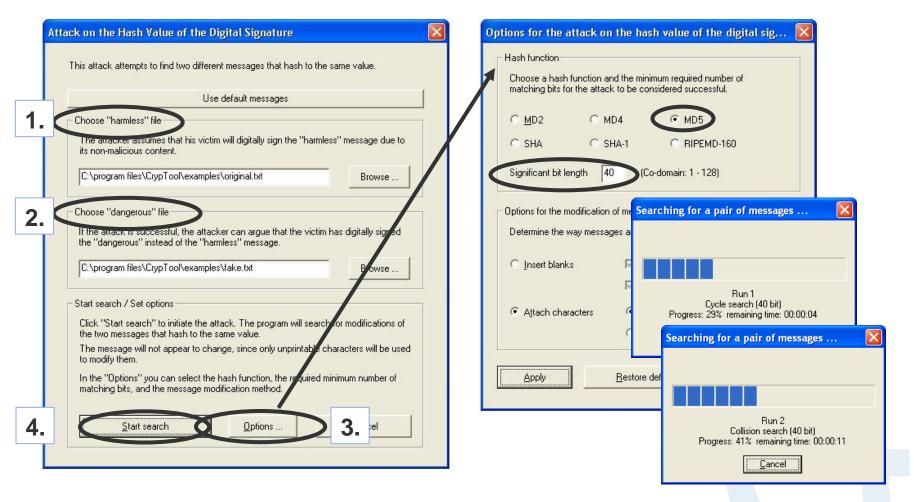
Step into cycle (extension of Floyd): Find entry point

Locate Hash Collisions (4)


Birthday paradox attack on digital signature

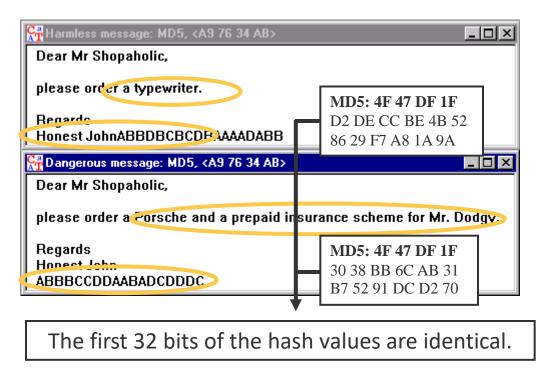
*The Floyd algorithm is implemented in CrypTool, but the visualization of the algorithm has not yet been implemented.

Examples (7)


Attack on digital signature

An example of a **"good" mapping** (nearly all nodes are green). In this graph almost all nodes belong to a big tree, which leads into the cycle with an even hash value and where the entry point predecessor within the cycle is odd. That means that the attacker finds a useful collision for nearly all starting points.

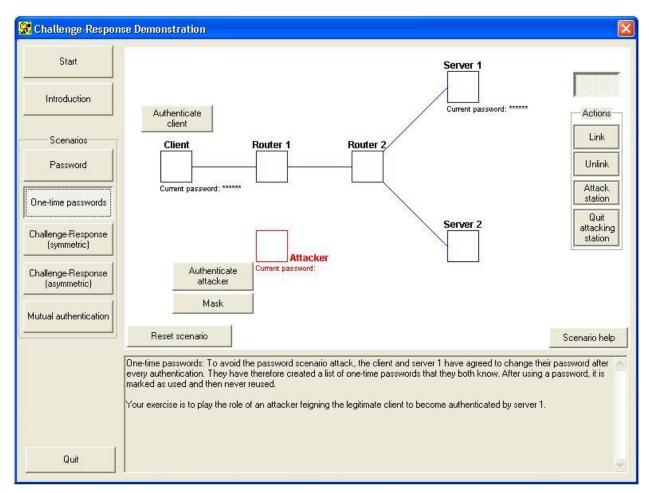
Examples (7)


Attack on digital signature: attack

Menu: "Analysis" \ "Hash" \ "Attack on the Hash Value of the Digital Signature"

Examples (7)

Attack on digital signature: results

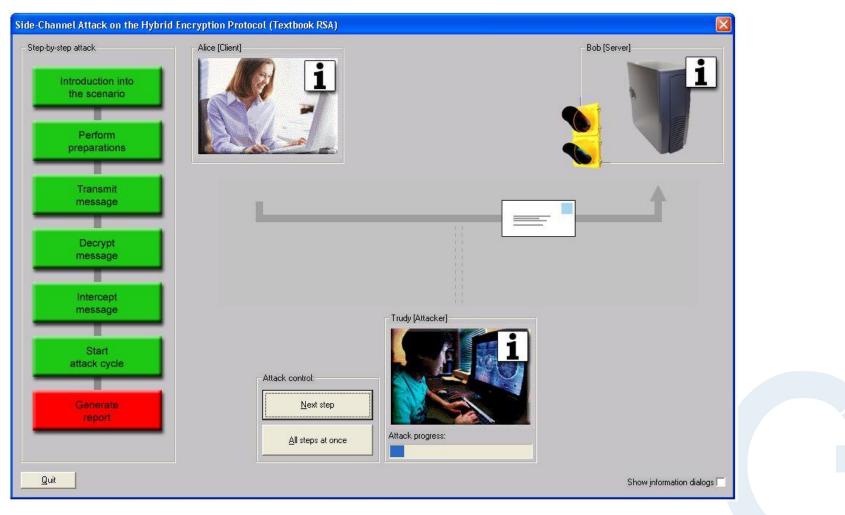

Experimental results

- A 72-bit partial collision (i.e., the first 72 hash value bits are identical) was found in a couple of days using a single PC.
- Today, signatures with hash values of 128 bits or less are vulnerable to a massive parallel search!
- It is therefore recommended to use hash values with a length of at least 160 bits.

In addition to the interactive tool, CrypTool also includes a command-line feature to execute and log the results for entire sets of parameter configurations.

Examples (8)

Authentication in a client-server environment



Menu: "Indiv. Procedures" \ "Protocols" \ "Network Authentication"

- Interactive demo for different authentication methods.
- Specifies vulnerabilities that an attacker could take advantage of.
- Allows the user to play the role of an attacker.
- Learning outcome: Only mutual authentication is secure.

Examples (9)

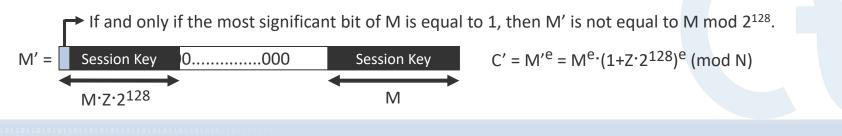
Demonstration of a side-channel attack (on a hybrid encryption protocol)

Menu: "Analysis" \ "Asymmetric Encryption" \ "Side-Channel Attack on Textbook RSA"

Examples (9)

Concept of this side channel attack

Ulrich Kuehn: "Side-channel attacks on textbook RSA and ElGamal encryption", 2003


Prerequisites [CCA (Chosen-ciphertext attack) against deciphering oracle]

- RSA encryption: C = M^e (mod N) and decryption: M = C^d mod N.
- 128-bit session keys (in M) are encoded according to textbook RSA (null padding).
- The server knows the secret key d and
 - uses after decryption only the least significant 128 bits without validating the null-padded bits, meaning that the server does not recognize if there is something there other than zero.
 - An error message is prompted if the encryption attempt results in an "incorrect" session key (decrypted text cannot be interpreted by the server). In all other cases there will be no message.

Idea for attack: Approximation of Z in 129 bits from the equation N = M * Z per $M = \lfloor |N/Z| \rfloor$

All bit positions for Z are successively calculated: for each step the attacker gets one additional bit. He or she then modifies C to C' (see below). If a bit overflow occurs while calculating M' on the server (recipient), the server sends an error message. Based on this information, the attacker can determine a single bit of Z.

Examples (10)

Mathematics: Attacks on RSA using lattice reduction

🕵 Attack on small	secret expone	nts (according to Bloemer /	May)	
This attack allows to		dulus N, in case the secret key d is a		
		d "size of d". The attack is feasible f e, first enter the public key (N,e).	or deita < 0.230.	
Then enter the e	stimated value of d	elta. Alternatively, you can directly e le desired delta and bit length of N.	nter d to calculate delta.	
	enerate random RS			
Then click "Start".				
⊢Step 1: Enter key par	ameters and kev-			
		elta: 0,26	Culture I and	
Bit length of 300	u.	ska. 10,26	Set default key parameters	
N: 0636176742538	643431281894389	0645805368151749509128913735	0770157813758116569970942298383	1
e: 8138779339121	475030374303796	4439878581962103151906020054	4380093837278500452470048088191	Generate random RSA key
d: 2261791842873	51546581471			
L Jacontoitoitaita	01040001411			
⊢Step 2: Enter attack j	parameters for the l	attice base reduction		
п	n: 4	Determines the size of the lattic	e to reduce and the maximum size of delta. S	Should be at least 4.
	t 2	- Optimally calculated as a functi	ion of m	
Lattice dimensior	1	-		
		-	pacts the running time significantly.	
Maximum delta	a: 0,2653	Maximal size of delta for big N ((N>1000 Bit).	
Step 3: Start attack -				
Building lattice	≕ Oh Om Os			Start
Reducing lattice	c Oh Om Os	Reductions: 6173		
Calculating resultan	t: Oh Om 1s	Resultants: 1	—	Cancel
Overall time	e: Oh Om 2s	-		
Found factorization:	1			
	793836768417859	37614590694318173	g: 776244924151428097546511729727	951833614919771
			Show log file	Close dialog

- Demonstrates that the parameters of RSA should be chosen in a way to withstand the lattice reduction attacks described in current literature.
- 3 variants which are *not* resistant:
 - 1. The secret exponent d is too small in comparison to N.
 - 2. One of the factors of N is partially known.
 - 3. A part of the plaintext is known.
- These assumptions are realistic.

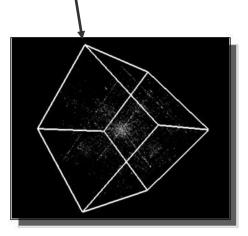
Menu: "Analysis" \ "Asymmetric Encryption" \ "Lattice Based Attacks on RSA" \ ...

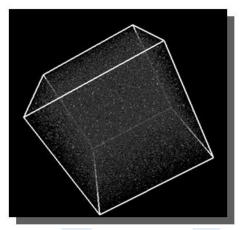
Examples (11)

Random data analysis with 3-D visualization

3-D visualization for random analysis

Example 1


- Open an arbitrary file (e.g. report in Word or PowerPoint presentation)
- It is recommended to select a file with at least 100 kB
- 3-D analysis
- Result: structures are easily recognizable


Example 2

- Generation of random numbers via menu: "Indiv. Procedures" \ "Tools" \ "Generate Random Numbers"
- It is recommended to generate at least 100,000 random bytes
- 3-D analysis
- Result: uniform distribution (no structures are recognizable)

Menu: "Analysis" \ "Analyze Randomness" \ "3-D Visualization"

You can turn the cube with the mouse to the perspective you wish.

Secret sharing with CRT – implementation of the Chinese remainder theorem (CRT)

Secret sharing example (1)

Problem

- 5 people each receive a single key
- To gain access, at least 3 of the 5 people must be present
- "Options" allows the user to configure additional settings.

Required values		50		
Number of parties (n): 5	Parties needed (k):	3		<u></u> UK
Closed interval in which the p	rime identifiers will be	2^108	- 2^109	
generated:		20108	- 20109	Cancel

"Calc. steps" shows all of the steps in key generation.

Menu: "Indiv. Procedures" \

"Chinese Remainder Theorem Applications" \ "Secret Sharing by CRT"

ecret Sharing by CRT: Reconstructing	g a secret with 3 of 5 keys	×
Secret sharing with the Chinese Remainder Th that the secret can be reconstructed if a giver Click the "Calculate" button to generate and di involved parties and the range of values for th	n subset k<=n share their keys with each othe stribute the secret. Click on "Options" to chan	er.
Once the secret has been distributed, use the to rebuild the secret if enough parties are pres	"+/-" buttons to add or remove participating p sent by clicking "Rebuild secret".	oarties. You can try
Constructing and sharing the secret with $n = 5$	5 parties	
Identifier (= Prime number)	Password (= Key)	Distribute keys:
429113512908525640135057483094543	49902182276962066822017821232239	 automatically
441266108707701195777368692648759	438116803443475439135181895443314	C manually
494748574501234338446900483368859	405630421201989592380823916110360	
628638747747511676612478754871227	507118829350015833446174514917170	⊆alculate
647038083908038667307121002678833	266298566365106632726625174564371	Options
		Calc. <u>s</u> teps
		Reset
Rebuilding the secret with a minimum of $k = 3$ l Choose which of the $n = 5$ identifiers will partic 1: $+ l - $ 4990218227696206682201782	ipate in rebuilding the secret.	
2: +/- 43811680344347543913518189	5443314	()
3; +/- 40563042120198959238082391	6110360	
5: +1-		
5) <u>+ / -</u>		
7: +/-	Rebuild secret]
Show intro on next startup		÷.
Help	Log file Exit	

Shamir secret sharing

Secret sharing example (2)

Problem

- A secret value is to be divided among n people.
- t out of n people are required to restore the secret value K.
- (t, n) threshold scheme
- Perform it in the dialog:
 - 1. Enter the secret K, number of persons n and threshold t
 - 2. Generate polynomial
 - 3. Select parameters
 - 4. Click **"Reconstruction"** to restore the secret.

Menu: "Indiv. Procedures" \

"Secret Sharing Demonstration (Shamir)"

y means of a (t, n) ill be able to recor o set up such a sr andom prime p mu ach participant re =f(x). For further de) Shamir scheme a s nstruct the original s cheme, a polynomia st be generated, ceives a randomly c etails please check	ecret by combining thei I f(x) of degree at most t hosen public value x ar the CrypTool online help	ed among n pers r individual secre -1 [with t-1 coeff nd his or her shar b by pressing F1.	icients a(i) chosen at rar e, the corresponding se	ndom] and a	
-		ers (whole numbers) to a	et up a scheme	0.114 h	. 1	
Secret S with S >	= U	1244		Set default parar	neters	
Number of partici	pants n with $n > 0$	8		Options		
hreshold (minimu	um) t with t > 0	3				
		Generate	e polynomial	Edit polynomial par-	ameters	
	erning the polynomia ake place in the dis 1244+42x+571x	crete space GF(p)				
rime p	1627			Accept param	eters	
	, calculated from ch					
Participant	F	ublic value x	Share [se	ecret value f(x)]	^	
participant 1	1	454	1564			

Participant	Public value x	Share [secret value f(x)]	^
✓ participant 1	1454	1564	
participant 2	469	1257	
participant 3	1273	995	
participant 4	1082	673	
participant 5	90	1309	
participant 6	73	1425	
participant 7	931	1445	
participant 8	60	1209	1

Please check the appropriate boxes to select the participants who will attempt to reconstruct the secret

Show information dialog at startup

Cancel

Reconstruction

Examples (13)

Implementation of CRT to solve linear modular equation systems

Astronomical scenario

- How long would it take for a given number of planets (with different rotation times) to become aligned?
- The result is a linear modular equation system that can be solved with the Chinese remainder theorem (CRT).
- In this demo you can enter up to 9 equations and compute a solution using the CRT.

Planetary Motion and the Chinese Remainder Theorem

X

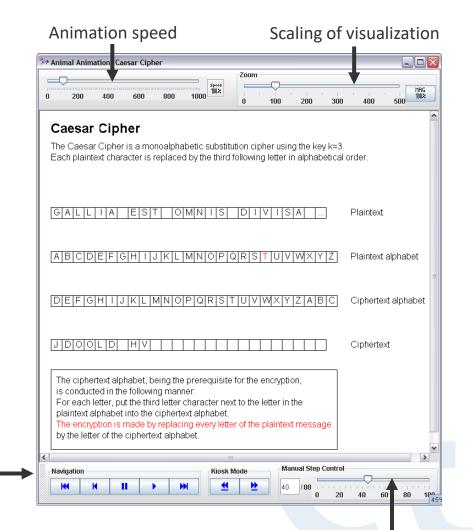
The Chinese Remainder Theorem (CRT) can be used to solve systems of linear modular equations. Enter up to 9 equations $x = a[i] \mod m[i]$ (i=1, ..., 9) below. Such a system of equations can be used to determine the number of days until certain planets become aligned.

10	us congruences / linear modular e		
< ≡ 15	mod	00	
× =	mod		
< ≡ 100	mod	365	
<	mod		
< ■ 0	mod	4327	
:=	mod		
:=	mod		The period of the planets mercury and earth around
: ≡ 0	mod	60149	the sun is 88 and 365 days. Up to reaching a certain radius vector s (red), it takes
. =	mod		15 and 100 days.
olution		,	Is it possible, that mercury and earth are once both on this ra- vector s?
			Choose a planet
126,228,3	90,655		Mercury 🗖 Mars 🔽 Uranus
			🗖 Venus 🔽 Jupiter 🔽 Neptune
	Solve	Exit	🔽 Earth 🔲 Saturn 🥅 Pluto
	2016	Exit	In what time interval (in days) will this incident repeat itself?
			8,359,702,902,760

Menu: "Indiv. Procedures" \ "Chinese Remainder Theorem Applications" \ "Astronomy and Planetary Motion"

Examples (14)

Visualization of symmetric encryption methods using ANIMAL (1)

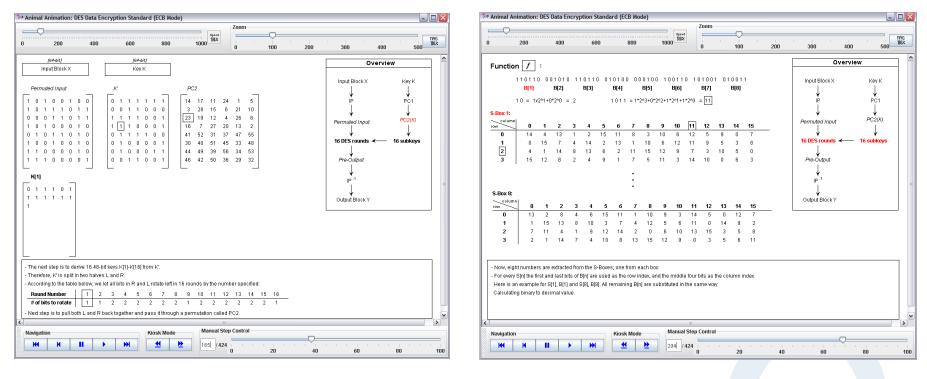

Animated visualization of several symmetric algorithms

- Caesar
- Vigenère
- Nihilist
- DES

CrypTool

- Menu: "Indiv. Procedures" \ "Visualization of Algorithms" \ ...
- Interactive animation control using integrated control center window.

Animation controls (next, forward, pause, etc.)



Direct selection of an animation step

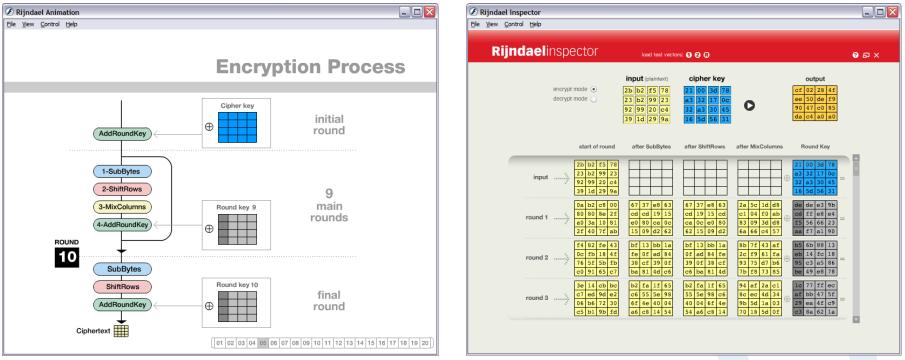
Examples (14)

Visualization of symmetric encryption methods using ANIMAL (2)

Visualization of DES encryption

After the permutation of the input block with the initialization vector (IV), the key K is permuted with PC1 and PC2. The core function f of DES, which links the right half of the block R_{i-1} with the partial key K_i .

Examples (15)

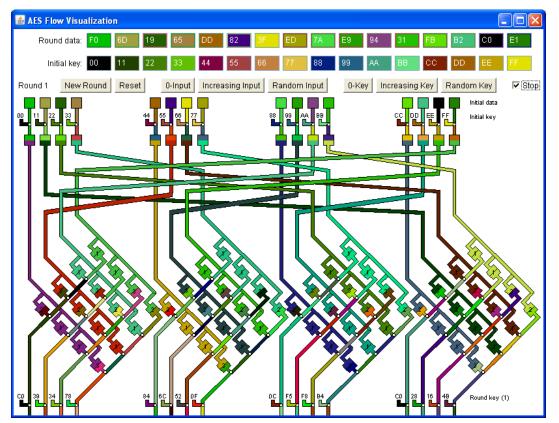

Visualizations of AES (Rijndael cipher) – in Flash

Rijndael Animation (the Rijndael cipher was the winner of the AES selection competition)

Shows the encryption processes of each round (using fixed initial data)

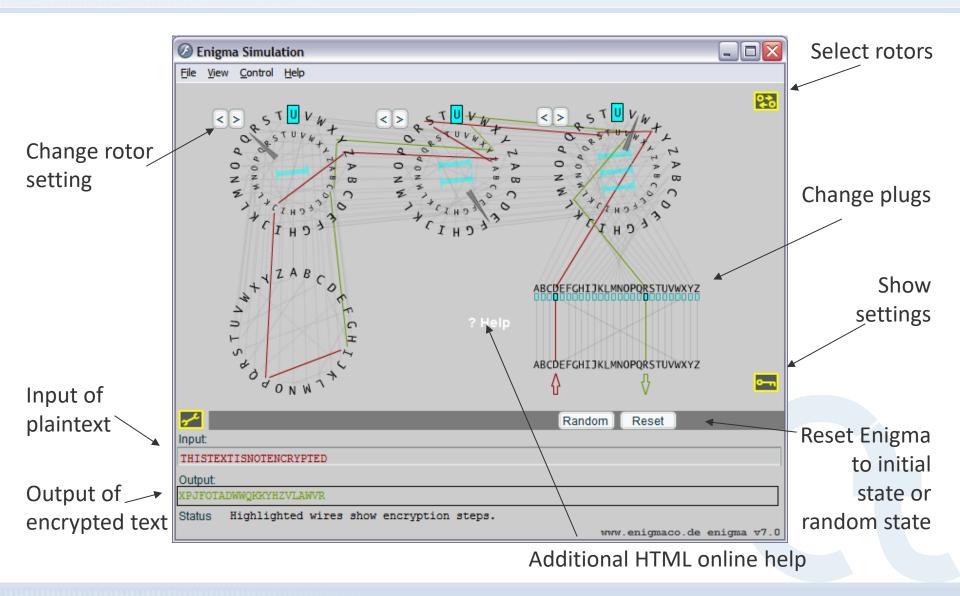
Rijndael Inspector

Test with your own data (shows the contents of the matrix after each round)


Menu: "Indiv. Procedures" \ "Visualization of Algorithms" \ "AES" \ "Rijndael Animation" or "Rijndael Inspector"

Examples (15)

Flow visualization of AES (Rijndael cipher) - in Java


Rijndael flow visualization

Visualization of data changes per round using color gradient

Menu: "Indiv. Procedures" \ "Visualization of Algorithms" \ "AES" \ "Rijndael Flow Visualization..."

Visualization of the Enigma encryption - in Flash

Examples (17)

Visualization of secure email via S/MIME

S/MIME visualization

- Control Center: Sign/Encrypt messages with different parameters
- Animation: From the sender's creation of the message until it is read by the receiver

S/MIME Visualization Control Center v1.0		
In this window you can dynamically configure parameters for secure email messa	ging.	
The visualisation is then done in two steps (control center & flash animation): - At the contol center you choose wether to encrypt or sign an email and the app - After clicking the start button the chosen procedure is visualized with a flash ar	propriate parameters.	
		S/MIME Animation
You can open more than one flash animation at once with different parameter fro		
Signing or encrypting	Choose sender's PSE	
⊙ Signing	 Internal PSE 	
	OPersonal PSE Load existing PSE	
Text of the message	Control parameters	Defining containing 2.78 Defining the Action Action (1) 2.00 Open after the Action Action (1) 2.00 Defining the Action Action (1) 2.00 Defining the Action Action (1) 2.00 Defining the Action Action (1) 2.00
Receiver: bob@web.com	Signature algorithm: RSA	Standardy (3) BA (947) Standard options Spill finds with all options
Sender: alice@wonderland.com	Hash function: SHA-1	
Subject: Message will be signed	transfer encoding: quoted-printal	
Donec consequat, ipsum non volutpat placerat,	MIME type: multipart/signe	
Load message text from file		Prologue Compose E-Mail Canonicalize Transfer Encoding Forwarding Signing Transport
Start signing		To ensure authenticity she makes use of the e-mail client's S/MIME features. One of these features enables her to attach a digital signature. Alice normally doesn't see her signature when she has composed the message, so let's take a look behind the scenes.
		< <prev. <="" chapter="" next="" prev.="" step=""> Next Chapter >> Close </prev.>

Menu: "Indiv. Procedures" \ "Protocols" \ "Secure E-Mail with S/MIME..."

Examples (18)

Generation of a keyed-hash message authentication code (HMAC)

Keyed-Hash Message Authentication Code (HMAC)

- Ensures
 - Integrity of a message
 - Authentication of the message
- Basis: a common key for sender and recipient
- Alternative: Digital signature

Generation of a MAC in CrypTool

- 1. Choose a hash function
- 2. Select HMAC variant
- 3. Enter a key (or keys, depending on the HMAC variant)
- 4. Generation of the HMAC (automatic)

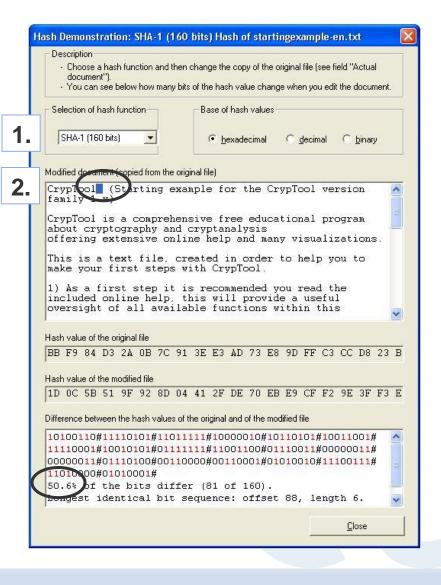
Ke																																
Г	Des	cripti	on —																													
		mear nmet			IAC t	he re	cipier	nt of a	a mes	sage	is ab	ile to	verify	yits in	ntegri	ty and	d the	authe	enticit	y of il	is sen	ider.	There	fore b	poth p	partie	s use	e a sh	ared	secre	et	
							igrapl an bi			unctio	on is a	applie	ed to .	a con	nbina	tion o	if the	mess	age r	n and	the s	secre	t key	k. Ac	cordi	ing to	the	varial	ion c	:hose	n bel	ow.
Г	Mes	sage																														
	Crj	рТо	ol (St	arting) exa	mple	for th	e Cry	pToc	l vers	sion f	amily	1.x)	_		_		_	_			_		_	_		_	_		_	_	^
							re frei Ip an						out c	ryptoj	grapł	ny and	d cryp	otanal	lysis													
	Th	is is a	i text	file,	creat	ed in	orde	r to h	elp y	ou to	make	e you	r first	steps	: with	Сгур	Tool.															≡
							nende help (online	e help	o, this	: will p	provic	leau	iseful	over:	sight o	of all	availa	able fu	inctio	ons w	iithin	this a	pplic	ation.	. The	
	2).	А ро	sible	next	step	WOL	ld be	to er	ncryp	t a file	e with	the (Caes	ar alg	porithr	n. Thi	is car	n be c	lone	via th	ie mei	nu ''0	rypt/	Decry	ipt ->	Sym	metri	c (Cla	issic)'	".		
	3)	Ther	e are	seve	ral e:	xamp	les (ti	utoria	ls) pr	ovide	d wit	hin th	ne on	line h	elp w	hich	provi	de an	eq		to as	in an	unde	erstan	ding	of cry	ptolo	ogy. T	hese	e exar	mples	
																				-												~
																				4												
		AC -		about a	يا است																											
				etera			164.1							ſ	_					Lua	. 110.	J 11-		la la a	a la la c		2.010	240				
				_) bits)								•		нм	AC v	ariant	H(<, H(k	J ., m)):	dout	ole ha	shing) (RFI	C 210	04)				•
	Ha	sh fu	nctio	n S) bits)		-i p	her					•		нм	AC v	ariant	H(k, H(k	J , m)):	dout	ile ha	shin <u>c</u>) (RFI	C 21(04)				•
	Ha	sh fu	nctio	_) bits)		⊃ip	her					•		нм	AC v	ariant	H(<, H(k	, m)):	dout	ole ha	shin⊆) (RFI	C 21(04)				•
	Ha Enl	sh fu er ya	nction ur ke	n S	HA-1) bits)		⊃ip	her				j	•		нм	AC v	ariant	H(к, Н(k	, m)):	dout	ole ha	shin <u>c</u>) (RFI	C 21()4)				•
	Ha Enl	sh fu er ya	nction ur ke	n ∣S y(k)	HA-1) bits)		⇒ip	her					•		нм	AC v	ariant	H(<, H(k	, m)):	dout	ole ha	shin <u>c</u>) (RFI	C 21(04)				•
Ir	Ha Enl Enl	sh fu er ya	ur ke	n S vy(k) Ikey	HA-1) bits)		∋ip	her					•		нм	AC v	ariant	H	<, H(k	, m)):	dout	ole ha	shin <u>c</u>) (RFI	C 21(J4)				•
_	Ha En En	sh fu er yo er se hash	ur ke cond valu	n S ⊮y(k) Ikey e:	HA-1 (k')	(16)		ſ			E1	67	F0			D1					k, H(k	, m)):	dout	ole ha	shing) (RFI	C 210	04)				•
_	Ha En En	sh fu er yo er se hash	ur ke cond valu	n S ⊮y(k) Ikey e:	HA-1 (k')	(16)		ſ			E1	67	F0			D1					<, H(k	, m)):	dout	ole ha	shing) (RFI	C 21(04)				•
1	Ha Enl Enl ner	sh fu er yo er se hash C7	urke cond valu 72	n S y(k) Ikey e: FD	HA-1 (k') 9D	(16) EA		 7F	6E	33				23	86	D1					<, H(k	, m)):	dout	ole ha	shing) (RFI	C 21(04)				
Ir	Ha Ent ner	sh fu er yo er se hash C7	nction urke cond valu 72 iterh 2C	n S lkey e: FD ashl	(k') 9D	(16(EA 2E	B8 lepen	7F ds or 5C	6E 1 the 5C	33 HMA 5C	.C vai	iant o	chose	23 en ab	86 ove)	5C	95 5C	9D 5C	84 5C	C1	5C	5C	5C	5C	5C	5C	5C	5C	5C	5C	5C	50
lr S	Ha Ent ner 10	sh fu er yo er se hash C7 for or 35 5C	ur ke cond valu 72 iter h 2C 5C	n S yy(k) Ikey e: FD ash I 34 5C	(k') 9D 39 5C	(16(EA ion (d 2E 5C	B8 lepen 5C 5C	7F ds or 5C 5C	6E 1 the 5C 5C	33 HMA 5C 5C	C va 5C 5C	iant o 5C 5C	chose 5C 5C	23 3n ab 5C 5C	86 ove) 5C 5C	5C 5C	95 5C 5C	9D 5C 5C	84 5C 5C	C1 5C 5C		5C	5C	5C	5C	5C	5C	5C	5C 5C	5C 5C	5C 5C	50
lr S	Ha Ent ner 10	sh fu er yo er se hash C7 for or 35 5C	ur ke cond valu 72 iter h 2C 5C	n S yy(k) Ikey e: FD ash I 34 5C	(k') 9D 39 5C	(16(EA ion (d 2E 5C	B8 lepen 5C 5C	7F ds or 5C 5C	6E 1 the 5C 5C	33 HMA 5C 5C	.C vai 5C 5C	iant o 5C 5C	chose 5C 5C	23 3n ab 5C 5C	86 ove) 5C 5C	5C	95 5C 5C	9D 5C 5C	84 5C 5C	C1 5C 5C	5C	5C	5C	5C	5C	5C	5C	5C	5C 5C	5C 5C	5C 5C	50
lr Se	Ha Ent ner 10	sh fu er yo er se hash C7 for or 35 5C	ur ke cond valu 72 iter h 2C 5C	n S yy(k) Ikey e: FD ash I 34 5C	(k') 9D 39 5C	(16(EA ion (d 2E 5C	B8 lepen 5C 5C	7F ds or 5C 5C	6E 1 the 5C 5C	33 HMA 5C 5C	.C vai 5C 5C	iant o 5C 5C	chose 5C 5C	23 3n ab 5C 5C	86 ove) 5C 5C	5C 5C	95 5C 5C	9D 5C 5C	84 5C 5C	C1 5C 5C	5C	5C	5C	5C	5C	5C	5C	5C	5C 5C	5C 5C	5C 5C	5
2 Ir 2 2	Ha Ent ner 0 put 3F	sh fu er yo er se hash C7 for o 35 5C C7	ur ke cond valu 72 iter h 2C 72	n S y(k) lkey e: FD ashl 5C FD	HA-1 (k') 9D 39 5C 9D	(160 EA 2E 5C EA	B8 lepen 5C 5C	7F 35C 7F	6E 1 the 5C 5C	33 HMA 5C 5C	.C vai 5C 5C	iant o 5C 5C	chose 5C 5C	23 3n ab 5C 5C	86 ove) 5C 5C	5C 5C	95 5C 5C	9D 5C 5C	84 5C 5C	C1 5C 5C	5C	5C	5C	5C	5C	5C	5C	5C	5C 5C	5C 5C	5C 5C	50
Ir S 2	Ha Ent ner 10 put 3F 5C 10 MA(sh fu er yo er se hash C7 for ou 35 5C C7	nction ur ke cond valu 72 iter h 2C 5C 72 erate	n S y (k) I key e: FD ash I 34 5C FD sd fro	HA-1 (k') 9D 39 5C 9D m me	EA ion (c 2E EA EA	B8 lepen 5C 5C B8	7F ds or 5C 7F 7F	6E 5C 6E	33 HMA 5C 5C 33	C va 5C 5C E1	iant (5C 5C 67	chose 5C 5C F0	23 en ab 5C 23	86 5C 5C 86	5C 5C	95 5C 5C	9D 5C 5C 9D	84 5C 5C 84	C1 5C 5C C1	5C	5C	5C	5C	5C	5C	5C	5C	5C 5C	5C 5C	5C 5C	50
Ir Sea	Ha Ent ner 10 put 3F 5C 10 MA(sh fu er yo er se hash C7 for ou 35 5C C7	nction ur ke cond valu 72 iter h 2C 5C 72 erate	n S y (k) I key e: FD ash I 34 5C FD sd fro	HA-1 (k') 9D 39 5C 9D m me	EA ion (c 2E EA EA	B8 lepen 5C 5C B8	7F ds or 5C 7F 7F	6E 5C 6E	33 HMA 5C 5C 33	C va 5C 5C E1	iant (5C 5C 67	chose 5C 5C F0	23 en ab 5C 23	86 5C 5C 86	5C 5C D1	95 5C 5C	9D 5C 5C 9D	84 5C 5C 84	C1 5C 5C C1	5C	5C	5C	5C	5C	5C	5C	5C	5C 5C	5C 5C	5C 5C	50
Ir Sea	Ha Ent ner 10 put 3F 5C 10 MA(sh fu er yo er se hash C7 for ou 35 5C C7	nction ur ke cond valu 72 iter h 2C 5C 72 erate	n S y (k) I key e: FD ash I 34 5C FD sd fro	HA-1 (k') 9D 39 5C 9D m me	EA ion (c 2E EA EA	B8 lepen 5C 5C B8	7F ds or 5C 7F 7F	6E 5C 6E	33 HMA 5C 5C 33	C va 5C 5C E1	iant (5C 5C 67	chose 5C 5C F0	23 en ab 5C 23	86 5C 5C 86	5C 5C D1	95 5C 5C	9D 5C 5C 9D	84 5C 5C 84	C1 5C 5C C1	5C	5C	5C	5C	5C	5C	5C	5C	5C 5C	5C 5C	5C 5C	5

Menu: "Indiv. Procedures" \ "Hash" \ "Generation of HMACs"

Examples (19)

Hash demonstration

Sensitivity of hash functions to plaintext modifications


- 1. Select a hash function
- 2. Modify characters in plaintext

Example:

By adding a space after the word "CrypTool" in the example text, 50.6 % of the bits in the resulting hash value will change.

A good hash function should react highly sensitively to even the smallest change in the plaintext – "Avalanche effect" (small change, big impact).

Menu: "Indiv. Procedures" \ "Hash" \ "Hash Demonstration"

Educational tool for number theory

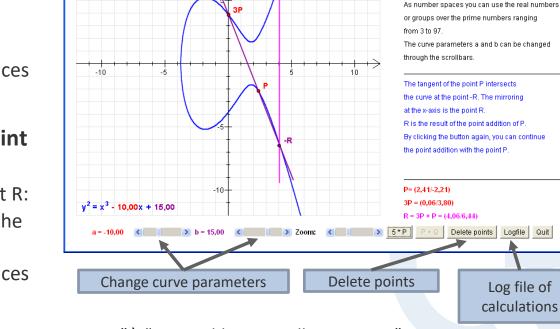
 Number theory supported by graphical elements and interactive tools

Topics

- 1. Integers
- 2. Residue classes
- 3. Prime generation
- 4. Public-key cryptography
- 5. Factorization
- 6. Discrete logarithms

🖄 NT	
Calculators Navigation Glossaries Help	
3.2 Fermat Test page 4 of	11
Each prime p passes a test that results from Fermat's Little Theorem:	
For $b \in \{2,, p-1\}$, test if $b^{p-1} \equiv 1 \mod p$.	
This test is called Fermat Test. Unfortunately some composite numbers pass it as well.	
Example: $341 = 11 \cdot 31$, and yet $2^{340} \equiv 1 \mod 341$.	
Passing the test provides no information. It must be repeated with a different base b:	
$n = 341$ $2^{n-1} \equiv 1 \mod n$ Test passed	
$GCD(b, n) = 1$ $\langle b \rangle$	
Definition: Let n be a composite number coprime to b.	
If $b^{n-1} \equiv 1 \mod n$, then it is said that • n is pseudoprime to b,	
and \bullet b is a liar for (the primality of) n,	
• b is a witness against (the primality of) I	1.
Theorem: If there are any witnesses against n,	
then they make up at least 50% of all $b \in \{1,, n\}$ coprime to n. Proof	
(Go on to the next page.)	
Manue "India Procedures" \ "Number Theory Interactive" \	
Menu: "Indiv. Procedures" \ "Number Theory – Interactive" \	
"Learning tool for number theory"	

Point addition on elliptic curves


- Visualization of point addition on elliptic curves (both real and discrete)
- Foundation of elliptic curve cryptography (ECC)

Example 1: Add two different points

- Mark point P on the curve
- Mark point Q on the curve
- Pressing button "P+Q" creates point R:
 The straight line through P and Q
 - intersects the curve at point -R. - Mirroring -R over the X-axis produces
 - the point R.

Example 2: Multiply a single point

- Mark point P on the curve
- Pressing button "2*P" creates point R:
 - The tangent of point P intersects the curve at point -R.
 - Mirroring -R over the X-axis produces the point R.

= 4 P

ECC Demonstration 1.1.1: Point addition on elliptic curves over the real number space R

Menu: "Indiv. Procedures" \ "Number Theory – Interactive" \ "Point Addition on Elliptic Curves"

Choose the number space
 Real number space R

C Discrete group over Fp

on these curves

This program allows you to generate various elliptic curves and to carry out point additions

Password quality meter (PQM) and password entropy (1)

Functions

- Measure the quality of passwords
- Compare with PQMs in other applications: KeePass, Mozilla und PGP

it and updated

Cancel

- Experimental evaluation with the CrypTool algorithm
- Example: Input of a password in cleartext Password: 1234 Password: X40bTRds&11w_dks

Password Quality Meter	Password Quality Meter
 Description It is not possible to exactly determine and quantify the security of passwords. But it is possible to estimate the security of passwords based on certain assumptions. Here you can see different examples for password quality meters, helping you to estimate the security of your source). 	Description It is not possible to exactly determine and quantify the security of passwords. But it is possible to estimate the security of passwords based on certain assumptions. Here you can see different examples for password quality meters, helping you to estimate the security of your password.
Password input Please enter your password here. The password quality is shown in percent and update with every key stroke.	with every key stroke.
Password: 1234 Show password Password length: 4	Password: X40bTRds&11w_dks V40bTRds&11w_dks V Show password Password length: 16
Password quality based on assumptions (and password entropy in bit) KeePass: Mozilla: CrypTool: CrypTool: (The CrypTool:PQM method evaluates only the first 32 characters)	Password quality based on assumptions (and password entropy in bit) KeePass:
Resistance against dictionary attacks (evaluates only the first 32 characters) Complete vith password disolventions (A provide the password disolvention) (A provide the password disol	- Yes Reconstruction from words, sequences and patterns: Pound: Patterns: - Sequences: Keyboard sequences: Dictionary words: bTR, Rds
Password guidelines Cance	Password guidelines Can

Menu: "Indiv. Procedures" \ "Tools" \ "Password Quality Meter"

Password Entropy	×
 Description This dialog computes a random password. The password entropy describes how hard it is to guess the password. The password alphabet defines which characters are used to create the password. The combination of entropy and alphabet yield the password length. 	
Input parameters for password generation	
Entropy: 25¢ bit	
Alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ.,;;!?() abcdefghijklmnopqrstuvwxyz	
✓ Use current text alphabet Text options	
Don't use confusable characters (written transmission)	
Don't use confusable characters (telephonic transmission)	
Use alphabet for WLAN passwords (64 characters)	
Generated password	
Password length: 44 characters	
Password example: QelQ)mbDk/mR5gDc?WORPILDIISWEQCGEFnpvrgof.5q	
Generate password Measure password quality Close	

Menu: "Indiv. Procedures" \ "Tools" \ "Password Entropy"

Password quality meter (PQM) and password entropy (2)

Insights from the Password Quality Meter

- Password quality depends primarily on the length of the password.
- A higher quality of the password can be achieved by using different types of characters: upper/lower case, numbers, and special characters (password space)
- Password entropy is an indicator of the randomness of the password characters within the password space (higher password entropy results in improved password quality)
- Passwords should not exist in a dictionary (remark: here, a dictionary check is not yet implemented in CrypTool 1).

Quality of a password from an attacker's perspective

- Attack on a password (if any number of attempts are possible):
 - 1. Classical dictionary attack
 - 2. Dictionary attack with variants (e.g., 4-digit number combinations: "Summer2007")
 - **3. Brute-force attack** by testing all combinations (with additional parameters such as limitations on the types of character sets)
- ⇒ A good password should be chosen so that attacks 1 and 2 do not compromise the password. Regarding brute-force attacks, the most important factors are the length of the password (recommended at least 8 characters) and the character set that was used.

Brute-force analysis (1)

Brute-force analysis

Optimized brute-force analysis with the assumption that the key is partially known.

Example – Analysis with DES (ECB)

Attempt to find the remainder of the key in order to decrypt an encrypted text. (Assumption: the plaintext is a block of 8 ASCII characters.)

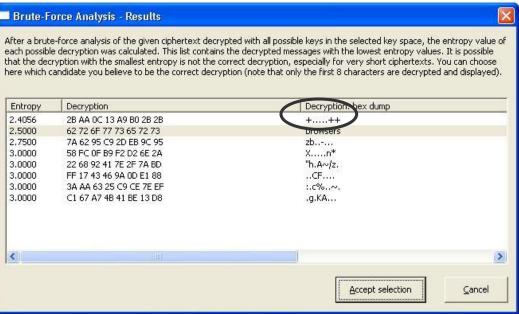
Key (Hex) 68ac78dd40bbefd* 0123456789ab**** 98765432106***** 0000000000***** 0000000000**** abacadaba****** dddddddd*****

Encrypted text (Hex)

66b9354452d29eb5 1f0dd05d8ed51583 bcf9ebd1979ead6a 8cf42d40e004a1d4 0ed33fed7f46c585 d6d8641bc4fb2478 a2e66d852e175f5c

Brute-force analysis (2)

- 1. Input of encrypted text
- 2. Use brute-force analysis
- 3. Input partially known key
- 4. Start brute-force analysis


Select "View" \ "Show as HexDump"

5. Analysis of the results: the correct decryption usually has relatively low entropy. However, because a very short plaintext has been used in this example, the correct result does not have the lowest entropy.

Menu: "Analysis" \ "Symmetric Encryption (modern)" \ "DES (ECB)"

he search space can be limited in order to reduce the search time. To do this enter known parts of the key in hexadecimal notation, unknown as <*>. Example: Enter <00 ** AB ** **> to search all keys starting with a zero byte, followed by an unknown byte, the byte <ab>, and an unknown tail.</ab>	each possible that the deci	e-force analysis of the q e decryption was calcula ryption with the smalles andidate you believe to
lint: The search time will be in the order of minutes to hours if you use 6 or	Entropy	Decryption
fewer asterisks (leaving a 24-bit search space).	2,4056	28 AA OC 13 A9 B0
	2.5000	62 72 6F 77 73 65 7
ey length: 64 bits (effectively 56 bits 💌	2.7500	7A 62 95 C9 2D EB
	3.0000	58 FC 0F B9 F2 D2 (
58 AC 78 DD 40 BB EF D*	3.0000	22 68 92 41 7E 2F 7
	3.0000	FF 17 43 46 9A 0D I
	3.0000	3A AA 63 25 C9 CE
<u>Start</u> Analysis <u>O</u> ptions <u>C</u> ancel	3,0000	C1 67 A7 4B 41 BE :
	<	

Scytale / Rail Fence

Scytale and Rail Fence

- Transpositions scramble the order of letters in the cleartext
- Transposition variant
 - Number of edges (Scytale)
 - Number of rows (Rail Fence)
 - Offset

Menu: "Crypt/Decrypt" \ "Symmetric (classic)" \ "Scytale / Rail Fence..."

Text options

- General text options (Menu: "Options" \ "Text Options...")
- Formatting options for cleartext and ciphertext
- Processing of upper/lower case
- Alphabet for text processing (i.e., what set of characters should be encrypted/decrypted)
- Return to the default settings by clicking the "Restore default" button
- Creates the statistical reference patterns dynamically

		f the letters in the clear own as Scytale and Rail	
Choose the trans	position variant		
Scytale			
C Rail Fence			
Choose the key -			1015
Number of edge	es: 5		
Offset:		G	

Text Options		×
Formatting options for clea	artext and ciphertext	-
✓ Keep characters not	present in the alphabet unchanged	
Upper/lower case in clear	text and ciphertext	
🔽 If possible, retain ca	se information for encryption/decryption	
🗖 Distinguish between	uppercase and lowercase	
Define the alphabet used	in text ciphers	
Uppercase letters	🔲 Special characters	
F Space	Lowercase letters	
☐ Numerals	☐ Umlauts	
Alphabet to use (26 cha	racters):	
ABCDEFGHIJKLMNOP	QRSTUVWXYZ	_
Reference file for statistic		
Apply	Restore default Cance	2

Hill encryption / Hill analysis (1)

Hill encryption

- Polygraphic substitution cipher
- Based on linear algebra

Key

Menu:

- Alphabet characters (see text options) or number values
- Enter or generate random key
- Select multiplication variant
- Size of

Hill	options

Size of matrix				V			1	1 21 1			Size of matrix	
			м	H			1	2 07			○ <u>1</u> ×1	
Hill options	Hill Options										€ <u>2</u> ×2	
	Options to interpret the alphabet characters										© <u>3</u> ×3	
	Walue of the first alphabet character = 0 (e.g. "A"=0)										C <u>4</u> ×4	
	C Value of the first alphabet character = 1 (e.g. "A"=1)										○ <u>5</u> ×5	
enu: "Crypt/Decrypt" \	Character used for padding the cleartext (if necessary) Use first character ot the alphabet (default) A	Generate random key						Larger matrix				
"Symmetric (classic)" \	C Enter the padding character by yourself					⊨ s	how det	ails and sing	le steps of the	Hill ciphe	er	
"Hill"	OK Cancel		<u>E</u> ncry	/pt	Dec	crypt		Further H	ill options	Iext	options <u>C</u> ancel	

Key Entry: Hill Description

Hill key matrix

Selected alphabet (26 characters)

Alphabet characters

ABCDEFGHIJKLMNOPQRSTUVWXYZ

The Hill cipher is a polygraphic substitution cipher based on linear algebra.

Alphabet characters

Number values

Number values

This was the first polygraphic cipher in which it was practical to operate on groups of more than three letters (blocks) at once. The key is a guadratic matrix. Its dimension is the length of the group of letters.

Value of the first 0

alphabet character

(row vector) * (matrix)

(matrix) * (column vector)

Multiplication variant

Hill encryption / Hill analysis (2)

Hill encryption

Sample text with key LVMH

Hill analysis (with known plaintext)

- 1. Long plaintext/ciphertext
- Select plaintext (startingexample-en.txt)
- Select ciphertext
 (Hill encryption of <startingexample-en.txt>)
- Click "Continue" to search for the key

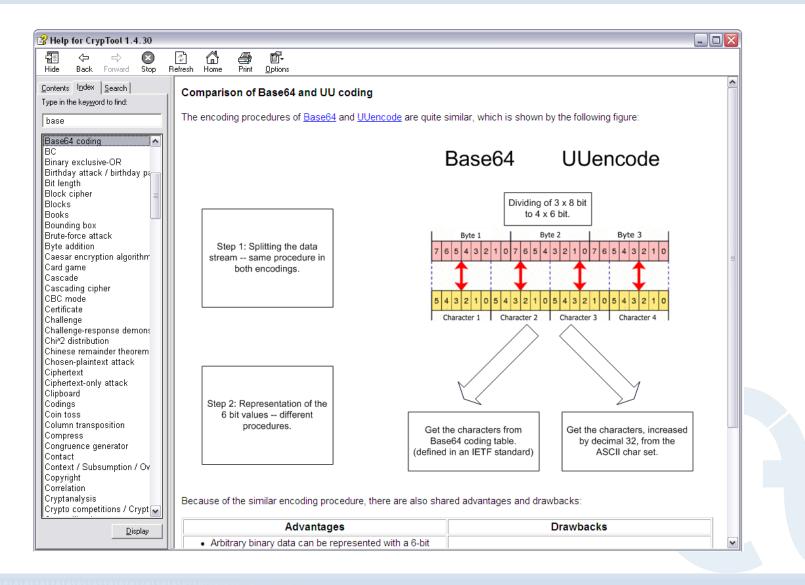
2. Reduced plaintext/ciphertext

- Clear all of the plaintext except the first word ("CrypTool")
- Clear all of the ciphertext except for the first eight characters ("PnhdJovl")
- Click "Continue" to reveal the key!

Which length of plaintext/ciphertext is required to find the correct encryption key?

-	ion. If the plaintext is available along with
text Ciphertext	
CrypTool Starting example for the	e CrypTool version family 1 x)
CrypTool is a comprehensive free offering extensive online help and	educational program about crypto; many visualizations.
This is a text file, created in order	to help you to make your first step
1) As a first step it is recommende Press F1 to start the online help ev	ed you read the included online hel; 🔤 verywhere in CrypTool
2) A possible next step would be t	o encrypt a file with the Caesar alg
) There are several examples (ti	utorials) provided within the online h
 You can also develop your know Navigating through the menus. Y 	wledge by: 'ou can press F1 at any selected me
Reading the included Readme file	e (see the menu "Help -> Readme"
 Viewing the included colorful pre Viewing the webpage www.crvpt 	sentation (This presentation can be ool org
	>
tingexample-en.txt	•
ncryption variants	
ultiplication variant	Order of first character of the alphabet:
🗸 (row vector) * (matrix)	0 🔽 0
🗸 (matrix) * (column vector)	I 1
ons	
	1 x to 10 x
	1 💌 to 10 💌
	1 💌 to 10 💌

Menu: "Analysis" \ "Symmetric Encryption (classic)" \ "Known Plaintext" \ "Hill..."


CrypTool online help (1)

😵 Help for CrypTool 1.4.30								
	Menu: "Help" \ "Starting Page"							
Show Back Forward Stop Refresh Home Print Options	~							
Encryption								
To encrypt a <u>document</u> , an <u>encryption key</u> is required. In order to be able to read the documer								
must be <u>decrypted</u> .	' Belp for CrypTool 1.4.30							
Several different encryption algorithms are available in CrypTool. These are accessed via the	Cham Bash Farmand Chan Batach Hanne Bink Onlines							
Crypt/Decrypt menu.	CBC mode							
	CBC stands for Cipher Block Chaining.							
Encryption algorithms An encryption algorithm is required in order to transmit confidential information over insecure	Under this mode the outcome of <u>encrypting</u> earlier blocks flow into the encryption of the current block. Every block of the encrypted text thus depends not only on the associated plaintext block but also on all the previous plaintext blocks. In addition, an initialisation block is required for the first plaintext block.							
channels, for example, over a network. The information is <u>encrypted</u> by the originator prior to	Encryption proceeds as follows:							
and <u>decrypted</u> by the recipient following transmission.	1. The first plaintext block is encrypted.							
A symmetric encryption algorithm is one in which the originator's and recipient's <u>keys</u> are ider Encryption algorithms in which the originator and recipient have different keys are called asyn								
	3. This is repeated until the end of the <u>plaintext</u> is reached.							
Modern symmetric encryption algorithms can be divided in block ciphers and stream ciphe	Decryption proceeds in analogous fashion:							
Block ciphers encrypt blocks of fixed length (e.g. 64 or 128 bit).	1. The first block of encrypted text is decrypted.							
Available in CrypTool are IDEA, RC2, DES (ECB), DES (CBC), Triple DES (ECB), Triple DES (CBC), Rijndael (AES), MARS, RC6, Serpent, Twofish, DESX, DESL and [The next block of encrypted text is first of all decrypted and then combined with the previous block of encrypted text by means of an <u>Exclusive-OR</u>. 							
 <u>Stream ciphers</u> encrypt messages bit by bit. 	3. This is repeated until the end of the encrypted text is reached.							
In this category CrypTool provides <u>RC4</u> .	However, this method still has the disadvantage that two messages produce the same encrypted text up to							
A summary of all the encryption algorithms available in CrypTool is contained on the help pag <u>Crypt/Decrypt</u> menu.	the first difference. In particular, identical messages produce the same encrypted text. To prevent this, "initialisation vectors" are used. An initialisation vector is a random value which can be transmitted unencrypted with the message. Prior to encryption (or <u>decryption</u> , as the case may be) of the first block, this block is combined with the initialisation vector by means of an <u>Exclusive-OR</u> . The procedure then continues as described above.							
Further information on encryption algorithms can be found in the <u>script</u> , e.g. in the chapter "Eu Procedures".	In the ECB mode, every block is encrypted independently of the other blocks.							

CrypTool online help (2)

Help for CrypTool 1.4.30			X
Hide Back Forward Stop Refresh	Home Print Options		
ontents Index Search	Menu Lattice Based Attacks on F	RSA (Menu Individual Procedures \ RSA Cryptosystem)	
ype in the key <u>w</u> ord to find:			
lattice reduction	The menu Lattice Based Attacks on	RSA contains the following commands:	
Lattice reduction		acks RSA with lattice reduction algorthms, if a part of one of the nes of N is known.	
License terms Line wrap Links		acks RSA with lattice reduction algorthms, if a part of the original artext of an intercepted ciphertext is known and if e is small.	
Literature MARS encryption algorithm MD2 hash value		acks RSA with lattice reduction algorthms, if d is too small npared to N.	
MD4 hash value MD5 hash value Menu (overview of all menus) Miracl		in a common approach: first the task of breaking RSA is transformed dulo an integer (mostly ${\bf N})$ but to find such a root is a difficult	=
Modular transformation Modulo operator Monoalphabetic substitution encryp Network authentication N-aram		als are generated which are known to have the same root. From the icebase is built. This is then reduced with, i.e. the LLL-algorithm to	
Niĥilist encryption algorithm NIST Normal distribution		ew polynomial is built. It can be proven that if the vector is short d root not only modulo ${\bf N},$ but also over the integers.	
NSA NTL	Example:		
Number Shark			
Number system		The polynomial $q_1(x) = 3x+1$ has a root x_0 modulo 7. It is	
Number theory		supposed, that the polynomial $q_2(x) = 4x-1$ has the same	
Offset One-time pad		• root $x_0 \mod 10$ 7. From these polynomials the vectors $b_1 = [3]$	
OpenGL		 1] and b₂=[4 -1] are built. All integer linear combinations of 	
OpenPGP		•	
OpenSSL Options Overview / Subsumption / Broader C Padding	q1(x)=3x+1	 these vectors form points in a lattice. The Figure on the left shows a part of this lattice. Each point of the lattice now can again be interpreted as a polynomial having the desired root. A short vector of the lattice is b₃=[1 -2] from which the 	
Parent window Password Pattern search	q ₂ (x)=4x-1	polynomial $h(x) = x-2$ is built. this polynomial has a root in $x_0=2$ over the integers as well als modulo 7. That $x_0=2$ is	
Pattern search	h(x)=x−2	also a root of the polynomials $q_1(x)$ and $q_2(x) \mod 7$ can	
<u>D</u> isplay	•	• be easily established. $(3x_{0}+1=7, 7 \mod 10, 7=0)$	~

CrypTool online help (3)

Menu tree of the program CrypTool 1.4.40

File			iew I	Encrypt/De	ecrypt	Digital Signatures/PKI	In	ndiv. Pro	cedures A	Analysis	s for Analysis	Options	Window H	ielp
		Undo	Toolbar	Symn	netric (classic)			Has				Plot Options	Cascade	Starting Page
	Open	Redo	Status Bar		Caesar / Rot-13	Generate/Impo		1 1	_MD2	1 1	Entropy	Analysis Options	Tile	lndex
	Close	Cut	Show as Text		Vigenère Hill	LDisplay/Export	Keys	11	_MD4 _MD5	1 1	Floating Frequency	Text Options	Arrange loons	Scenarios (Tutorials) Readme
	_Save	Copy Paste	Show as HexDump Bar Chart		Substitution / Atbash	Sign Document Verify Signature		1 1	_MDS		Histogram N-Gram	Starting Options	Close All	CT Book
	_Document Properties	Delete	Alphabet		Playfair	Extract Signature			_SHA-1		_N-Gram			Presentation
	_Document Properties	Find/Replace	End of Line		ADFGVX	-	ation (Signature Generation)		_SHA-1 _SHA-256		_Autocorrelation _Periodicity			About CrypTool
	Print Setup	Find Next	Line Wrap		Byte Addition	-signature Demonsu	ation (Signature Generation)		SHA-512	Sum	metric Encryption (classic)			-About cryp root
	_Recent Files	Select All	Whitespace		XOR				_RIPEMD-160		_Ciphertext-Only			
	Frit	Show Key	Font		Vernam / OTP				Hash Value of a File	ΙΓ	LCaesar			
		Parent Window	Arial 8		Homophone			1 1	Hash Demonstration		Vigenère			
			Arial 10		Permutation / Transposition				Key Generation from Password (PKCS #5)		Vigenère (Analysis according to Schroedel)			
			Arial 12		Solitaire				_Generation of HMACs		_ADFGVX			
			Arial 14	L	Scytale / Rail Fence			_RS/	Cryptosystem		Substitution			
			Arial 16	Symm	netric (modern)			L F	Prime Number Test		_Solitaire			
			Arial 18	1 H	JDEA				Generate Prime Numbers		Byte Addition			
			Arial 20		RC2				Factorization of a Number		XOR / Vernam			
			_Courier 8	1 F	RC4			1 -	RSA Demonstration	1 -	Known Plaintext			
			Courier 10		DES (ECB)			1 -	Signature Demonstration (Signature Generation)					
			_Courier 12		DES (CBC)			1 4	Lattice Based Attacks on RSA		Single Column Transposition			
			_Courier 14		Triple DES (ECB)			1	-Factoring with a Hint	1 4	Manual Analysis			
			_Courier 16		Triple DES (CBC)				Attack on Stereotyped Messages		Substitution			
			_Courier 18		AES (CBC)				Attack on Small Secret Keys		Playfair			
			Courier 20		Further Algorithms			_	tocols		Solitaire			
			-Format Text Document		_MARS				Diffie-Hellman Demonstration		metric Encryption (modern)			
			Show Box (cube's borderlines)		_RC6			1 1	Network Authentication	1 1	JDEA RC2			
					Serpent				Secure E-Mail with S/MIME	1 1				
					Twofish DESX				ese Remainder Theorem Applications Astronomy and Planetary Motion		_RC4 _DES (ECB)			
					DESL			11	_Astronomy and Planetary Motion		DES (ECB)			
					DESKL				Secret Sharing by CRT		_Triple DES (ECB)			
					AES (self extracting)				alization of Algorithms		_Triple DES (CBC)			
					metric				_Caesar		AES (CBC)			
					RSA Encryption				_Vigenère	1 [Further Algorithms			
					RSA Decryption				_Nihiist		LMARS			
					RSA Demonstration				DES		_RC6			
				LHybri	d				AES		Serpent			
				H	RSA-AES Encryption				Rijndael Animation		_Twofish			
				- F	RSA-AES Decryption				Rijndael Inspector		_DESX			
				- F	ECC-AES Encryption				Rindael Flow Visualization		_DESL			
				L	ECC-AES Decryption			1 4	Enigma	1	DESXL			
									ret Sharing Demonstration (Sharnir)		nmetric Encryption			
								Tool		1 +	Factorization of a Number			
									Codes	1 -	Lattice Based Attacks on RSA			
	- f CT4			16	. . .				Base64 Encode/Decode		Factoring with a Hint			
Menu trees	OT C I 1 8	as HT	ivil and p	dt a	at:				Base64 Encode Base64 Decode		Attack on Stereotyped Messages			
			•						UU Encode/Decode		Attack on Small Secret Keys Side-Channel Attack on "Textbook RSA"			
https://ww	MM CrVI	ntool	org/en/ct	1-1					LUU Encode		_Side-Channel Attack on Textbook RSA			
11005.77 000	vv vv.ci y	pt001.		<u> </u>					LUU Decode	_nasi	Attack on the Hash Value of the Digital Signature			
document	tation /	2000	troo						Decode ASN.1 Code of a Document		yze Randomness			
<u>document</u>	<u>lati011/1</u>	nenu	-1166						_Compress		Frequency Test			
								[LZp		Poker Test			
									UnZip		Runs Test			
									Generate Random Numbers	L	Serial Test			
List of all fun	octions	in all	CrynTool	VOr	cions at	•			Password Quality Meter	Ļ	FIPS PUB-140-1 Test Battery			
		iii ail	Ci yp 1001	VCI	sions at	•			Password Entropy	Ļ	Vitányi			
				h				1 1	Length of a Number	L	_3D Visualization			
https://ww	ww.crvi	ptool.	org/en/ci	tp-				Edu	cational Games					
		-	-	-				L	Number Shark					
document	tation/f	Functio	onvolume	2				Nun	nber Theory - Interactive					

Point Addition on Elliptic Curves... Compute Mersenne Numbers... Seneric t-adic NAF Key Generator

documentation/functionvolume

CrypTool 1.4.40

Content

I. CrypTool and Cryptology – Overview

II. Features of CrypTool 1

III. Examples

IV. Project / Outlook / Contact

Appendix

Future CrypTool Development (1)

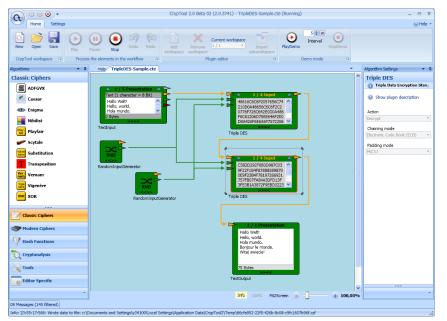
Examples of what is coming after the release of CrypTool 1.4.40 (see readme for details)

CT1	FIDE test with the shility to encly as neclects with lengths other than 2500 bytes, sto	
CT1 JCT JCT JCT JCT JCT JCT JCT JCT JCT+CT2 JCT	FIPS test with the ability to analyze packets with lengths other than 2500 bytes, etc. Tri-partite key agreements Quantum computing resistant signature algorithms (Merkle Tree, MSS, XMSS_MT) maybe: Visualization of the SETUP attack against RSA key generation (Kleptography) maybe: Visualization of the interoperability between S/MIME and OpenPGP formats Entropy analysis, ARC4/Spritz, Dragon, Fleissner grille, Autokey Vigenère, interactive cryptanalysis of classic ciphers Analysis of transposition ciphers using the ACO algorithm Visualization of zero-knowledge proofs Visualization of Quantum Key Agreement, BB84 protocol Action history with the ability to create and replay any given cipher cascade	CT1 = New CT2 = JCT = (both i
CT2 CT2 CT2 CT2 CT2 CT2 CT2 CT2 CT2 CT2	Comprehensive visualization on the topic of prime numbers GNFS (General number field sieve) Demonstration of Bleichenbacher's and Kuehn's RSA signature forgery maybe: Demonstration of SOA security (SOAP messages with WS-Security) maybe: Demonstration of virtual credit card numbers (as an educational tool against credit card abu maybe: WEP encryption and WEP analysis Cube attack (I. Dinur and A. Shamir: "Cube Attacks on Tweakable Black Box Polynomials", 2008) Encryption and automated cryptanalysis of the Enigma machine (and possibly of M-138 and Sigaba Sophisticated cryptanalysis for many classical ciphers; mass pattern search Framework to create and analyze LFSR stream ciphers Framework for distributed cryptanalysis → CrypCloud	·
CT2/JCT CT2/JCT All	Creation of a command-line interface for batch processing Modern pure plugin architecture with plugin reloading capability Expanded parameterization and flexibility of present algorithms	
Ideas	Visualization of the SSL protocol // Demonstration of visual cryptography // Post-quantum comp Cryptography as web application // Privacy preserving	uting //

CT1 = CrypTool 1.x

New versions of CT:

CT2 = CrypTool 2 **JCT** = JCrypTool

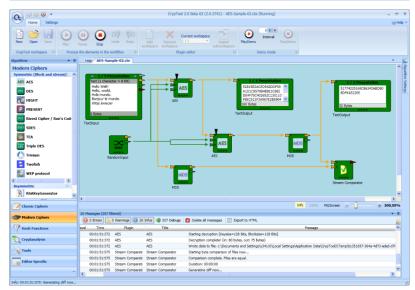

(both introduced on the

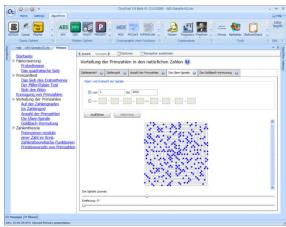
next slides)

Future CrypTool Development (2)

The two successor versions of CT v1 (see readme file)

- 1. JCT: Port and redesign of the C++ version with Java / SWT / Eclipse / RCP
 - see: https://github.com/jcryptool/core/wiki
 - Release Candidate RC8 is available since October 2016 (since 2010, weekly builds are created each week).
- 2. CT2: Port and redesign of the C++ version with C# / WPF / Visual Studio / .NET
 - Allows visual programming and distributed calculations (CrypCloud)
 - see: https://www.cryptool.org/en/ct2-documentation
 - Release 2.0 is available since August 2014 (since July 2008, nightly builds are created each day).


CrypTool 2 (CT2) (screenshot from 2011)



JCrypTool (JCT) (screenshot from 2011)

Future CrypTool Development (3)

CT2: Visual programming

CrypTool 2 (CT2) (screenshots from 2010)

JCT: Platform independent

• 🚑 🖫 🗁 📮 🚇 🗄 🕐			🔛 🔤 Default 🔂 Fle	xiProvider
File Explorer 23 -	🗑 unsaved001.txt 🗵 👘		🚿 Algorithms 🖄	~
Contexts	This is the JCrypTool sample file. This is the JCrypTool sample file. You can use this file for a fast start with JCrypTool, e.g. by encrypting or digitally signing it using the 'Algorithms' menu, 'Cryptanalysis' menu. All cryptographic operations are additionally arranged in the bildrothese of the right side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side. A double click on the second of the tright side on the other hand are normally independent of any opened file. You can either use this sample ile or open any of your on files wherever one is required. The original file remains uncouched all the time, every cryptographic operation creates its own working file. The file of the do n top of the 'Algorithms' view can help you searching a particular algorithm (se well as an analysis, visualization or game.) Weigh this field filters the currently active tab on matching results. More information on learning, using and extending JCrypTool is available in the extensive on line help, which can be accessed via the menu 'Help'> 'Help Contents'.	(3)	Proportions or Proportions or Proportions Proportions Proportion Proportion Proportion Proport Propor	¢

JCrypTool (JCT) (screenshots from 2010)

CrypTool as a Framework for your Own Work

Proposal

- Reuse the comprehensive set of algorithms, included libraries, and interface elements as a foundation.
- Free training to help getting started with CrypTool development.
- Advantage: code written for university theses or other projects will not simply disappear, but rather be further maintained.

Current development environment for CT1: Microsoft Visual Studio C++ , Perl, Subversion Source Code Management

- CrypTool 1.4.40: Visual C++ .NET (= VC++ 9.0)(= Visual Studio 2008 Standard)
- Description for developers: see CrypToolDeveloperReadme.pdf within the code repository
- Sources and binaries of release versions are available for download.
 To get sources of current betas, anyone has read access to the Subversion repository.

Development environments for CT2 and JCT

- CT2 C# version: .NET 4.0, WPF with Visual Studio 2015 Express Edition (free)
- Java Java version: Eclipse 4.6, RCP, SWT (free)

CrypTool – Request for Contribution

Every contribution to the project is highly appreciated

- Feedback, criticism, suggestions, and ideas
- Integration of additional algorithms, protocols, analysis (consistency and completeness)
- Development assistance (programming, layout, translation, testing)
- CT1: for the current C/C++ project, and
- For the new projects (preferred):
 - C# project: "CrypTool 2" = CT2
 - Java project: "JCrypTool" = JCT
- In particular, university faculties that use CrypTool for educational purposes are invited to contribute to the further development of CrypTool.
- Samples of open tasks are on the following developer pages:
 - CT2: See the list <u>https://www.cryptool.org/trac/CrypTool2/wiki/WikiStart</u>
 - JCT: See the wiki <u>https://github.com/jcryptool/core/wiki/Project-Ideas</u>
- Users that make a significant contribution can request to be referenced by name in the online help, the readme file, the about dialog, and/or on the CrypTool website.
- CrypTool 1 is currently downloaded over 6,000 times per month from the CrypTool website. Just over half of these downloads are of the English version.
 The two successors are already being downloaded over 2,000 times a month each.

CrypTool – Summary

THE e-learning program for cryptology

- Successfully active as an open-source project for over 15 years
- Over 600,000 total downloads
- Widespread international usage in schools, universities, companies, and government agencies
- Extensive online help and documentation
- Available for free
- Multilingual

CT: The worldwide most wide-spread e-learning program for cryptography and cryptanalysis.

Contact

Prof. Bernhard Esslinger

University of Siegen Institute for Economics and Business Computing

bernhard.esslinger@uni-siegen.de

www.cryptool.org

Additional contacts: See readme within the CrypTool 1 package

Content

I. CrypTool and Cryptology – Overview

II. Features of CrypTool 1

III. Examples

IV. Project / Outlook / Contact

Appendix

(Literature, CrypTool-related Websites, Download)

Additional Literature

As an introduction to cryptology – and more

- Klaus Schmeh, "Codeknacker gegen Codemacher. Die faszinierende Geschichte der Verschlüsselung", 2nd edition, 2007, W3L [German]
- Simon Singh, *"The Codebook"*, 1999, Doubleday
- Johannes Buchmann, "Introduction to Cryptography", 2nd edition, 2004, Springer
- Paar / Pelzl: "Understanding Cryptography A Textbook for Students and Practitioner", 2009, Springer
- [HAC] Menezes / van Oorschot / Vanstone, "Handbook of Applied Cryptography", 1996, CRC Press
- van Oorschot / Wiener, "Parallel Collision Search with Application to Hash Functions and Discrete Logarithms", 1994, ACM
- Antoine Joux, "Algorithmic Cryptanalysis", 2009, Chapman & Hall/CRC Cryptography and Network Security Series
- Additional cryptography literature see also the links at the CrypTool web page and the literature in the CrypTool online help (by Wätjen, Salomaa, Brands, Schneier, Shoup, Stamp/Low, Oppliger, Martin, etc.)
- Importance of cryptography in the broader context of IT security and risk management
 - See e.g. Kenneth C. Laudon / Jane P. Laudon / Detlef Schoder, "Wirtschaftsinformatik", 3rd edition 2016, Pearson, chapter 15 about IT Security [German]
 - Wikipedia: http://en.wikipedia.org/wiki/Risk_management
 - CrypTool site: <u>https://www.cryptool.org/en/ctp-education/awareness</u>

The CrypTool Portal: www.cryptool.org

G CRYPTOOL 1 NEWS

THIRD PUBLIC BETA OF CRYPTOOL 1.4.31

The new CrypTool 1.4.31 beta is ready. This version is now available in 6 languages German, English, Spanish, Polish, Serbian and Greek. We would appreciate if you test this beta in detail and give us feedback. The release version of CT 1.4.31 is scheduled for

About CrypTool 1

CrypTool 1 (CT1) is a free, open-source Windows program for cryptography and cryptanalysis. It is available in 5 languages and the most wide-spreaded e-learning software of its kind. It supports both contemporary teaching methods at schools and universities as well as awareness training for employees and civil servants. The program can be downloaded here. Originally designed as an internal business application for information security training, CrypTool 1 has since developed into an important open-source project in the field of cryptology and IT security awareness. CrypTool 1 is written in C++.

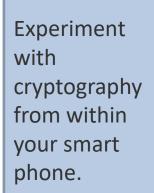
About

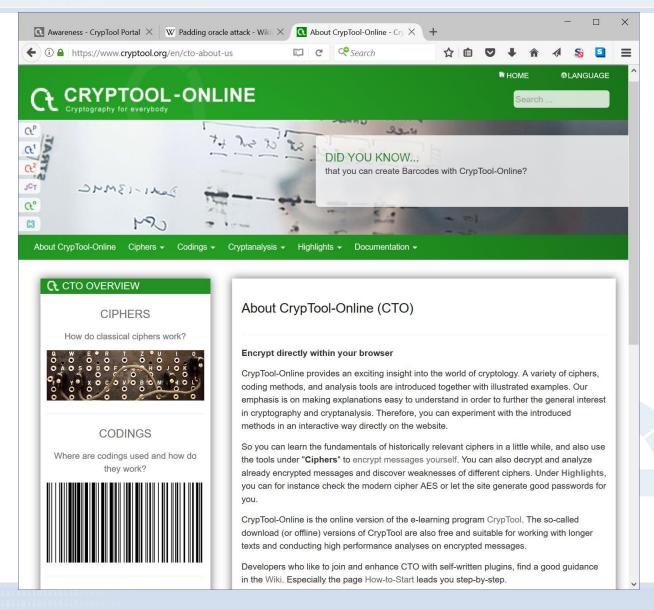
- CrypTool Introduction
- CrypTool in Education
- CrypTool for Awareness
- Coverage in Print Media
- Awards
- Contributors
- Related Projects
- Contact

Features

- CrypTool Features
- Roadmap

Media


Screenshots


Screencast

Documentation

- Presentations
- CT Book
- Crypto History
- Links / Books

www.cryptool-online.org

Further Offers from the CT Project

Members in the family of CrypTool-related websites:

- CrypTool 1 site (CT1)
- CT2 (download and developer site)
- JCT (download and developer site)

CrypTool-Online

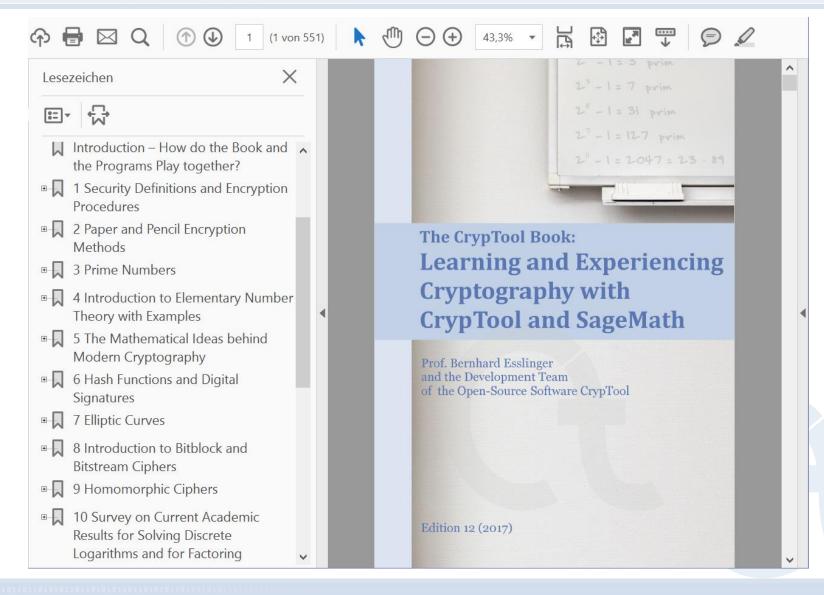
(allows to experiment with cryptography from within your browser, at the PC or with your smart phone)

- CryptoPortal for teachers (currently only in German)
- Schuelerkrypto for pupils & teachers (currently only in German)
- MysteryTwister C3 (MTC3) is an international crypto challenge contest.

www.cryptoportal.org

	CRYPtOPORTAL für Lehrer
Über Unterrichtsmaterial	Linksammlung Registrierung Cryptool Einloggen
Land: alle Länder Schultyp: alle Schultypen Autor: alle Autoren Material enthält folgenden Text:	Unterrichtsmaterial [1] Die Stromchiffre A5 Autor: PS Land: Deutschland - alle Bundesländer Schultyp: Gymnasien In dieser Ausarbeitung zum Seminar IT-Sicherheit wird der auf der Verschaltung von linear rückgekoppelten Schieberegistern (LFSR) basierende Algorithmus A5 und die bisher gefundenen [] Total auf der Stress.pdf
Filtern Zurücksetzen	[2] Die wichtigsten Verfahren der Kryptologie Autor: HW Land: Deutschland - Berlin Schultyp: alle Schultypen Die Präsentation besteht aus zwei Folien. In der ersten wird die Entwicklung der klassischen Kryptographie (von Caesar bis zum one-time-pad) dargestellt. In der zweiten wird ein Überblick zur []
The teacher's portal is currently only available in German. We would greatly	Image: Sensitive Sensitiv
welcome any help to build an English version too.	Einführung in die Kryptografie, Erläuterungen zu populären kryptografischen Primitiven und Protokolle [] Orginalpraesentation.pdf 14 mal heruntergeladen

www.mysterytwisterc3.org


MysteryTwister C3	NUMBER OF ACTIVE MEMBERS: 7886 Register here
Search All Search! Start Challenges Forum MysteryTwister I	Follow us: 🕤 医 Login DE EN
About MTC3 Partners News	•••
CONNECT TO OTHER USERS	
Discuss the challenges with other MTC3 users in the forum. Share your ideas and help bring each other closer to the solution. Register here	Who is online In total there are 21 user online :: 21 registered, 0 hide Most users ever online was25 on Wed May 26, 2010 3:3 Registered users:
Welcome to MTC3 — The Cipher Contest	

You like riddles? You always loved to solve the crosswords in your newspaper? Or maybe you are just curious and want to find out about some of the ways to hide a secret (and possibily even to uncover it)? This is your place! Here at MysteryTwister C3 you can solve crypto challenges, starting from the simple Caesar cipher all the way to modern AES we have challenges for everyone. Our challenges range from level I to III, and an additional level X for "mystery" challenges (they may have been unsolved for a long time, mostly we don't know their solution or have no idea whether there is a solution at all). If you are a beginner its probably best if you start trying those challenges that have been solved mostly (see table below). Additional information regarding MTC3 can be found on our about page.

++ [19:59 - 01.03.2017] Zylius solved the Level II challenge 'Cracking SHA1-Hashed Passwords' +++ [15:27 - 01.03.2017] capiaghi solved the Level I challenge 'Number So

MysteryTwister C3 (MTC3) is an international crypto challenge contest.

The CrypTool Book (the pdf is for free)

