
JCrypTool 1.0

www.cryptool.org

Cryptology
with JCrypTool (JCT)

A Practical Introduction
to Cryptography and
Cryptanalysis

Prof Bernhard Esslinger
and the CrypTool team

Nov 24th, 2020

JCrypTool 1.0

Cryptology with JCrypTool

Page 2 / 92

Agenda

Introduction to the e-learning software JCrypTool
2

Applications within JCT – a selection
22

How to participate
87

JCrypTool 1.0

Introduction to the software JCrypTool (JCT)

Page 3 / 92

JCrypTool – A cryptographic e-learning platform Page 4

What is cryptology? Page 5

The Default Perspective of JCT Page 6

Typical usage of JCT in the Default Perspective Page 7

The Algorithm Perspective of JCT Page 9

The Crypto Explorer Page 10

Algorithms in the Crypto Explorer view Page 11

The Analysis tools Page 13

Visuals & Games Page 14

General operation instructions Page 15

User settings Page 20

Command line parameters Page 21

Overview

JCrypTool 1.0

JCrypTool – A cryptographic e-learning platform

Overview

 JCrypTool – abbreviated as JCT – is a free e-learning software for classical and modern cryptology.

 JCT is platform independent, i.e. it is executable on Windows, MacOS and Linux.
It has a modern pure-plugin architecture.

 JCT is developed within the open-source project CrypTool (www.cryptool.org).

 The CrypTool project aims to explain and visualize cryptography and cryptanalysis in an easy and
understandable way while still being correct from a scientific point of view.

 The target audience of JCT are mainly:

‐ Pupils and students

‐ Teachers and lecturers/professors

‐ Employees in awareness campaigns

‐ People interested in cryptology.

 As JCT is open-source software, everyone is
capable of implementing his own plugins.
Already developed components can be
easily reused.

 JCT was built by more than 100 contributors
from different countries.

The project

JCT Splash Screen

Page 4 / 92

http://www.cryptool.org/

JCrypTool 1.0

What is cryptology?

The meaning of cryptology

 From Greek: „kryptós“ („hidden, secret“) and „lógos“ („writing“, however in this context „lógos“
means „study“).

 Cryptology is about techniques and protocols making information available only for authorized
persons. Cryptology consists of two parts (fields).

The field cryptography

 Science of encryption systems guaranteeing secure and confidential storage and exchange of
information (e.g. between computers).

 Nowadays, other important tasks are a secure exchange of the encryption keys and integrity
checking, e.g. for online banking, for electronic elections, or for electronic money.

 Most of the methods used in this field are based on (unsolved/difficult) mathematical problems.

The field cryptanalysis

 Cryptanalysis is the counter part to cryptography and studies theories and techniques for testing and
breaking cryptographic methods.

 It tries e.g. to derive information about the original plaintext or the used encryption key by
investigating a ciphertext (the result of an encryption process).

 Therefore, maths and computer science are used (e.g. statistical tests, entropy, analysis of frequency
and structure, complexity considerations, brute-force algorithms and much more).

What is JCrypTool all about?

Page 5 / 92

JCrypTool 1.0

The Default Perspective of JCT
... focuses on documents (document-oriented)

Page 6 / 92

JCrypTool 1.0

Typical usage of JCT in the Default Perspective
... selecting a method from the main menu “Algorithms”

Page 7 / 92

JCrypTool 1.0

Typical usage of JCT in the Default Perspective
... selecting a method from the main menu “Visuals”

Page 8 / 92

JCrypTool 1.0

The Algorithm Perspective of JCT
... focuses on functions (function-oriented)

Page 9 / 92

JCrypTool 1.0

The Crypto Explorer

Functionality

 On the right side in the Default Perspective of JCT you can find
the tab “Crypto Explorer”. In this explorer the functions of JCT
are shown.

 All functions shown in the explorer can be found in the menus as
well.

 In the same manner as the menus, the explorer is clustered into

‐ Algorithms

‐ Analysis

‐ Visuals

‐ Games

 Usually algorithms and analyses are applied to the active document
in the editor; the calculated output is shown in a new editor
window.

 Visuals and games are independent from the document shown in
the editor.

In the Default Perspective of JCT

Page 10 / 92

JCrypTool 1.0

Algorithms in the Crypto Explorer view

Classic methods

 This category gathers methods, which were used to encrypt
messages roughly until World War I. Many of them are breakable
by analyzing frequencies. Most of these methods are nowadays
insecure.

Symmetric methods

 Modern methods, where sender and receiver need to have
the same key.

 A main problem of symmetric methods is:
The key must be shared safely between the relevant participants of
the communication.

Asymmetric methods

 Modern methods, where each participant has a pair of keys – a
private and a public one.

 The sender encrypts his message with the public key of the receiver,
while only the receiver can decrypt the message with his own
private key.

Clustering 1/2

Page 11 / 92

JCrypTool 1.0

Algorithms in the Crypto Explorer view

Hash & MAC

 Hash functions map data of arbitrary length to a hash value. This
hash value is associated with the data in a preferably unique way and
has a fixed bounded length which is normally much smaller than the
length of the referred data (comparable to a fingerprint).

 Hash values are used to check for changes in documents
(integrity). A widely used second application is to check passwords.
Therefore the hash value (instead of the plain password) is stored
in the database.

Signatures

 Signature algorithms are used to sign messages and documents.

 With a signature one can check the integrity of documents –
the property that a document is unchanged.

Random number generators

 In cryptography random numbers play a major role. Therefore
functions for generating (pseudo-random) sequences of numbers
are implemented in JCT as well.

Clustering 2/2

Page 12 / 92

JCrypTool 1.0

The Analysis tools

Analysis algorithms

 In this tab of the Crypto Explorer analysis tools are listed. These
tools allow the user to analyze a given cipher text, to find possible
regularities (patterns) to derive the plain text or the password
(key) of the encryption.

 The algorithms are also applied to the document which is currently
opened in the editor.

 Different kinds of analyses are possible. E.g. a transposition analysis:
a ciphertext which was transposed column-wise or row-wise might
be rearranged to its original plaintext.

 With an analysis of frequencies the frequencies of characters or
pairs of characters can be determined.
As characters appear with variant frequency in each natural
language, patterns or recurrences can be found and first ideas
of the plain text can be deviated.

In the Crypto Explorer

Page 13 / 92

JCrypTool 1.0

Visuals & Games

Visuals

 Visuals can be found in the tab “Visuals” in the Crypto Explorer or
in the menu “Visuals”.

 More than 20 visuals of cryptographic problems, circumstances and
algorithms shall help the user to understand cryptography in a
descriptive and playful way.

 To understand cryptology, a basic knowledge of mathematics and
informatics is necessary. Therefore the visuals explain the
appropriate knowledge as well.

Games

 In the section “Games”, games can be played and
strategies developed to solve apparently easy
problems.

 Some games (e.g. the number shark)
provide extensive theories and possible
strategies.

In the Crypto Explorer

Page 14 / 92

JCrypTool 1.0

General operation instructions

Tips and tricks

 With the key combination "Ctrl+3", the quick
access window can be opened.

 Algorithms, visualizations and other content
from JCrypTool can be found here and
directly opened.

 This is the quickest way to search something
in the Default Perspective or in the online
help, if you don’t know where to look for in
the menus or in the Crypto Explorer.

 Clicking at a shown entry makes JCT to jump
straight there.

 Remark: Elements from the Algorithm
Perspective are currently not shown in the
quick access window.

... 1/5 (Quick Access: Search over all parts in JCT)

Quick Access window

Page 15 / 92

JCrypTool 1.0

General operation instructions

Tips and tricks

 With the question mark symbol
in the toolbar, an exhaustive online
help can be opened in a new browser
tab.

... 2/5 (open the exhaustive online help within a new browser tab)

Online help

within browser

Page 16 / 92

JCrypTool 1.0

General operation instructions

Tips and tricks

 The function key F1 can be used (under Linux and Windows) to open the context-sensitive help
at any time.
The context help contains detailed information and references for the current view.

 Alternatively, you can use the big blue question mark symbol to show (or hide) the context-
help window. This big question mark can be found in all description headers of visual plugins.

 In dialog windows: Clicking F1 or pressing the small question mark on the left shows a context-
help window docked at the right side of the dialog.

... 3/5 (open the docked context help)

Context help for the visuals plugin „Verifiable Secret Sharing“

Page 17 / 92

JCrypTool 1.0

General operation instructions

Tips and tricks

 The size of each area in JCT can be adjusted via
the buttons on the upper right corner of the area.

‐ Maximize current area

‐ Minimize area

 Once minimized, an area is represented as a small
bar at the left or right border. The tabs contained
are displayed as small icons inside the bar.

‐ An area can be reset to its old size by clicking
on

‐ The other icons represent the tabs
inside an area. Clicking on one of these,
the appropriate tab will be shown
as an overlapping window which
will be automatically hidden again.

 Reset of a view or of the perspective:

‐ Menu “Window” \ “Reset Perspective”

‐ Double-click on the plugin’s tab changes the view
between full and reduced place for the plugin
(typical behavior in Eclipse)

... 4/5 (minimize, maximize and resize)

Page 18 / 92

JCrypTool 1.0

General operation instructions

Tips and tricks

 Each visual can be reset to its initial settings by clicking on
the button “Restart”. The button is located in the upper
toolbar of the plugin window.

 Quick creation of an editor window

‐ On the far left of the toolbar is the editor icon.
If you click on it, a text editor with the sample file is
opened.

‐ Directly to the right of it is the arrow.
With the arrow you can choose which type of editor (and
whether empty or filled) should be opened in the middle
of the Default Perspective or the middle of the Algorithm
Perspective.

... 5/5 (restart within an opened visual plugin; open an editor)

Page 19 / 92

Restart

JCrypTool 1.0

User settings

More settings

 The global settings of JCT can be found in the preferences: See the menu paths:
on Windows and Linux: „Window \ Preferences”; and under MacOS: „JCrypTool \ Preferences”.

The most important JCT specific settings are:

Concerning cryptography

 Alphabets: Manage alphabets which
are used for many of the classic
encryption methods.

 Keystore: Here you can manage the files
in which the keys of the JCT keystore are
saved.
A newly generated keystore can then be
used in the perspective “Algorithm”.

...the global preferences of JCT

Page 20 / 92

JCrypTool 1.0

Command line parameters

Default

 If JCrypTool is started without parameters its language will be inferred from the operating system, if
the operating system is in English or German. Otherwise, JCrypTool defaults to English.

 Settings of the last JCrypTool session as well as JCT-specific files are stored in a directory named
'workstation'. This directory is created when JCrypTool is started for the first time, below the
JCrypTool directory.

Parameters to control the JCT application from the command line when starting

 Language
-nl [de, en]

 Data directory (with -data you can change the directory 'workstation')
-data [directory]

Sample: JCrypTool -nl de -clean -data USERDIRECTORY/jct-de

 JCrypTool -nl en -clean -data USERDIRECTORY/jct-en

With -nl you control, whether the German or English JCT appears.

With -data you control, where JCT stores its data. It’s up to you to specify a meaningful value for
USERDIRECTORY (under Windows for instance %LOCALAPPDATA%).

...setting the language and the data directory

Page 21 / 92

JCrypTool 1.0

Cryptology with JCrypTool

Page 22 / 92

Agenda

Introduction to the e-learning software JCrypTool
2

Applications within JCT – a selection
22

How to participate
87

JCrypTool 1.0

Applications within JCT – Overview

Page 23 / 92

The ant colony optimization (ACO) Page 25

Viterbi analysis Page 30

Verifiable Secret Sharing Page 35

Signature demonstration Page 40

Extended RSA cryptosystem Page 45

SETUP attack on the RSA key generation (Kleptography) Page 50

Zero-knowledge protocol: Fiat Shamir Page 55

Android Unlock Pattern (AUP) Page 60

Cascades in the Actions window Page 64

Variable alphabets for classic algorithms Page 70

JCrypTool console for classic methods Page 74

The perspective “Algorithm” Page 79

JCrypTool 1.0

The ant colony optimization (ACO)

Abstract

 The implementation of the ant colony optimization in JCT is a visualization which allows the user to
decrypt a cipher text which was encrypted by a transposition cipher.

Functionality

 The ant colony algorithm is an efficient algorithm for solving
combinatorial problems.

 E.g. it can be used to find the shortest path from A to B in a graph.

 The algorithm appreciates the way of ants quickly finding their path
to a desired location.

 In the algorithm an ant chooses its path based on local information
(e.g. information stored in the edges of the graph) and depending on
decisions of preceding ants.

 The more ants choose a certain way, the more ants follow.
This behavior is called swarm intelligence.

 In principle, this algorithm is based on statistical evaluations.

The idea

A

B

0.5
0.3

0.2

Page 24 / 92

JCrypTool 1.0

The ant colony optimization

In the menu

„Visuals“ \ „Ant Colony Optimization“

The algorithm in application

 Ciphertexts encrypted with a simple column transposition cipher can be decrypted with the
ant colony optimization.

 To do so, the key length n is needed and the ciphertext is written row wise in n columns. These
columns will then be arranged as a graph.

 Different pairs of characters arise by concatenating the columns in different orders. In each language,
theses combination of characters appear with differing frequencies. Weights on edges in the graph
are calculated based on theses probabilities, and frequency of an ant following a preceding ant.

 In each iteration a possible plain text is generated from
a different ordering of the columns. The resulting text
is then compared and rated with a given list of words of
a language.

 The rating influences the pheromone matrix.
The decisions of following ants is based on this
pheromone matrix and hopefully theses ants will
find the right solution.

The implementation in JCT

Page 25 / 92

JCrypTool 1.0

The ant colony optimization

Try to decrypt the following text:

 CCUSFSSEALLUOCTNYNOLRCEDITPYPONO

 Paste this sequence of characters into the text field next to
„Insert ciphertext directly“ and choose 4 as the key length[1].

 Press on „Start analysis“.

Application sample 1/2

[1] The length of the key can be estimated with statistic evaluations.
Additionally, here the length of the ciphertext has to be a multiple of the length of the key.

Page 26 / 92

JCrypTool 1.0

The ant colony optimization

Now the two frames “Analysis” and “Visual” are

activated.

There you have the following parameters:

Alpha & Beta:

 Theses parameters influence the probability
of an ant to choose a certain edge.
The higher the value of alpha, the more
often an ant chooses a path a preceding ant
had already chosen.
The higher beta, the more important are
bigrams of characters.

Evaporation:

 A high evaporation lets the pheromone -
dropped by an ant on its way – evaporated much faster.
So following ants will find a less intensive pheromone trace and will be influenced less.

 The pheromone matrix is calculated by these three parameters and indirectly controls the ants.
More precise information can be found in the help.

Ant controller:
With the buttons in this sub-frame the ants can be steered on their path through the graph.

Application sample 2/2

Page 27 / 92

JCrypTool 1.0

The ant colony optimization

Result

 Did you manage to decrypt the text given on page 20?

 As plaintext (after approx. 25 iterations[1] with alpha=0.8, beta=0.8, evaporation=0.9)
you should get:

Conclusion

 The permutation cipher is not a secure encryption method.

 The ant colony algorithm is an efficient algorithm to solve different combinatorial optimization
problems. Not only in the field of cryptanalysis.

 For many problems nature has already found a solution, its just necessary to detect, understand and
abstract this solution.

Educational objective

[1] The number of iterations diverges a lot. It can happen, that a solution has not yet been found after 50 or more iterations. Then it pays
off to restart the plugin and start from scratch.

[2] Pad character which where appended to the ciphertext such that its length is divisible by 4.

SUCCESSFULLANTCOLONYDECRYPTIONOP[2]

Page 28 / 92

JCrypTool 1.0

Viterbi analysis
The idea

The problem

 Given is a running key ciphertext resulting of two plaintexts which were combined by either an XOR
or a modular addition.

 Is it possible to regain the original two plaintexts?

Indeed, it is possible. The Viterbi algorithm is designed to solve such a problem.

Functionality

 The Viterbi algorithm is a recursive algorithm which uses the method of dynamic programming.

 The algorithm analyses probabilities of hidden Markov chains in a given input sequence.

 Beside cryptanalysis, the algorithm is also used in a broad range of other fields, e.g. in voice
recognition or analysis of DNA structure. It is also used for the reduction of errors in transmissions.

 See http://en.wikipedia.org/wiki/Viterbi_algorithm

Page 29 / 92

JCrypTool 1.0

Viterbi analysis

In the menu

„Visuals“ \ „Viterbi“

The algorithm in the cryptanalytical application

 The basic concept of the algorithm is statistical evaluation of the probability of N-grams combined
with the usage of a dictionary of the language in which the ciphertext is written.

 The model of the the analysis is set up with the knowledge that the ciphertext was originally
constructed by modular addition or by XOR.

 The ciphertext is iterated letter by letter and possible letters for the plaintext are calculated.
Surrounding letters build N-grams and their probabilities in the given language will be included
in the reconstruction.

 The different possible letters at each position form different paths for different possible plaintexts.
For each path a probability is generated and more unlikely paths won’t be considered anymore.

The implementation in JCT

Page 30 / 92

JCrypTool 1.0

Viterbi analysis

First, we have to generate a ciphertext
which can be handled by the Viterbi
analysis.

The plugin therefore comes with
a special generator for texts.

 Type in two plaintexts or
load plaintexts from files.

 You can decide in which way (XOR or modular
addition) the plaintexts are combined – letter
by letter.

 By clicking on “Calculate ciphertext”
a ciphertext is calculated from the given
plaintexts.

 Press on ”Next tab (analysis)”.

Application sample 1/2

Page 31 / 92

JCrypTool 1.0

Viterbi analysis

In the next step, the „Viterbi analysis“,
the Viterbi algorithm is applied to the ciphertext.
The algorithm tries to gain information about the
two original plaintexts.

 Choose the language you guess the plaintexts
are written in.

 Possibly, adjust the size of the N-grams and the
depth of search and click on “Start analysis”.

 In the lower two text areas the results are
being calculated now. One can observe
how the sequences of letters are being
generated dynamically.
This can take some seconds.
The best way to watch the whole dialog is full screen.

How does the size of the N-grams and the search
depth affect the algorithm?

Application sample 2/2

Page 32 / 92

JCrypTool 1.0

Viterbi analysis

Conclusion

 Plaintexts which were encrypted by modular addition or XOR can be decrypted with the help
of the Viterbi algorithm.

 A disadvantage of the algorithm: The beginning of the revealed plaintexts is often not decrypted
correctly. Surrounding N-grams are missing and paths of probabilities are not yet calculated.

 Long words are seldom decrypted in the right way.

 The used dictionary plays an important role for the quality of the resulting text, because it is the
source of words for the algorithm.

 Only N-grams which are contained in the dictionary are found. The length of N-grams is limited in
the plugin by N=5. As otherwise the dictionary needs to contain all words with length N. For N=7
there are already a lot of words more.

 The variation of the size of N-grams and the depth of search directly influences the result.
- The size of N-grams determines which words from the dictionary are used.
- The parameter depth of search determines how many candidates for plaintext pairs (paths) are
 used for the analysis of the next character (the algorithm discards after each character unlikely
 paths).

Educational objective

Page 33 / 92

JCrypTool 1.0

Verifiable Secret Sharing
The idea

The problem

 Verifiable Secret Sharing (VSS) is an enhanced variant of Secret Sharing.

 Secret Sharing is about sharing a common secret between multiple persons or players. Each player
receives a so called “share“.

 A small number of players, but not all, is needed to reconstruct the common secret.

 A single share or less than the predefined minimal amount of needed shares shall be useless.

The enhancement “Verifiable“

 VSS is more secure than normal Secret Sharing. Before sharing the secret, one person, the “dealer”
needs to know the secret to share it. Before handing out the shares, he can easily modify the shares
and so make them useless.

 To resolve this problem, the dealer hands out “commitments“ to each player. With a commitment,
each player is able to test whether his share is right or not.

Page 34 / 92

JCrypTool 1.0

Verifiable Secret Sharing
The implementation in JCT

In the menu

“Visuals“ \ “Verifiable Secret Sharing“

The algorithm applied

 The secret is represented by a number (instead of a secret in form of a text).
So a transformation between the text and the number is necessary.

 Each of the n players receive a share. For reconstruction of the secret any t shares (1 < t <= n) shall
suffice.

 In mathematics, a polynomial of degree (t-1) can be reconstructed by the knowledge of t points
which lie on the graph. This can be done with the so called Lagrange interpolation.

 This mathematical knowledge is used in a clever way by VSS.

 The secret is stored in the absolute term of a polynomial. Therefore the secret is simply the
evaluation of the polynomial at the point 0.

Page 35 / 92

JCrypTool 1.0

Verifiable Secret Sharing
Application sample 1/2

First step

 Choose the number of players n and the minimal number
of players t which is needed to reconstruct the secret.

 Determine the secret in form of a number.

The numbers “Safe prime”, “Prime factor” und “Generator”
are calculated automatically, if possible.

 Click on “Determine coefficients“.

Second step

The polynomial can now be specified. As a dealer, here you can
influence the polynomial from which the shares are calculated.
The commits are as well generated from the polynomial.

 The initial polynomial gives player 1 too much information. So
you should generate random coefficients via the button
“Generate”.

 Press “Commit” to calculate the commits.

If you change the polynomial now, and later check the shares with the
previously generated commits, then the shares are marked as invalid.

 Click on “Calculate shares”.

 Page 36 / 92

JCrypTool 1.0

Verifiable Secret Sharing
Application sample 2/2

Step of reconstruction

The secret is shared between the players.

 The shares can be checked for validity
by clicking on “Check”.

 In our example on the right, the
polynomial was changed after
generating the commits.
Therefore the shares are invalid
and the dealer should not be seen
as trustworthy.

Interesting is the fact, that one share was marked as valid even though the polynomial was changed.
So it is necessary to check multiple shares for validity.

 To reconstruct the secret, the players whose shares shall be used can be selected (see screenshot
on the right).

 For our example we selected five players which is as well the minimal number of shares needed.
As we have t = 5.

 Now the secret can be reconstructed by clicking on “Reconstruct”
(invalid shares don’t necessarily deliver a wrong secret).

Page 37 / 92

JCrypTool 1.0

Verifiable Secret Sharing
Educational objective

Conclusion

 A secret can be split between multiple
persons such that it can be decrypted only
in the group.

 E.g. multiple ambassadors can transmit
volatile data without them knowing the
important secret.

 A tolerance can be implemented such that
not each of the ambassadors is needed for
reconstruction.

 In the VSS, again a mathematical model,
the Lagrange interpolation, can be used
in an important application.

Page 38 / 92

JCrypTool 1.0

Signature demonstration

The problem

1. The author of electronic documents cannot be checked à priori. An attribute to verify the author is
needed. This can be a signature.

2. Having only an electronic document one hardly can notice a belated change.

To solve this problem, an author can digitally sign his document.

Functionality

 The author generates a hash value from the document (see slide 41).

 The hash value is encrypted with the private key of the author (if using RSA, signing is equivalent to
encrypting with the private key).

 The encrypted hash value and the used hash function are made available to the public or to the
receiver next to the document.

 A person who is interested in the integrity of the document, can use the public key of the author to
decrypt the hash value of the document.

 By calculating the hash value of the received document and comparing it to the decrypted hash
value, it is easy to ensure that the document was finally changed by the named author.

The idea

Page 39 / 92

JCrypTool 1.0

Signature demonstration

In the menu

“Visuals“ \ “Signature Demonstration“

The algorithm applied

 The plugin is capable of digitally signing a document, such as a file or an arbitrary text typed in.

 As hash method one can choose between MD5, SHA-1, and SHA-2 (SHA-256, SHA-384, and SHA-512).

 Finally, depending on the chosen hash
function it is possible to choose between
DSA, RSA, ECDSA, or RSA with MFG1
as signature method.

 Below that you can choose the subject
(key owner) who owns an according key
for the chosen signature method.*

The implementation in JCT

Page 40 / 92

* There are two ways to create according keys

for the subjects (key owners, users):

a) within the Algorithm Perspective.

b) with the visualization plugin “Public-Key Infrastructure” (JCT-PKI).

JCrypTool 1.0

Signature demonstration

Signing a document is neither hard nor
elaborate. And can be done in two simple
steps.

First step: Create hash value

 Via “Choose input” the document to be
signed can be chosen.

 A dialog appears and either a text can be
typed in directly or an arbitrary document
can be opened with “From file”.

 Next a “Hash function” must be selected.

 The hash value is then be generated and
is shown in the lower left area.
This hash value is an electronic fingerprint
of the document.

Application sample 1/2

Page 41 / 92

JCrypTool 1.0

Signature demonstration

Second step: Create signature

 Clicking “Signature function”, an encryption algorithm
for the hash value can be selected.

 We choose “ECDSA” as signature method.
Below we choose from the JCT keystore a key
of the signing person (here: “Alice Whitehead”).

 By clicking on “Finish”, the signature is generated
and can finally be displayed via
“Show generated signature”.

Application sample 2/2

Page 42 / 92

JCrypTool 1.0

Signature demonstration

Conclusion

 The integrity of electronic documents can be checked with the help of electronic signatures.

 Cryptographic algorithms help to verify the author and the integrity of the document.

 If a document was changed in any way, the hash value changes.

 To make sure the document was created by the named author, its author signs it with his private key.
Only with the “right” public key (the one from the signing person) it is possible, to validate the
original hash value (to verify the integrity of the document).
So the hash value can be publicly accessible, without being endangered to be changed.

Educational objective

Page 43 / 92

JCrypTool 1.0

Extended RSA cryptosystem

Which encryption ciphers are used nowadays, which guarantee security?

 For data which is transmitted over public channels, an encryption method should be used. One
possible cipher for such tasks is the RSA cryptosystem (if used with the correct parameters).

 The RSA cipher is an asymmetric method. To communicate each participant needs two keys, a private
and a public key. These two keys have to be generated first.

 Data which was encrypted with the public key of one participant can only be decrypted with the
corresponding private key.

 To communicate in an encrypted manner with another person, one has to have his public key.
Therefore, the public keys have to be exchanged preliminarily.
A “Certificate Authority” (PKI) is often used to simplify the process. This “authority” saves, manages
and verifies the public keys of the possible communicators and generates certificates.
 See the visualization plugin “Public-Key Infrastructure” (JCT-PKI)
 which visualizes the processes within a PKI with its instances User, RA and CA.

The idea

Page 44 / 92

JCrypTool 1.0

Extended RSA cryptosystem

In the menu

“Visuals“ \ “Extended RSA Cryptosystem“

Functionality

 This plugin implemented in JCT helps managing identities and their associated keys, and it offers
a complete independent communication platform to send and receive messages.

 Further on, it is possible to attack the system via attacking the key. Therefore a brute-force method
is used to factor the modulus “n” into its primes.

 The user can experiment and find security holes of the RSA cryptosystem.

The implementation in JCT

Page 45 / 92

JCrypTool 1.0

Extended RSA cryptosystem

Generation of primes

 First, we generate a key which can then
be attacked.

 Therefore the plugin provides the option
“Manage keys”. We choose primes p and q
and a random e.

 Finally, the key has to be saved in a
keystore using a password, which we
enter in the lower right.

 Now we have created a key for the
identity “Alice Whitehat”. Next we try
to attack the keys. Using the RSA crypto-
system this means solving the factorization of the modulus n = p*q.

 As Alice knows the keys and will not attack her own keys, we switch the tab to “Bob Whitehat”.
(Alice and Bob are default identities in JCT.)

Application sample 1/2

Page 46 / 92

JCrypTool 1.0

Extended RSA cryptosystem

The attack

 Bob Whitehat is now able to attack the public key of Alice.

 So, you click the button “Attack public key” on behalf of Bob and choose the according key of Alice.
The previously generated key can be recognized at its bit length (here 20 bit).

 Due to the short bit length, the key can be attacked via the button “Attack key”. So the key
generated by Alice can be factorized without knowing the primes p and q.

 Here, the factorizing is done only via a brute-force attack.

 A bit length of only 20 bit for
the modulus does by far not
offer appropriate security
for the RSA cipher.

Application sample 2/2

Page 47 / 92

JCrypTool 1.0

Extended RSA cryptosystem

Conclusion

 The factorization methods allows us to factorize numbers with a short bit length in almost no time.
Given a modulus n with only 64 bit (binary representation of the number has 64 digits, which is
around 20 decimal digits, like the number 2^64-15) for instance can be factorized with a current
notebook (Intel Core i7 2,4GHz) in less than a second.

 Once an attacker can find a factorization of the modulus n, the messages which are sent from the
associated identity can be decrypted by the attacker.

 Nowadays, bit length of 2048 bit are rated as secure.

And more …

 The plugin offers the possibility to send and attack messages encrypted with the RSA cipher.

Educational objective

Page 48 / 92

JCrypTool 1.0

SETUP attack on the RSA key generation (Kleptography)

Problem

 There are some “backdoor” attacks, which make the RSA cipher insecure.

 Most of these attacks start by modifying the key generation. The user needs to rely on the random
generation of the primes – this is not always possible.

 The SETUP ("secretly embedded trapdoor with universal protection") attack is such an attack where
the generation of the key is modified.

A short description of the attack:

Functionality

 Some extra values and keys are injected into the system.

 The public keys, which are needed by the RSA method, are modified such that information needed
for decryption can easily be extracted by the attacker. However, without knowing the
implementation of the key generation, one can hardly detect that it is not really random.

The idea

Page 49 / 92

JCrypTool 1.0

SETUP attack on RSA

In the menu

“Visuals“ \ “Kleptography“

Functionality in detail

 Generally the RSA cipher uses two randomly generated private primes P and Q. Their product, the
modulus N = P*Q is published.

 For the attack, initially the prime number P is generated, then this prime is encrypted with the public
key of the attacker. Next the prime Q will be chosen such that the first digits of the modulus N
represent the encrypted value of P.

 As N is publicly available, the attacker can easily reveal the prime P by decrypting the first digits of
the modulus N with his own private key, and the cipher is hacked.

 As only the encrypted prime number P is part of the modulus N and P was randomly chosen, the
modulus seems to be random too.
Moreover, as P will be regenerated for each new pair of keys the attack is not detectable without
reverse engineering the code of the key generator.

The implementation in JCT

Page 50 / 92

JCrypTool 1.0

SETUP attack on RSA

The attack is divided into two main steps: the generation of the keys and the decryption by the attacker.

Key generation

 In the dropdown menu choose
the method “Attack 4: SETUP”.

 First, the two keys of the attacker
have to be generated. This is done
by “Generate new attacker keys”.

 Next, the primes P and Q
which are used in the ordinary key
generation can be generated.

 The prime Q will be chosen such that
the modulus N contains the encrypted
prime P (marked yellow in the figure).

 Finally, N and D can be generated. Then, in the lower third part of the plugin a plaintext can be
encrypted.

 By clicking on the button “Save public key and ciphertext”, the user can switch to the tab “SETUP
attack” to continue and decrypt the ciphertext.

Application sample 1/2

Page 51 / 92

JCrypTool 1.0

SETUP attack on RSA

The decryption by the attacker

 Switch to the tab “SETUP attack”

 The data known by the attacker
is directly shown in the appropriate
fields: These are the keys of the
attacker, the modulus N and the
exponent E. The last two values are
public, as the communication partner
needs them to encrypt the text.

 Using the four buttons on the left,
the text can be decrypted
by the attacker.

 First, the encrypted prime P is
extracted from the modulus N, and
decrypted with the attacker’s
private key.

 Because of a potential carry bit two different cases have to be analyzed.

Application sample 2/2

Page 52 / 92

JCrypTool 1.0

SETUP attack on RSA

Conclusion

 By cleverly encroaching the key generation, an attacker has the possibility to decrypt the cipher text
with the use of his own keys.

 Almost all effective attacks on RSA attack the key generation. Therefore, one has to confide to the
key generation, which is often done by a “Certificate Authority“ (CA) or within a hardware security
module (HSM).

 As the modulus N still appears to be random, as P and Q are chosen differently for each pair of keys,
it is hard to detect the attack by just analyzing the output – without applying reverse engineering.

 For this attack, only the public key of the attacker is needed. So, revealing his attack does not cause
any insecurity for his communication.

Educational objective

Page 53 / 92

JCrypTool 1.0

Zero-knowledge protocol: Fiat Shamir

Problem

 A person A wants to convince a second person B that he knows a secret which person B knows as
well.

 It is required to do the verification in public without revealing the whole secret. So a possible attack
from a third person will disclose the secret.

 A solution for this problem is called a zero-knowledge protocol.

 An important characteristic for such a protocol is its need for honest players. A third person C shall
not be able to convince B of knowing the secret, without really knowing it.

In this application sample we present the zero-knowledge protocol from Fiat Shamir. There exist a
couple more zero-knowledge protocols, like Feige Fiat Shamir, or a version using an isomorphism for
graphs.

The idea

Page 54 / 92

JCrypTool 1.0

Zero-knowledge protocol: Fiat Shamir

In the menu

“Visuals“ \ “Fiat Shamir“

Functionality

 The Fiat Shamir method relies on the difficulty of the following problem: Given an arbitrary number
in the field modulo n, its square root can only be found by factoring of the number n.

 If the modulus n is a product of two unknown primes p and q which are chosen large enough, it is
hardly possible to find the factorization of n.

 As the method operates on numbers, the secret s must be given as a number.

 Person A published the number v = s2 mod n, generates a random number r < n, and receives another
random number b. b is 0 or 1. Person B now receives from person A the number x = r2 mod n.

 Person A calculates y = rsb mod n and sends this number to person B. Person B verifies if the
equation y2=xvb mod n holds. If it does, the secret is verified, due to the fact:

The implementation in JCT

y2 = (rsb)2 = r2s2b = xvb mod n

Page 55 / 92

JCrypTool 1.0

Zero-knowledge protocol: Fiat Shamir

As prover

 Choose the radio button “Prover”.

 First, the two primes p und q have to be
generated. Their product is the public
modulus n. Additionally, the secret s
has to be generated.

 In the section “Action flow” the steps which
are required for the verification can be
executed.

 All values – public and private ones – which
are calculated during this process are shown
in the lower part of the plugin.

 In this example, Alice performs the proof,
as she actually knows the secret. Her
communication partner will verify that she
knows the secret (green hint in the lower
left part of the figure).

Application sample 1/2

Page 56 / 92

JCrypTool 1.0

Zero-knowledge protocol: Fiat Shamir

As attacker

 On the other hand, the plugin offers the
possibility to act as an “attacker” who
pretends to know the secret.

 By cleverly choosing the values x and y
it is possible to convince the other person
in 50 percent of the cases that one knows
the secret.

 This can be done in this scenario.
By repeating the method multiple times,
the probability to detect the attacker
is 1-(0,5)n .

 The more often the test is repeated the
higher is the probability to detect the
attacker.

Application sample 2/2

Page 57 / 92

 n 1 2 3 4 5 6 7 8 9 10

 P(n) 0,5 0,75 0,875 0,9375 0,96875 0,984375 0,9921875 0,99609375 0,998046875 0,999023438

JCrypTool 1.0

Zero-knowledge protocol: Fiat Shamir

Conclusion

 Zero-knowledge protocols are methods which are used to convince someone else of owning a secret
without handing out the secret.

 The Fiat-Shamir protocol is such a method.

 It is important to know that an attacker can fake the result with a probability of (0,5)n .
Here, n is the number of repetitions of the test. The more often the method is repeated the better is
the quality of the result.

 Hint: If it is possible to factorize large numbers easily, then this method is not be secure anymore
(this means, that then the above described probabilities don’t hold any more).

Educational objective

Page 58 / 92

JCrypTool 1.0

Android Unlock Pattern (AUP)

Problem

 Nowadays, smart phones offer – next to writing messages and calling – a lot more functions, e.g.
checking mails, creating notes, or online banking.
Using such functions implies storing much sensible data on the phone (or in a cloud).

 People who lost their smartphone often ask themselves, whether it is possible for others to access
their data. How secure is the lock of the smartphone? What is the difference between the security of
a common PIN and the Android Unlock Pattern which is used by Android devices.

 The Android Unlock Pattern is visualized in JCT, and in its online help the security evaluation is
documented and compared with other unlock patterns.

The idea

Page 59 / 92

JCrypTool 1.0

Android Unlock Pattern

In the menu

“Visuals” \ ”Android Unlock Pattern (AUP)”

Functionality

 The Android Unlock Pattern can be used on smartphones running on Android to lock the screen.
Typically nine points on the screen are arranged as a square. The user can create a pattern by
connecting the dots (under certain rules). This pattern has to entered before using the phone.

 In the visual in JCT the user can check different patterns concerning their security. Therefore, a
security indicator is provided. The indicator shows the number of different patterns possible with the
used number of points of the pattern.

The implementation in JCT

Page 60 / 92

JCrypTool 1.0

Android Unlock Pattern

Set pattern

 The visuals come along with the typical
unlock screen of Android.

 First, a pattern can be set by clicking on one of
the points and the moving the mouse over the
other points. To finish the pattern you click on
the last point of the pattern.

 Once created, in the lower right text field
the security indicator shows the possible
permutations of a pattern with the same
amount of points.
For instance, there are 8776 possible
combinations for a pattern with five points.

Change pattern, check pattern

 The plugin also provides the possibility to save
a pattern, and then draw a second pattern to
compare it with the saved one.

 The stored pattern can also be changed. Therefore, you either need to know stored one.
If you forgot the pattern the visual can simply be reset.

Application sample

Page 61 / 92

JCrypTool 1.0

Android Unlock Pattern

Conclusion

 For a Android Unlock Pattern the order of the used points is important.

 A pattern for the Android unlock screen has to fulfill some rules. For example, each point can only be
visited once.

 Due to this (and some more) rules the possible number of patterns shrinks. In total there are 389,112
different patterns.

 Comparing this AUP pattern to a 4 to 9 digit PIN of the numbers 1 to 9, where each number can be
used only once, there are 985,824 different PIN combinations.
The Android pattern fulfills the following rule: A connection of two points, where the connection line
crosses an unused point, is not a valid. If this rules was not applied, there would exist as many
combinations as for the PIN, where each number can be used only once.

Educational objective

Page 62 / 92

JCrypTool 1.0

Cascades in the Actions window

Functionality

 In the Actions window, sequences of application of crypto methods (cascades) can be recorded and
reapplied. Basically, it’s a recorded and player for JCT functions.

 Arbitrary many function calls can be recorded and reapplied in the JCT Default Perspective.

 Cascades of classic crypto methods can also be viewed in the crypto console (see slide 73).

Examples of application

 Multiple files can quickly be encrypted or decrypted with the
same algorithms, settings and ordering of the algorithm.

 Commutativity, the exchangeability of the order of different
encryption algorithms, can easily be investigated with this
cascade functionality (see slides 66 ff).

The idea

Page 63 / 92

The Actions window allows to automate and re-run

procedures – similar as with batch files on the

command prompt.

In some cases, recorded cascades may not yield the

exact same result after playback as was recorded.

JCrypTool 1.0

Cascades in the Actions window

In the menu

„Window“ \ „Show view“\ „Actions“

Create a recording

 To start recording a cascade press .

 All algorithms being executed now are recorded.

 To finish an recording just press again.

Edit, store and rerun a recording

 In the list below the toolbar, all algorithms are displayed in
the order they have been processed.

 By selecting an algorithm, its execution details (e.g. alphabet,
key etc.) are shown in the area below.

 Now the recorded cascade can be applied to an opened file
in JCT by pressing .

 Use the buttons and to simply export or import
 a cascade simply (save as / load from a file).

The implementation in JCT

Page 64 / 92

JCrypTool 1.0

Cascades in the Actions window

In this example we show, that the order of a Caesar and a transposition cipher can be exchanged in the
decryption process (commutativity).

A first recording

 Start recording the cascade with .

 Encrypt an arbitrary text with Caesar:
“Algorithms“ \ „Classic“ \ „Caesar“

 Add a transposition cipher and encrypt:
 „Algorithms“ \ „Classic “ \ „Transposition“

 Apply a transposition decryption which reverts the last
encryption: Therefore, simply use the same settings as
for the encryption, but just use “Decrypt”.

 Decryption of the Caesar encryption applied first.

 Stop the recording with .

The action window should now look like the figure on the right.

Application sample 1/3

Page 65 / 92

JCrypTool 1.0

Cascades in the Actions window

The cascade we created on the last slide should output a text unchanged, as each ciphertext will directly
be decrypted afterwards.

The current sequence of the algorithms

 Now there should be the following sequence of crypto
operations, where E stands for encryption and D for decryption.
 --> E (Caesar)
 --> E (Transposition)
 --> D (Transposition)
 --> D (Caesar)

 Note the different layers of algorithms and its inverse.
Such a structure will always output the original plaintext.
So all the functions together form a identity transformation.

 So the question arises:
When could we rearrange the order of the calls of the decryption
algorithms such that a text will still be “decrypted” to itself?

Application sample 2/3

Page 66 / 92

JCrypTool 1.0

Cascades in the Actions window

Now we want to reorder our decryption algorithm and observe what happens to the output.

Rearrange a recording

 By right-clicking on a row (e.g. the Caesar decryption), a context menu appears, allowing the user
to exchange the position in the call stack (“Move up” / “Move down”).

A new ordering

 Rearrange the stack to the following:
 --> E (Caesar)
 --> E (Transposition)
 --> D (Caesar)
 --> D (Transposition)

 Open a text file in JCT.

 Apply the new stack to the opened file by clicking on .

What happens to the plaintext?

Does this also work with other encryption methods?

Application sample 3/3

Page 67 / 92

JCrypTool 1.0

Cascades in the Actions window

Conclusion

 The cascade function is perfect for saving and automatically applying different sequences of
cryptographic operations to multiple files at once.

Conclusion with a sample

 A text which was encrypted by the Caesar and a transposition cipher can be decrypted in arbitrary
order. So these methods are commutative.

 This is possible as the Caesar method shifts each character by a fixed number of characters in the
alphabet and the transposition cipher permutes each character in the text. Both methods are applied
to the exactly same objects.
It would be same by taking a monoalphabetic substitution instead of Caesar.

 Many methods (e.g. ADFGVX and Playfair) use a technique so called ”fractioning”.
For instance, pairs of characters are substituted but then single characters are permuted. In this way
substitution and transposition are not commutative any longer.

Educational objective

Page 68 / 92

JCrypTool 1.0

Variable alphabets for classic algorithms

User-defined alphabets

 For most of the classic encryption algorithms (e.g. Vigenère), the ciphertext depends on the alphabet
used in the plaintext.

 Frequently used alphabets are upper- or lowercase alphabets (A-Z, a-z) with or without digits (0-9).

 Many cryptographic tools restrict themselves to a fixed set of alphabets or characters, or an alphabet
has to be entered manually.

 In order to improve the usability, a user should be able to easily create and test an encryption
method with his own alphabets to get a feeling for the importance of encryption alphabets.

 JCT provides the following solution:

‐ A custom alphabet can always be created
for classic encryption algorithms in the
appropriate encryption wizard.

‐ Own alphabets can be built by arranging
frequently used building blocks.

The idea

Page 69 / 92

JCrypTool 1.0

Variable alphabets for classic algorithms

Generate a custom alphabet

 If a methods supports custom alphabets, a user can always provide and create an alphabet for de-
and encryption on-the-fly.

 Special characters which are not on
the keyboard, can be entered in curly
brackets via their ASCII value.
E.g. {10} represent a line break.

The implementation in JCT 1/2

Manuel input

Building blocks compilation

Page 70 / 92

JCrypTool 1.0

Variable alphabets for classic algorithms

Further hints

 Custom defined alphabets can be stored permanently.

 In a JCT session predefined alphabets can also be reused without storing them for permanent usage.

 The saved alphabets can be managed and later edited in the global settings in JCT:
- Windows + Linux: „Window“ \ „Preferences/Settings“
- MacOS: „JCrypTool“ \ „Preferences”

The implementation in JCT 2/2

Page 71 / 92

JCrypTool 1.0

Variable alphabets for classic algorithms

Conclusion

 New alphabets can be created quickly in JCT using existing building blocks.

 As special characters can be included as well, there are no limits for the usage of alphabets.

 As it is easy to understand, and efficient to build a custom alphabet, a user is motivated to try out.

 Most of the common crypto tools use fixed sets of alphabets for classic ciphers. At this juncture, JCT
is maximally flexible.

Educational objective

Page 72 / 92

JCrypTool 1.0

JCrypTool console for classic methods

The console

 The classic cryptographic methods can be started from the console as well.

 To receive some additional information about the console, simply type the command “help”.

 There are help and example pages for each single method.

The implementation in JCT

Page 73 / 92

JCrypTool 1.0

JCrypTool console for classic methods

Example Autokey Vigenère

 From the console, all classic cryptographic methods can be invoked on the current editor’s content,
a file on the disk or text as an argument in the console.

 The console can be called via the icon bar (below the main menu) via the following icon:

 Example with the Autokey-Vigenère method:

‐ Invoke help and examples:

- The upper screen shot shows the command line options described in the console help for a special
method (here using the example „HELP autovigenere“).

Application sample 1/2

Page 74 / 92

JCrypTool 1.0

JCrypTool console for classic methods

Encryption and decryption with Autokey Vigenère

 As sample plaintext we use „ACTIONxCODExDAYYTT “, and as key we use „THEKEY“:

 The 2nd row shows the generated ciphertext „TJXSSlxEhLSKACmbXQ “, generated by the command
„autovigenere -E -a a-zA-Z -t "ACTIONxCODExDAYYTT" -k THEKEY“

 By substituting “-E” with “-D” in the command we can simply revoke the encryption:
„autovigenere -D -a a-zA-Z -t "TJXSSlxEhLSKACmbXQ" -k THEKEY“

Application sample 2/2

Page 75 / 92

JCrypTool 1.0

JCrypTool console for classic methods

Advantages using the console

 The parameters of an operation (such as the alphabet and the key) can be easily inserted and reused
via Copy&Paste.

 The more parameter one uses, the more efficient the usage of the console is. There can be much
more parameters than the alphabet, the key and the filtering of non-alphabet characters.

 For instance, the transposition encryption method uses a lot of parameters:

‐ Each of the following parameters can be configured for the 1st and 2nd round (at all 6 parameters):

‐ Direction of read in

‐ Direction of read-out

‐ Key

‐ Alphabet

‐ Filtering of characters not in the alphabet

 Once entered in the dialog window the
command line contains all parameters.

 The command line can be copied, pasted
and easily modified.

Educational objective 1/2

Appropriate command for the console:
transposition -E --editor -a „Printable ASCII" --key CAD4
-t1ReadIn rw -t1ReadOut cw --key2 RT334 -t2ReadIn rw -t2ReadOut cw

Page 76 / 92

JCrypTool 1.0

JCrypTool console for classic methods

Detailed help from the console

 Help on the console for the transposition method

Educational objective 2/2

Page 77 / 92

JCrypTool 1.0

The perspective “Algorithm”

JCT perspectives

 JCT supports two main user interfaces:
the Default Perspective and the Algorithm Perspective.

 The Algorithm Perspective is function oriented and comes along with more advanced settings.

The Algorithm Perspective is separated – next to the editor and the help – in the following 3 windows:

 1. Keystore

‐ Allows to save keys and key pairs for later usage.

 2. Algorithms

‐ An explorer for algorithms. The algorithms are provided by the crypto libraries FlexiProvider[1] and
BouncyCastle[2]. In contrast to the Crypto Explorer in the Default Perspective, many different
variants of the algorithms are directly listed and selectable. Altogether, the Algorithm Explorer is
much more extensive than the Crypto Explorer.

 3. Operations

‐ The algorithm, chosen via double-click in the Algorithm Explorer, is listed here. Then additional
settings (e.g. the source of the input, the target for the output, the key and the algorithm’s
parameter) are outlined here.

The implementation in JCT

[1] http://www.flexiprovider.de

[2] http://www.bouncycastle.org

Page 78 / 92

http://www.flexiprovider.de
http://www.bouncycastle.org

JCrypTool 1.0

The perspective “Algorithm”

Algorithm Perspective explained

 On opening the Algorithm Perspective for the first time, a slide
show appears in the editor area which explains the basic
functionality of that perspective.

The introduction plugin

Page 79 / 92

JCrypTool 1.0

The perspective “Algorithm”

In this example we encrypt a text from the opened editor
with AES and export the result to a file.

Generate a new key and assign it to a contact

 First, we generate a key to be used for encryption.

 With a new symmetric key can be created.
As AES is a symmetric crypto system, it does only need
a single secret key (instead of a key pair).
Alternatively, for asymmetric crypto systems the
appropriate key pairs can be generated with .
This is step on slide 83.

 In the wizard „New Symmetric Key“ we choose
„AES, Rijndael (OID 2.16.840.1.101.3.4.1)“[1],
select or create our new contact by changing the
contacts name and set an arbitrary password.

 Then, the key is stored in the JCT keystore, listed
below the chosen contact name (in the example “Max”).

Application sample 1/3: select and customize the AES operation

[1] OID: Object Identification, a unique identifier for an algorithm
Defined by ITU (http://en.wikipedia.org/wiki/Object_identifier).

1

Page 80 / 92

JCrypTool 1.0

The perspective “Algorithm”

Selection of the algorithm for the current operation

 Now, it’s time to choose the appropriate algorithm: In the
tab “Algorithm“ below “Block Ciphers” you find the
the AES-Rijndael algorithm.

 Select the algorithm with a double click (step on slide 83).

 A wizard appears where padding and mode[1] of the
block cipher can be adjusted.
Additionally, further algorithm specific settings can be adjusted
here (e.g. for AES the length of each block in bits).

 Like in the Crypto Explorer, the algorithms in this explorer are
also grouped by the kind of the cryptographic method.

 Note about the usage:
Step 2 (selection of the algorithm) can also be performed BEFORE
step 1 (generation of a key for its owner in the keystore). So the
order of step 1 and step 2 is independent.
Especially if the contact (owner) already has a key for the chosen
algorithm, you can directly start with step 2.

Application sample 2/3: select and customize the AES operation

[1] The mode of a block cipher is responsible for the mapping of the plain text to the blocks, which will be eventually encrypted. If in the
last block some bits are missing, the padding rules how these bits will be filled.

2

Page 81 / 92

JCrypTool 1.0

The perspective “Algorithm”

Settings for input and output of the current operation

 Via the double click (in the Algorithms tab on the right) Rijndael was added to the Operations tab.

 Via drag’n’drop the generated key (from the JCT keystore on the left) can now be copied on the key
field of the algorithm (see slide 83, step).

 The option Input/Output offers to select via double click the source and target for the algorithm.
E.g., performing a double click on Input, you can switch text input from a file or from an active editor
window (see slide 83, step).

 To toggle between
encryption or decryption,
you can adjust the option
“Operation”.

 After setting all the
parameters you can
start the operation by
clicking the green
arrow within the
title of the Operations
window.

 With asymmetric algorithms, the kind of operation (encrypt/decrypt, sign/verify) is dictated by the
type of key. A public key encrypts or verifies, a private key decrypts or signs.

Application sample 3/3: select and customize the AES operation

3

4

Page 82 / 92

JCrypTool 1.0

The perspective “Algorithm”
Overview of the 4 steps to select and customize an operation

1

3
2

4

Drag‘n‘Drop

Double click

Page 83 / 92

JCrypTool 1.0

The perspective “Algorithm”
Result after executing the operation (here both, input and output, are in the JCT editor)

Page 84 / 92

JCrypTool 1.0

Further functions in JCrypTool

Further samples what is in JCrypTool

 Tri-partite key agreements (MPKE)

 Visualization of the inner states of DES

 Visualization of calculations on elliptic curves over real and discrete fields

 ElGamal Cryptosystem (for encryption and signing)

 Visualization of the simple power analysis attack against RSA (SPA)

 Quick solver of the number shark game with heuristic methods; solving of Sudoku variants

 Mathematical games: number shark, divider game, zero-knowledge Sudoku (Zudo-Ku)

 Entropy analysis

 Dynamic visualization of Huffman coding trees

 Signature demonstration, signature and certificate verification (shows effect of validity models)

 Visualization of the SSL/TLS handshake (protocol)

 Implementation and visualization of ARC4 and Spritz

 Visualization of post-quantum signature algorithms [SPHINCS+, MerkleTree XMSS-MT, WOTS,
McEliece (error-correcting code), multivariate cryptography (rainbow signature scheme)]

 Fast cryptanalysis of the grille cipher

 …

Page 85 / 92

JCrypTool 1.0

Overview about all functions in JCrypTool
Visible within JCT. Alternatives: Listed within the CrypTool Portal or with the JCT admin tool

Page 86 / 92

https://www.cryptool.org/en/

documentation/functionvolu

me

Legend:

[A] in Algorithm Perspective

[D] in Default Perspective

https://www.cryptool.org/en/documentation/functionvolume
https://www.cryptool.org/en/documentation/functionvolume
https://www.cryptool.org/en/documentation/functionvolume
https://www.cryptool.org/en/documentation/functionvolume

JCrypTool 1.0

Cryptology with JCrypTool

Page 87 / 92

Agenda

Introduction to the e-learning software JCrypTool
2

Applications within JCT – a selection
22

How to participate
87

JCrypTool 1.0

How to participate – Overview

Page 88 / 92

JCrypTool – Request for participation Page 89

Participation in JCrypTool Page 90

Contacts Page 92

JCrypTool 1.0

JCrypTool – Request for participation

Arms are wide open for your participation

 Feedback, critique, helpful suggestions and ideas

 Implementation of more algorithms, protocols or techniques for analysis

 Help to ensure consistence and completeness

 Participation in the development (programming, layouting, translation, tests, website development)

‐ in the “old” C/C++ project CrypTool 1 and

‐ in the new projects (preferred):

‐ C# project: „CrypTool 2“ = CT2 (https://www.cryptool.org/de/ct2/volunteer)

‐ Java project: „JCrypTool“ = JCT (https://www.cryptool.org/en/jct/volunteer)

‐ Browser project: „CrypTool-Online“ = CTO (http://www.cryptool-online.org)

 Especially faculties/chairs who use JCrypTool for educational purposes, are invited to join
the development.

 Significant contribution can be mentioned (in the online help, in about dialogs, and on the website).

Page 89 / 92

https://www.cryptool.org/de/ct2/volunteer
https://www.cryptool.org/de/ct2/volunteer
https://www.cryptool.org/en/jct/volunteer
https://www.cryptool.org/en/jct/volunteer
http://www.cryptool-online.org/
http://www.cryptool-online.org/
http://www.cryptool-online.org/

JCrypTool 1.0

Participation in JCrypTool

Example ideas for more visuals

 Visualization of the interoperability between S/MIME and OpenPGP formats

 Demonstration of visual cryptography

 Protocol validator

 Cryptanalysis of further algorithms

 Visualization of different methods from post-quantum cryptography

 Visualization of current developments like indistinguishability obfuscation

Further things of high interest

 One place for all the manipulations of frequency tables (creation, exchange, deepness) and of
permutations

 Key Storage

 JavaFX support

Open tasks are also mentioned on the developer sites:

 JCrypTool: https://github.com/jcryptool/core/wiki/project-Ideas

Page 90 / 92

https://github.com/jcryptool/core/wiki/project-Ideas
https://github.com/jcryptool/core/wiki/project-Ideas
https://github.com/jcryptool/core/wiki/project-Ideas

JCrypTool 1.0

Participation in JCrypTool

 Wiki: https://github.com/jcryptool/core/wiki

 Style-Guide: https://github.com/jcryptool/doc/raw/master/Guidelines/JCrypTool-GUI-Guidelines.pdf

 Tutorial: https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer

 Information for developing
plugins is provided in the JCT
wiki. The wiki in the internet
offers links and information
for JCT core developers and
crypto plugin developers.

 Plugin developers should not
need any projects from the
JCT repository. They just need
to run JCT as a target platform
and develop for it.

More information for developers

Page 91 / 92

https://github.com/jcryptool/core/wiki
https://github.com/jcryptool/doc/raw/master/Guidelines/JCrypTool-GUI-Guidelines.pdf
https://github.com/jcryptool/doc/raw/master/Guidelines/JCrypTool-GUI-Guidelines.pdf
https://github.com/jcryptool/doc/raw/master/Guidelines/JCrypTool-GUI-Guidelines.pdf
https://github.com/jcryptool/doc/raw/master/Guidelines/JCrypTool-GUI-Guidelines.pdf
https://github.com/jcryptool/doc/raw/master/Guidelines/JCrypTool-GUI-Guidelines.pdf
https://github.com/jcryptool/doc/raw/master/Guidelines/JCrypTool-GUI-Guidelines.pdf
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer
https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer

JCrypTool 1.0

Contacts

www.cryptool.org

Page 92 / 92

Prof. Bernhard Esslinger Simon Leischnig Thorben Groos

Overall CT lead
University of Siegen

JCT project lead JCT project co-lead

bernhard.esslinger@uni-siegen.de

bernhard.esslinger@gmail.com

simonjena@gmail.com thorben.groos@web.de

Dominik Schadow: former project lead, info@xml-sicherheit.de

http://www.cryptool.org/
http://www.cryptool.org/
mailto:bernhard.esslinger@uni-siegen.de
mailto:bernhard.esslinger@uni-siegen.de
mailto:bernhard.esslinger@uni-siegen.de
mailto:bernhard.esslinger@gmail.com
mailto:simonjena@gmail.com
mailto:Thorben.groos@web.de
mailto:info@xml-sicherheit.de
mailto:info@xml-sicherheit.de
mailto:info@xml-sicherheit.de

