Kryptologie mit JCrypTool (JCT)

Praktische Einführung in Kryptografie und Kryptoanalyse

Prof. Bernhard Esslinger und das CrypTool-Team

24. November 2020

JCrypTool 1.0

Einführung in das JCrypTool-Programm

Anwendungsbeispiele

Möglichkeiten zur Mitwirkung

22

JCrypTool – Kryptografische E-Learning-Plattform	Seite 4
Was ist Kryptologie?	Seite 5
Die Standard-Perspektive von JCT	Seite 6
Typische Benutzung von JCT in der Standard-Perspektive	Seite 7
Die Algorithmen-Perspektive von JCT	Seite 9
Der Krypto-Explorer	Seite 10
Algorithmen in der Krypto-Explorer-View	Seite 11
Die Analysetools	Seite 13
Visualisierungen & Spiele	Seite 14
Allgemeine Bedienungshinweise	Seite 15
Benutzervorgaben	Seite 20
Kommandozeilen-Parameter	Seite 21

JCrypTool – Kryptografische E-Learning-Plattform Das Projekt

Übersicht

- JCrypTool im folgenden JCT abgekürzt ist eine kostenlose E-Learning-Software für klassische und moderne Kryptologie.
- JCT ist plattformunabhängig, d.h. es läuft unter Windows, MacOS und Linux.
 JCT hat eine moderne Pure-Plugin-Architektur.
- JCT ist im Open-Source-Projekt CrypTool (<u>www.cryptool.org</u>) entstanden.
- Das CrypTool-Projekt hat sich zur Aufgabe gemacht, Kryptografie und Kryptoanalyse einfach, verständlich und trotzdem auf wissenschaftlichem Niveau zu erklären und zu visualisieren.
- Zielgruppe von JCT sind hauptsächlich:
 - Schüler und Studenten
 - Lehrer und Dozenten/Professoren
 - Mitarbeiter in Awareness-Kampagnen
 - Kryptologie-Begeisterte.
- Da JCT Open-Source-Software ist, kann jeder eigene Erweiterungen schreiben und bereits entwickelte Komponenten wieder benutzen.
- Zu JCT trugen über 100 Menschen aus verschiedenen Ländern bei.

Der JCT-Ladebildschirm (Splash-Screen)

Der Begriff Kryptologie

- Aus dem Griechischen von "kryptós" ("versteckt, verborgen, geheim") und "lógos" ("Wort", in diesem Kontext steht es für "Lehre").
- Kryptologie beschäftigt sich im Allgemeinen mit Verfahren und Protokollen, die Informationen nur Befugten verfügbar machen. Kryptologie besteht aus 2 Teilbereichen.

Der Teilbereich Kryptografie

- Wissenschaft, die Verschlüsselungssysteme bereitstellt, um Sicherheit und Vertraulichkeit beim Speichern und beim Informationsaustausch (z.B. zwischen Computern) zu gewährleisten.
- Neben Verschlüsselung sind heutzutage auch sicherer Schlüsselaustausch und Integritätsprüfung wichtig, um z.B. Online-Banking, elektronische Wahlen oder elektronisches Geld zu ermöglichen.
- Die Sicherheit vieler Verfahren beruht auf (ungelösten/schwierigen) mathematischen Problemen.

Der Teilbereich Kryptoanalyse

- Kryptoanalyse ist das Gegenstück zur Kryptografie und liefert Theorie und Verfahren zum Testen und Brechen kryptografischer Verfahren.
- Es wird z.B. versucht, aus dem Geheimtext dem Ergebnis einer Verschlüsselung Informationen über den Klartext oder den benutzten Schlüssel zurück zu gewinnen.
- Dazu werden Mathematik und Informatik benutzt (z.B. statistische Tests, Entropie, Häufigkeits- und Strukturanalysen, Komplexitätsbetrachtungen, Brute-Force-Algorithmen und vieles mehr).

Die Standard-Perspektive von JCT

... Dokumenten-orientiert

00	JCrypTool	
] 🗟 • 🚑 🔛 🚯 🗁 🖳 🥸] 🕐		😭 ⊡ Standard 👔 Algorithmen
🌏 Datei-Explorer 🕱 🖉 Aktionen 🏠 📄 🤣 🌄 🗖	🗑 unbenannt001.txt 🕱 📃 🗖	🚿 Krypto-Explorer 🕱 🛛 🔽 🗖
	Dies ist die JCrypTool Beispieldatei.	Q Filtertext eingeben
▶ 🛅 Applications	Sie können diese Datei für einen schnellen Start mit (CrynTool	Asymmetrisch 👳
Genutzerinformationen	nutzen, indem Sie die Datei z.B. über das Menü "Algorithmen"	- ElGamal
	verschlüsseln oder digital signieren, oder im Menü	
▶ adata	"Analyse" verschiedene Analysen auf eine verschlüsselte Datei anwenden.	
▶ 🛅 dev	Noch einfacher gelangen Sie zu sämtlichen kryptografischen	🖨 Klassisch 🚸
▶ 🛅 etc	Operationen über die "Krypto-Explorer" Sicht auf der rechten Seite.	J ADFGVX
i home	Nach einem Doppelklick auf den gewünschten Eintrag auf dem	🔄 Autokey–Vigenère
▶ □ Library	Schritt für Schritt durch den Verschlüsselungsprozess. Das	JG Bifid-Verfahren
Network	Entschlüsseln erfolgt später auf dieselbe Art und Weise.	G Caesar
▶	Alle angebotenen Algonithmen und auch die Anglysen	
▶	benötigen immer eine geöffnete Datei in einem der JCrypTool	Doppeikasten
sbin	Editoren. Visualisierungen und Spiele sind dagegen in der Regel	uSi Playfair
▶ i sw	unabhängig von einer geöffneten Datei. Wo auch immer eine Datei besätist wind "Kännen Gio disce Boisnildatei verwenden eden	🖸 Substitution
System	eine beliebige eigene Datei öffnen. Ihre Originaldatei bleibt	JG7 Transposition
lisers	dabei stets unangetastet erhalten, jede kryptografische	JG Vigenère
	Operation generiert eine neue Arbeitsdatei.	US XOR
	Bei der Suche nach einem bestimmten Algorithmus (auch Analyse,	
In Hilfe X ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Visualisierung oder Spiel) hilft Ihnen das Filterfeld oben in	
📔 Inhalt 💯 Suchen 📲 Verwandte Themen	der "Krypto-Explorer" Sicht. Hiermit wird der gerade aktive Tab auf	R MD5
💷 Lesezeichen 🛗 Verzeichnis	zum suchbegriff pussenue etheruge ethgeschrunke.	🐕 SHA
Datei-Explorer Sicht	Weitere Informationen zum Lernen, Anwenden und Erweitern von JCrvpTool finden Sie in der umfanareichen Online-Hilfe, die Sie	🔄 SHA-3-Kandidaten
Die Datei-Explorer Sicht bietet Zugriff auf das Dateisystem.	über das Menü "Hilfe"> "Inhaltsverzeichnis der Hilfetexte"	MAC ↔
Sie konnen Dateien offnen in dem Sie auf den Dateinamen doppelklicken. Die gewählte Datei wird anschließend im Howediter gestäffest über der Kentsutmenni hehen Sie Zugriff	aufrufen können.	R HMacMD5
auf viele weitere Operationen.		Cufallszahlengenerator
Siehe auch:		🛅 Signatur
Datei-Explorer Sicht		Symmetrisch 👳
Weitere Ergebnisse:		🐕 AES
😵 Suche nach Sicht Datei-Explorer		u Gi Dragon
		Jeg LFSR
		1 RC6
		TML Sicherheit
		Algorithmen Analysen Visualisierungen Spiele
] 🕫]

Typische Benutzung von JCT in der Standard-Perspektive

... Auswahl eines Verfahrens im Hauptmenü Algorithmen

Datei Bearbeiten Algorithmen Analyser	ı Visualisierungen Spiele Fenster Hilfe	
🗟 🔻 🚑 🖫 🖻 📮 🛛 Asymmetrisch		😰 🔛 Standard 🔀 Algorithmen
🛃 Datei-Explorer Σ Hash	unbenannt001.txt 🕱 🛛 🖓 🗖	🖋 Krypto-Explorer 🕱 🛛 🖇 🗖 🗖
√ □/ Klassisch	<pre>s ist die JCrypTool Beispieldatei.</pre>	🔍 Filtertext eingeben 🛛 🔊
▶ 🖻 bin MAC	können diese Datei für einen schnellen Start mit JCrypTool	Asymmetrisch
▶ 🖨 boot Signatur	zen, indem Sie die Datei z.B. über das Menü "Algorithmen"	🛅 Hash
cdrom Symmetrisch	AES e Analysen auf eine verschlüsselte Datei anwenden.	🛱 Klassisch 👳
Dev Zufallszahlengenerat	or 🕨 🍱 ARC4/Spritz	ADFGVX
🕨 🗖 etc 👘 🎦 Schlüsselspeiche	r 🛛 🔤 Dragon en Sie zu sämtlichen kryptografischen 👘 👘 👘 👘	🖾 Autokey-Vigenère
▼ □ home	Na Na IDEA k auf den gewünschten Eintrag auf dem	🔄 Bifid
▼ 🗖 snuc	"A 🔤 LFSR net sich ein Assistent und führt Sie	J ^{eg} Caesar
▶	Sci RC6 urch den Verschlusselungsprozess. Das später auf dieselbe Art und Weise	
▶ 🖨 data	interesting space an aresetse are and neise.	
🕨 🗖 Desktop	Alle angebotenen Algorithmen und auch die Analysen	
Documents	Editoren. Visualisierungen und Spiele sind dagegen in der Regel	
	unabhängig von einer geöffneten Datei. Wo auch immer eine Datei	
10 Hilfe 🛛 🖓 🖓 🖓	benötigt wird, können Sie diese Beispieldatei verwenden oder	
🖻 Inhalte 🚀 Suchen	dabei stets unangetastet erhalten, jede kryptografische	
📽 Verwandte Themen 🛄 Lesezeichen	Operation generiert eine neue Arbeitsdatei.	MAC
🛱 Verzeichnis	Bei der Suche nach einem bestimmten Algorithmus (auch Analyse	Signatur
Krypto-Explorer Sicht	Visualisierung oder Spiel) hilft Ihnen das Filterfeld oben in	Symmetrisch 🔅
Die Krypto-Explorer Sicht listet alle in	der "Krypto-Explorer" Sicht. Hiermit wird der gerade aktive Tab auf	AES CONTRACTOR
JCrypTool verfügbaren kryptografischen	zum Suchbegriff passende Eintrage eingeschrankt.	ARC4/Spritz
Operationen geordnet nach Kategorie auf. Zum Anwenden eines Algorithmus muss	Weitere Informationen zum Lernen, Anwenden und Erweitern von	🔄 Dragon
eine Datei in einem der JCrypTool Editoren	JCrypTool finden Sie in der umfangreichen Online-Hilfe, die Sie	10EA
geöffnet sein. Dies gilt auch für Sichten aus	aufrufen können.	15R
der Kategorie Analysen. Visualisierunger und Spiele öffnen Sichten, die meist ohne		🔀 RC6
geöffnete Datei funktionieren.		🗀 Zufallszahlengenerator
Üher das Menü können Sie zwischen der		Algorithmen Analysen "2

Typische Benutzung von JCT in der Standard-Perspektive

... Auswahl eines Verfahrens im Hauptmenü Visualisierungen

Datei Bearbeiten Algorithmen Analysen	Visualisierungen Spiele Fenster Hilfe					
월 ▼ 월 🛛 🕒 📮 🎦 🕄 🍳 월 ▼ 🕅 ▼ 🐎 -	Ameisenkolonie-Optimierung (ACO)		😰 🔛 Standard 🔀 Algorithmen			
🛃 Datei-Explorer 🛿 🛛 🚹 🖻 🔗 🖇 🗖 🗆	🔲 Android-Mustersperre (AUP)		🚿 Krypto-Explorer 🕱 🔋 🗖 🗌			
▼ □)/	ARC4 / Spritz		🔍 Filtertext eingeben			
▶ 🖻 bin	Chinesischer Restsatz (CRT)	mit JCrypTool	🛱 Visualisierungen 🛛 🔅			
▶ 🖻 boot	📮 Diffie-Hellman Schlüsselaustausch (EC)	Algorithmen"	Huffman-Kodierung			
Cdrom	ElGamal-Kryptosystem	nu isselte Datei anwenden.	Innere Zustände im Data Encryption			
▶ 🖻 dev	Elliptische-Kurven-Berechnungen		Standard (DES)			
▶	🔲 Erweiterter Euklid / Wechselwegnahme	grafischen der rechten Seite	🗖 Kleptographie			
▼ □ home	Erweitertes RSA-Kryptosystem	ag auf dem	🗖 McEliece-Kryptosystem			
▼ 🗖 snuc	🗖 Grille	führt Sie	🗖 Mehrparteien-Schlüsselaustausch (BD			
▶ □from_sp3	Hash-Sensitivität	bzess. Das i Weise	II)			
▶ 🖨 data	🔲 Homomorphe Verschlüsselung (HE)	i neise.	Merkle-Hellman Rucksack-			
Desktop	🔲 Huffman-Kodierung	en				
Documents	Innere Zustände im Data Encryption Standard (DES)	en in der Regel	Merkie-Signaturen (XMSS^MT)			
Downloads	Kleptographie	nmer eine Datei				
	McEliece-Kryptosystem	rwenden oder Idatei bleibt	RSA-Kryptosystem SPHINCS+-Signatur			
eclipse-workspace	Mehrparteien-Schlüsselaustausch (BD II)	afische				
😰 Hilfe 🕱 🛛 🗘 🖓 🗄 🗖 🗖	Merkle-Hellman Rucksack-Verschlüsselung					
🛅 Inhalte 郑 Suchen	Merkle-Signaturen (XMSS^MT)	(auch Analyse.	SSL/TLS-Handshake			
📽 Verwandte Themen 💷 Lesezeichen	Multivariate Kryptografie	rfeld oben in	Shamirs Secret Sharing			
🛱 Verzeichnis	RSA-Kryptosystem	rade aktive Tab auf	Shanks Babystep-Giantstep			
Texteditor	Shamirs Secret Sharing		Signatur-Demo			
Mit dem Texteditor können Textdateien	Shanks Babystep-Giantstep	rweitern von	Signatur-Verifikation			
angelegt, bearbeitet und betrachtet	Signatur-Demo	-Hilfe, die Sie r Hilfetexte"	Simple Power Analysis / Square and Multiply			
Operationen können auf beliebigen	Signatur-Verifikation		Verifiable-Secret-Sharing			
Textdateien ausgeführt werden. Das	Simple Power Analysis / Square and Multiply		Uinternitz Einmal-Signatur (WOTS /			
Ergebnis einer solchen Operation kann aber	SPHINCS+-Signatur		WOTS+)			
Hexeditor geöffnet werden.	SPHINCS-Signatur		🗖 Zero-Knowledge: Feige-Fiat-Shamir			
Siehe auch:	SSL/TLS-Handshake		🗖 Zero-Knowledge: Fiat-Shamir			
Texteditor	Verifiable-Secret-Sharing		🗖 Zero-Knowledge: Graphenisomorphie			
Hexeditor	Winternitz Finmal-Signatur (WOTS / WOTS+)		🗖 Zero-Knowledge: Magische Tür			
JCrypTool 1.0						

Die Algorithmen-Perspektive von JCT

... Funktions-orientiert

000	JCrypTool	
] 🗟 • 🚑 🚊 🗟 🛛 🎱] 😨		😭 🔤 Standar 🙀 Algorithmen
👔 Schlüsselspeicher 🛛 🔋 🕞 📚 💐 🍟 🗖	🗑 unbenannt001.txt 🕱 📃 🗖	S Algorithmen 🕱 🗖 🗖
JCrypTool Keystore	Dies ist die JCrypTool Beispieldatei.	Asymmetrische Blockchiffren
Realize Whitehat	Circlement disce Detei Circlement adheallen Chart mit (Counter)	▼ authentifizierungscodes
V Deheime Schlüssel	ste konnen alese batet für etnen schnetten start mit Stryptoot	▶ 🛅 CBCMac
- AES, Riindael (OID: 2,16,840,1,101,3,4,1) (5	verschlüsseln oder diaital signieren, oder im Menü	▶ 🛅 CMac
HmacMD5 (OID: 1.3.6.1.5.5.8.1.1) (Schlüss)	"Analyse" verschiedene Analysen auf eine verschlüsselte Datei anwenden.	▶ 🛅 HMac
IDEA (OID: 1.3.6.1.4.1.188.7.1.1) (Schlüsse		▶ 🛅 TwoTrackMac
► MARS (Schlüsselstärke: 128)	Noch einfacher gelangen Sie zu sämtlichen kryptografischen	▼ 🛅 Blockchiffren
► RC6 (Schlüsselstärke: 128)	Operationen über die "Krypto-Explorer" Sicht auf der rechten Seite.	▶ 🔐 Camellia
🔻 📚 Schlüsselpaare	Nach einem Doppeiklick auf den gewunschten Eintrag auf dem	▶ 😹 DESede
CMSSwithSHA1andWinternitzOTS_1 (OID: 1.	Schritt für Schritt durch den Verschlüsselungsprozess. Das	IDEA (OID: 1.3.6.1.4.1.188.7.1.1)
CMSSwithSHA384andWinternitzOTS_1 (OID:	Entschlüsseln erfolgt später auf dieselbe Art und Weise.	3 MARS
🖙 Privater Schlüssel		🐻 Misty1
强 Öffentlicher Schlüssel	Alle angebotenen Algorithmen und auch die Analysen	▶ 🔜 RC2
CMSSwithSHA384andWinternitzOTS_4 (OID:	benötigen immer eine geöffnete Datei in einem der JCrypTool	RC5
🔛 Privater Schlüssel	Lattoren. Visualisterungen und Spiele sind adgegen in der Regel	3 RC6
🔀 Öffentlicher Schlüssel	benötigt von einer georinteren batet, mo dach immer eine batet	Rijndael
DSA (OID: 1.3.14.3.2.12)Schlüsselpaar (Sch	eine beliebige eigene Datei öffnen. Ihre Originaldatei bleibt	SAFER+
	dabei stets unangetastet erhalten, jede kryptografische	SAFER++
	Operation generiert eine neue Arbeitsdatei.	Serpent (OID: 1.3.6.1.4.1.11591.13.2)
I Hilfe X C C C C	bei des findes ande sines hardingtes d'antithues fande des lans	👶 Shacal
📄 Inhalt 💖 Suchen 📽 Verwandte Themen	bet der suche nach einem bestimmten Algorithmus (auch analyse,	Shacal2
💷 Lesezeichen 🔚 Verzeichnis	der "Krypto-Explorer" Sicht. Hiermit wird der gerade aktive Tab auf	₩ Iwotisn
Useh Fuelalesen	zum Suchbegriff passende Einträge eingeschränkt.	DHA256
Hasn-Funktionen	Weiters Toformationen zum Lannen Anwenden und Erweitern von	FORK256
beliebig lange Zeichenfolge auf eine Zeichenlänge	ICrystol finder Sie in der umfagereichen Online-Hilfe, die Sie	MD4 (OID: 1.2.840.113549.2.4)
fester Länge ab, der Hashwert genannt wird. Beliebte	Sing des Manii "Uilfen" - "Taballeunareisbrie des Uilfeheute"	MD5 (OID: 1.2.840.113549.2.5)
Längen (Hash-Länge genannt) sind beispielsweise		RIPEMD128 (OID: 1.3.36.3.2.2)
32 Bytes entspricht.	😰 Operationen 🕱 🔰 🖻 🔤 🔁 🗖	RIPEMD160 (OID: 1.3.36.3.2.1)
Kryntologische Hash-Euriktionen müssen dahei	Ausgewählter Eintrag: <keiner></keiner>	RIPEMD256 (OID: 1.3.36.3.2.3)
bestimmte Sicherheitseigenschaften erfüllen. Zum	▶	RIPEMD320
einen muss es eine Einwegfunktion sein, das heißt, für		SHA (OID: 1.3.14.3.2.26)
einen gegeben Hasnwert muss es praktisch unmöglich sein, eine Fingahe zu finden die diesen		SHA224 (OID: 2.16.840.1.101.3.4.2.4)
Hashwert besitzt. Ebenfalls muss eine sichere Hash-		SHA256 (OID: 2.16.840.1.101.3.4.2.1)
Funktion kollisionsresistent sein: Es muss praktisch		SHA384 (OID: 2.16.840.1.101.3.4.2.2)
finden, die denselben Hashwert besitzen.		Ticer (OID: 1.3.6.1.4.1.11501.13.2)
		оо пуст (OD. 1.3.0.1.4.1.11391.12.2)
Hash-Funktionen haben in der Kryptographie viele		The Hybride Verschlüsselung
Signaturen, zur Integritätsprüfung von Dateien oder		ECIES
zur sicheren Abspeicherung von Passwörtern.		McElieceFujisakiCipher (OID: 1.3.6.1.4.1.8
1 - 0		1

Der Krypto-Explorer

In der Standard-Perspektive von JCT

Funktionalität

- In der Standard-Perspektive von JCT befindet sich auf der rechten Seite der Reiter "Krypto-Explorer". Im Krypto-Explorer werden die Funktionen von JCT dargestellt.
- Alle hier enthaltenen Funktionen lassen sich auch über die Menüs in der Menüleiste anwählen.
- Der Explorer ist wie die Menüs gegliedert in
 - Algorithmen
 - Analysen
 - Visualisierungen
 - Spiele
- Algorithmen und Analysen werden normalerweise auf das im Editor angezeigte Dokument angewendet; und der berechnete Output wird in einem neuen Editorfenster angezeigt.
- Visualisierungen und Spiele starten normalerweise unabhängig von dem im Editor angezeigten Dokument.

🚿 Krypto Explorer 🛛 🔍 🔍 🗄 E	3
Filtertext eingeben /	2
🛅 Asymmetrisch	
🛅 Klassisch 🛛 🗸	×
🔄 ADFGVX	
🔤 Autokey-Vigenère	
🔤 Bifid-Verfahren	
🔄 Caesar	
🛅 Hash	
MAC	
a Zufallszahlengenerator	
🛅 Signatur	
Symmetrisch 🔬	×
🔀 AES	
🖅 Dragon	
🐕 IDEA	
JET LFSR	
Algorithmen Analysen "2	

Algorithmen in der Krypto-Explorer-View Aufteilung 1/2

Klassische Verfahren

 In diese Kategorie sind Verfahren einsortiert, die etwa bis zum ersten Weltkrieg zur Verschlüsselung eingesetzt wurden. Viele dieser Verfahren sind durch Häufigkeitsanalysen zu knacken. Die allermeisten sind nicht mehr sicher.

Symmetrische Verfahren

- Dies sind moderne Verfahren, bei denen Sender und Empfänger den gleichen Schlüssel besitzen müssen.
- Problematik dieser Verfahren:
 Der Schlüssel muss auf sicherem Wege unter den relevanten Kommunikationsteilnehmern verteilt werden.

Asymmetrische Verfahren

- Dies sind moderne Verfahren, bei denen jeder Teilnehmer ein Paar von Schlüsseln besitzt – jedes Paar besteht aus einem privaten und einem öffentlichen Schlüssel.
- Der Sender verschlüsselt dann mit dem öffentlichen Schlüssel des Empfängers; der Empfänger entschlüsselt mit seinem privaten Schlüssel.

🚿 Krypto Explorer 🛛 🔍 👻 🗖 🗖
Filtertext eingeben
asymmetrisch
🛅 Klassisch 🛛 🗠
🔄 ADFGVX
🔄 Autokey-Vigenère
🔤 Bifid-Verfahren
🖅 Caesar
Hash
MAC
🛅 Zufallszahlengenerator
🛅 Signatur
🛅 Symmetrisch 🛛 🗠
🔀 AES
🖅 Dragon
🔀 IDEA
J LFSR
Algorithmen Analysen "2

Algorithmen in der Krypto-Explorer-View Aufteilung 2/2

Hash & MAC

- Hashfunktionen bilden Daten beliebiger Länge auf einen Hashwert ab. Dieser Hashwert ist den Daten möglichst eindeutig zugewiesen. Er hat eine begrenzte feste Länge, die normalerweise viel kleiner ist als die Länge der Daten (analog einem Fingerabdruck).
- Hashwerte können benutzt werden, um Veränderungen an Dokumenten festzustellen (Integrität). Hashwerte werden auch in Datenbanken gespeichert, um Passwörter abzugleichen.

Signaturen

- Signier-Algorithmen dienen dazu, Nachrichten und Dokumente zu signieren.
- Mit einer Signatur kann die Integrität also die Eigenschaft, ob ein Dokument unverändert ist – überprüft werden.

Zufallszahlengeneratoren

 Zufallszahlen spielen eine große Rolle in der Kryptografie, weshalb hier auch Funktionen zum Generieren von (pseudozufälligen) Zahlenfolgen implementiert sind.

🚿 Krypto Explorer 🛛		E
Filtertext eingeben		G
🛅 Asymmetrisch		
🛅 Klassisch		
🛅 Hash		<<
105 MD5		
況 SHA		
🔤 SHA3-Kandidaten		
🛅 MAC		<
🐕 HMacMD5		
🛅 Zufallszahlengenerator		 <
强 SHA1		
🛅 Signatur		<<
😘 DSA		
C Symmetrisch		

Die Analysetools

Im Krypto-Explorer

Analyse-Algorithmen

- Die in diesem Reiter des Krypto-Explorers aufgelisteten Analyse-Tools eignen sich, um den Geheimtext zu analysieren, um eventuelle Regelmäßigkeiten (Muster) festzustellen und damit auf den Klartext oder das Passwort (Schlüssel) zu schließen.
- Diese Algorithmen werden ebenfalls auf das aktuell geöffnete Dokument im Editor angewandt.
- Es sind unterschiedliche Analysen möglich, z.B. eine *Transpositions-Analyse*, mit der ein Geheimtext, der zeilen- oder spaltenweise transponiert wurde, wieder in den Klartext überführt werden kann.
- Mit einer Häufigkeitsanalyse lässt sich die Häufigkeit einzelner Buchstaben oder Buchstabenpaare in einem Text bestimmen.
 Da die Buchstaben in einer natürlichen Sprache verschieden häufig vorkommen, lassen sich so Muster und Wiederholungen erkennen und erste Ideen für den Klartext ableiten.

Algorithmen Analysen Visualisierungen »1

Visualisierungen & Spiele Im Krypto-Explorer

Visualisierungen

- Die Visualisierungen sind im Krypto-Explorer unter dem Reiter "Visualisierungen", oder direkt im Menü "Visualisierungen" zu finden.
- Über 20 Visualisierungen lassen den Benutzer kryptografische Probleme, Sachverhalte und Algorithmen auf spielerische und anschauliche Weise erkunden und verstehen.
- Die Kryptologie bedient sich aus den verschiedensten wissenschaftlichen Feldern der Mathematik und Informatik. In den Visualisierungen werden daher auch die benötigten Grundlagen beider Fachgebiete erklärt.

G 1

6(6)

5(3)

Spiele

- In der Sektion "Spiele" kann man Spiele spielen, Strategien probieren, und nachdenken, wie die scheinbar einfachen Probleme gelöst werden können.
- Bei einzelnen (wie dem Zahlenhai) werden auch die Theorie dahinter und umfangreiche Lösungshinweise geliefert.

... 1/5 (Quick-Access: Suche über alle Teile von JCT)

Tipps und Tricks

- Mit der Tastenkombination Strg-3 kann man das Quick-Access-Fenster öffnen.
- Hier können Verfahren und andere Inhalte aus JCrypTool gesucht und direkt geöffnet werden.
- Dies ist der schnellste Weg, etwas in der Standard-Perspektive oder in der Onlinehilfe zu finden, wenn man nicht weiß, wo man in den Menüs oder im Krypto-Explorer suchen soll.
- Klickt man auf einen angezeigten Eintrag, springt JCT auch direkt dahin.
- Anmerkung: Elemente in der Algorithmen-Perspektive werden vom Quick-Access-Fenster momentan noch nicht durchsucht.

ana	~
Vorherige Wahl	🐼 Grille- Ana lyse (Analysen)
Ansichten	Entropie-Analyse (Analysen)
	🔟 Friedman-Test (Ana lysen)
	Häufigkeits-Analyse (Analysen)
	Simple Power Analysis / Square and Multiply (Visualisierungen)
	Substitutions-Analyse (Analysen)
	👿 Transpositions- Ana lyse (Analysen)
	👿 Vigenère-Breaker (Ana lysen)
	💿 Viterbi- Ana lyse (Analysen)
Befehle	 Anzeigen in (Entropie-Analyse)
	Anzeigen in (Grille-Analyse)
	Anzeigen in (Häufigkeits-Analyse)
	 Anzeigen in (Simple Power Analysis / Square and Multiply)
	 Anzeigen in (Substitutions-Analyse)
	 Anzeigen in (Transpositions-Analyse)
	Anzeigen in (Viterbi- Ana lyse)
	Entropie-Analyse
	Häufigkeits-Analyse
	Sicht anzeigen (Entropie-Analyse) - Zeigt eine bestimmte Sicht ar
	Sicht anzeigen (Grille-Analyse) - Zeigt eine bestimmte Sicht an
	Sicht anzeigen (Häufigkeits-Analyse) - Zeigt eine bestimmte Sich
	Sicht anzeigen (Simple Power Analysis / Square and Multiply) - Z
	Sicht anzeigen (Substitutions-Analyse) - Zeigt eine bestimmte Sie
	Sicht anzeigen (Transpositions-Analyse) - Zeigt eine bestimmte S
	 Sicht anzeigen (Viterbi-Analyse) - Zeigt eine bestimmte Sicht an
Hilfe	🔗 Suche " ana " in der HIlfe
	"Strg+3" drücken, um alle Übereinstimmungen anzuzeigen

Quick-Access-Fenster

... 2/5 (Öffnen der umfangreichen Onlinehilfe in einem neuen Browser-Reiter)

Tipps und Tricks

 Die Fragezeichen-Ikone ② in der Toolbar öffnet eine ausführliche Onlinehilfe in einem Browser-Reiter.

JCrypTool 1.0

.... 3/5 (Aufruf der angedockten Kontext-Hilfe)

Tipps und Tricks

 Durch Drücken der Funktionstaste F1 in JCT kann (unter Linux und Windows) die Kontext-Hilfe zu jedem Zeitpunkt geöffnet werden.

Die Kontext-Hilfe liefert detailliertere Informationen und Verweise zur aktuellen Ansicht.

 Alternativ kann man mit dem großen blauen Fragezeichen das Kontexthilfe-Fenster ein- oder ausblenden. Dieses Fragezeichen befindet sich in allen Beschreibungs-Headern von Visualisierungen.

🕼 Hilfe 🕱 🛛 🗘 🗘 🖓 👘 🗖	🗖 Verifiable-Secret-Sharing 🛱									5-0
陷 Inhalte 🏁 Suchen 📽 Verwandte Themen 💷 Lesezeichen	Verifiable-Secret-Sharing Rekonstru	ıktionsgraph								
Verifiable Secret Sharing Verifiable Secret Sharing ist ein Secret Sharing-Algorithmus, um ein Geheimnis zu verteilen. Das Geheimnis wird so verteilt, dass ede Person ihren eigenen eindeutigen Teil bekommt. Einige dieser Teile werden benötigt, um das Geheimnis zu ekonstruieren. Das Geheimnis wird mit Hilfe der Laarange-	Verifiable-Secret-Sharing (VSS) 'Verifiable-Secret-Sharing' ist eine Va n) das Geheimnis wieder zusammens Geheimniskonstruktion unentdeckt somit das Geheimnis auch tatsächlic Wird der Mauszeiger in einen der Con	riante des Secret Sha etzen können, wenige abotieren. Mit 'Verifi h wieder korrekt zusa ntainer gesetzt, wird e	ring. Wie beim einfa er als t Spieler jedoch iable-Secret-Sharing' mmengesetzt werde eine entsprechende E	chen Secret Sharing nicht. Allerdings ka wird dieser Nachtei n kann ('Verifiabilit) irklärung in dem Erk	wird ein Gehei Inn beim einfa Il behoben, ind y'). Klärungsfeld ur	mnis so in n Teile (e chen Secret Sharing em jeder Spieler üt iten angezeigt.	ngl. 'Shares') z ein Spieler sei berprüfen kann	erlegt und an n Spiel nen Share ändern un ı, dass die Shares alle	er verteilt, dass t Spie d so die er Spieler korrekt sind	
nterpolation berechnet. Im Unterschied zu Shamir's Secret	Parameter		Koeffizienten		Commitment	S	Shares			Rekonstruktion
sharing Kann jedoch überprüft werden, ob jeder Teilnehmer bei der Rekonstruktion einen korrekten Teil liefert.	Anzahl der Spieler n	2 – +	ao = s 0	- +	Koeffizient	Commitment Ye	Spieler i	Share Ni [mod	q]	Spieler 1
Verifiable Secret Sharing	Anzahl Spieler t zur Rekonstruktion	2 - +	a1 1	- +	ao a1		Spieler 1	=	Check	
Suche nach Sicht Verifiable-Secret-Sharing	Geheimnis s						Spieler 2	=	Check	
	Safe Prime p (p>2s)		Generieren	Commit						
	Primfaktor q (2q=p-1)		P(x) = 0 + 1x							

Kontext-Hilfe zum Visualisierungs-Plugin "Verifiable Secret Sharing"

Drückt man in Dialogfenstern F1 oder das Fragezeichen links unten, wird ein Kontext-Hilfefenster an den Dialog "angedockt".

 <u>Fertigstellen</u>
 <u>Abbrechen</u>
 <u>Abbrechen</u>
 <u>Abbrechen</u>
 <u>Ertigstellen</u>
 <u>Abbrechen</u>
 <u>Ertigstellen</u>
 <u>Abbrechen</u>
 <u>Abbrechen</u>
 <u>Ertigstellen</u>
 <u>Abbrechen</u>
 <u>Ertigstellen</u>
 <u>Abbrechen</u>
 <u>Ertigstellen</u>
 <u>Abbrechen</u>
 <u>Ertigstellen</u>
 <u>Eri</u>

... 4/5 (kleiner, größer und wiederherstellen)

Tipps und Tricks

- Die Größe eines jeden Bereiches lässt sich in JCT über die Buttons oben rechts im Bereich steuern:
 - Aktuellen Bereich maximieren
 - Bereich minimieren
- Ist ein Bereich minimiert, erscheint er als kleine am Rand angedockte Leiste.
 Die vorher in dem Bereich enthaltenen Reiter sind

durch kleine Icons repräsentiert.

Mit Klick auf kann man die letzte
 Größe eines Bereichs wiederherstellen.

æ

- Mit den Ikonen darunter kann man die einzelnen Reiter kurzzeitig als überlagertes Fenster einblenden.
- Wiederherstellen von View + Perspektive:
 - Menü "Fenster" \ "Perspektive zurücksetzen"
 - Doppelklick auf den Reiter wechselt zwischen Vollbild und verkleinertem Platz f
 ür das Plugin (typisches Eclipse-Verhalten)

... 5/5 (Neustart innerhalb einer geöffneten Visualisierung; Öffnen eines Editors)

Tipps und Tricks

 Jede Visualisierung lässt sich über den Button "Neustart" auf die Start-Einstellungen zurücksetzen. Der Button befindet sich in der oberen Toolbar des Plugin-Fensters.

- Schnelles Öffnen eines Editors
 - Ganz links in der Toolbar ist die Editor-Ikone.
 Klickt man darauf, wird ein Texteditor mit der Beispieldatei geöffnet.
 - Direkt rechts daneben ist der Pfeil.
 Mit dem Pfeil hat man die Auswahl, welcher Editortyp (und ob leer oder gefüllt) in der Mitte der Standard-Perspektive oder der Mitte der Algorithmen-Perspektive geöffnet werden soll.

Benutzervorgaben

...die globalen Einstellungen von JCT

Weitere Einstellmöglichkeiten

 In den Benutzervorgaben befinden sich die globalen Einstellungen von JCT. Siehe die ff. Menüpfade: unter Windows + Linux: "Fenster \ Benutzervorgaben" und auf MacOS: "JCrypTool \ Einstellungen".

Die wichtigen JCT-spezifischen Einträge sind:

Bzgl. Kryptografie

- Alphabete: Ermöglicht die Verwaltung der Alphabete, die bei vielen klassischen Verfahren benutzt werden.
- Schlüsselspeicher: Hier lassen sich die Dateien verwalten, in denen die Schlüssel des JCT-Keystores gespeichert werden.
 Ein neu angelegter Schlüsselspeicher kann anschließend in der Schlüsselspeicher-Auswahl in der Perspektive "Algorithmen" verwendet werden.

	Benutzervorgat	en		•			
Filtertext eingeben	Alphabete			← → ⇒ 8			
Algorithmen	Verfügbare Alphabete						
Editoren	Name	Eingebaut	Standard	Hinzufügen			
Editoren Editoren General Hilfe Install/Update J.CT Allgemein Kryptografie Krypto-Anbieter	Anzeigbares ASCII Lateinisches Alphabet (A-Z,a- Großes lateinisches Alphabet Kleines lateinisches Alphabet Playfair-Alphabet (A-Z ohne J) ADFGVX-Alphabet (A-Z ohne J) XOR-Alphabet mit 32 Zeichen XOR-Alphabet mit 64 Zeichen	Ja Ja Ja Ja Ja Ja Ja Ja	Ja	Editieren Entfernen Standard setzen			
	Optionen Piltern von ungültigen Zeich Diese Option legt die Standarc Klassischen Verschlüsselungen Klartextalphabets sind. Werden nicht-alphabetische Ze werden sie unverschlüsselt übr	hen Jeinstellung o behandelt w eichen nicht a ernommen. In <u>d</u> ardwerte	dafür fest, wie verden, die nich aus dem Klarte wiederherstel	Zeichen in ht Teil des xt gefiltert, len <u>A</u> nwenden			
? 2 2		Abbrechen	Anwe	nden und Schließen			

Kommandozeilen-Parameter

... Sprache und Datenverzeichnis vorgeben

Standardeinstellungen

- Startet man JCrypTool ohne Parameter, erscheint es in der Sprache des Betriebssystems, sofern diese Deutsch oder Englisch ist; ansonsten in Englisch.
- Die Einstellungen der letzten Session und JCT-spezifische, permanente Daten werden in einem Verzeichnis namens 'workstation' abgelegt. Dieses Verzeichnis wird beim ersten Start von JCT angelegt, unterhalb des JCrypTool-Verzeichnisses.

Parameter zur Steuerung von JCT gleich beim Aufruf – über die Kommandozeile

- Sprache

 -nl [de, en]
- Datenverzeichnis (mit -data kann man das Verzeichnis 'workstation' zu ändern)
 -data [Verzeichnis]

Beispiel: JCrypTool -nl de -clean -data USERVERZEICHNIS/jct-de JCrypTool -nl en -clean -data USERVERZEICHNIS/jct-en

Mit -nl kann man festlegen, ob das deutsche oder das englische JCT gestartet wird.

Mit -data kann man festlegen, wohin JCT schreibt. Den Wert für USERVERZEICHNIS müssen Sie für sich passend angeben (unter Windows z.B. %LOCALAPPDATA%).

Einführung in das JCrypTool-Programm

Anwendungsbeispiele

Möglichkeiten zur Mitwirkung

22

87

Anwendungsbeispiele – Überblick (1)

Die Ameisenkolonie-Optimierung (ACO)	Seite 25
Viterbi-Analyse	Seite 30
Verifiable-Secret-Sharing	Seite 35
Signatur-Demo	Seite 40
Erweitertes RSA-Kryptosystem	Seite 45
SETUP-Angriff auf die RSA-Schlüsselgenerierung (Kleptographie)	Seite 50
Zero-Knowledge-Protokoll: Fiat Shamir	Seite 55
Android-Mustersperre (AUP)	Seite 60
Kaskaden mit dem Aktionen-Fenster	Seite 64
Variable Alphabete für klassische Algorithmen	Seite 70
JCrypTool-Konsole für klassische Verfahren	Seite 74
Die Perspektive "Algorithmen"	Seite 79

Die Ameisenkolonie-Optimierung (ACO)

Problematik

 Die Visualisierung der Ameisenkolonie-Optimierung^[1] ermöglicht es, einen Text, der mit einem Transpositionsverfahren verschlüsselt wurde, wieder zu entschlüsseln.

Funktionsweise

- Der Ameisenkolonie-Algorithmus ist ein effizienter Algorithmus zum Lösen von kombinatorischen Problemen.
- Ziel des Algorithmus kann es z.B. sein, in einem Graphen den kürzesten Weg von A nach B zu finden.
- Der Algorithmus ist den Ameisen nachempfunden, die schnell einen kurzen Weg vom Ameisenhaufen zu einer Futterstelle finden können.
- Im Algorithmus wählt eine Ameise ihren Weg anhand lokaler Informationen (z.B. den Kantenbewertungen) und danach, welcher Weg von den Ameisen vorher häufiger gewählt wurde.
- Je mehr Ameisen einen bestimmten Weg laufen, desto mehr Ameisen werden folgen. Dieses Verhalten wird als Schwarmintelligenz bezeichnet.
- Prinzipiell beruht dieser Algorithmus auf statistischen Auswertungen.

[1] ACO = Ant Colony Optimization

Die Ameisenkolonie-Optimierung

Die Implementierung in JCT

Im Menü

"Visualisierungen" \ "Ameisenkolonie-Optimierung"

Der Algorithmus in der Anwendung

- Mit der Ameisenkolonie-Optimierung in JCT kann ein mit einem einfachen Spalten-Transpositionsverfahren verschlüsselter Geheimtext entschlüsselt werden.
- Dazu wird die Schlüssellänge n benötigt, der Geheimtext wird zeilenweise in n-viele Spalten geschrieben, diese Spalten dienen nun als Knoten für den Graphen.
- Beim Zusammenfügen der Spalten in unterschiedlichen Reihenfolgen entstehen verschiedene Buchstabenpaare. Diese Buchstabenkombinationen kommen in jeder Sprache unterschiedlich häufig vor. Aus diesen Häufigkeiten und der besuchten Häufigkeit eines Weges von vorherigen Ameisen werden nun Kantengewichtungen des Graphen berechnet.
- In jeder Iteration wird nun ein möglicher Klartext aus einer Spaltenreihenfolge generiert. Dieser Text wird dann mit einer einzugebenden Liste häufig vorkommender Wörter bewertet.
- Die Bewertung fließt in die Pheromon-Matrix ein.
 Diese Matrix dient nachfolgenden Ameisen dazu, einen neuen, besseren Klartext zu finden.

Die Ameisenkolonie-Optimierung

Ein Anwendungsbeispiel 1/2

Versuchen Sie, den Geheimtext

OREFEGLRECIHPRKYNOTASLAYNLEG

zu entschlüsseln.

- Fügen Sie diese Zeichenfolge im Visualisierungsfenster unterhalb von "Geheimtext direkt eingeben" in das Textfeld ein, und wählen Sie als Schlüssellänge 4^[1].
- Drücken Sie auf "Analyse starten".

Konfiguration	
Geheimtext erzeugen	
oder	
Geheimtext direkt eingeben	
OREFEGLRECIHPRKYNOTASLAYNLEG	
Geheimtextlänge: 28	
Vermutete Schlüssellänge	
4	
Sprache des Textes Deutsch \$	
Analyse starten	

[1] Die Schlüssellänge kann aus statistischen Auswertungen gewonnen werden. Außerdem muss hier die Länge des Geheimtextes ein Vielfaches der Schlüssellänge sein.

Die Ameisenkolonie-Optimierung

Ein Anwendungsbeispiel 2/2

Die Gruppierungen "Analyse" und "Visualisierung" sind jetzt aktiviert. Dort haben Sie folgende Parameter:

Alpha & Beta:

 Diese Parameter regeln die Wahrscheinlichkeiten, mit der die Ameise eine Kante (einen Verbindungsweg) auswählt.
 Je höher Alpha, desto öfters folgt eine Ameise einem Pfad, den eine Ameise zuvor bereits eingeschlagen hat.
 Je größer Beta, desto wichtiger werden Buchstaben-Bigramme gewertet.

Verdunstung:

- Eine hohe Verdunstung lässt das Pheromon einer Ameise schneller verdunsten. Die nachfolgenden Ameisen finden so nur eine dünnere Pheromon-Spur vor.
- Die Pheromon-Matrix berechnet sich aus diesen drei Parametern und steuert so das Verhalten der Ameise. Genauere Informationen dazu finden Sie auch in der Onlinehilfe.

Ameisen-Steuerung:

Mit den Buttons in dieser Unter-Gruppierung können die Ameisen im Graphen gesteuert werden.

Die Ameisenkolonie-Optimierung Lernziel

Ergebnis

- Haben Sie es geschafft, den Geheimtext von Seite 20 zu entschlüsseln?
- Als Klartext sollte sich (durchschnittlich nach 25 Durchläufen^[1] mit Alpha= 0,8, Beta= 0,8, Verdunstung= 0,9) ergeben:

Beste Entschlüsselung	
Bester gefundener Klartext insgesamt	
ERFOLGREICHEKRYPTOANALYSELGN	(?)
Schlüssel zur Entschlüsselung	
(3,2,4,1)	

Fazit

- Die Permutations-Verschlüsselung ist keine sichere Verschlüsselung.
- Mit dem Ameisenalgorithmus lassen sich unterschiedliche kombinatorische Optimierungsprobleme lösen – nicht nur aus dem Bereich der Kryptoanalyse.
- Für viele Probleme hat die Natur bereits eine Lösung, es kommt darauf an, diese zu finden, zu verstehen und zu abstrahieren.

- [1] Die Anzahl der Durchläufe variiert stark und es kann vorkommen, dass die Lösung nach 50 Durchläufen noch nicht gefunden wurde. Es kann sich dann lohnen, das Plugin zurückzusetzen und von Neuem zu beginnen.
- [2] Füllzeichen, die angehängt wurden, damit die Textlänge durch 4 teilbar ist.

Die Idee

Problematik

- Gegeben sei ein Running-Key-Chiffrat also ein Geheimtext, der dadurch entstand, dass zwei Klartexte durch XOR oder durch modulare Addition verknüpft wurden.
- Lassen sich die beiden Klartexte wieder aus dem Geheimtext zurückgewinnen?

Tatsächlich ist dies möglich – der Viterbi-Algorithmus löst eine solche Aufgabe.

Funktionsweise

- Der Viterbi-Algorithmus ist ein rekursiver Algorithmus und verwendet die Methode der dynamischen Programmierung.
- Der Algorithmus analysiert Häufigkeiten von versteckten Zustands-/Markov-Ketten in einer Eingabe-Sequenz.
- Neben der Kryptografie findet der Algorithmus ebenfalls Anwendung bei der Spracherkennung, der Analyse von DNS-Strukturen, und bei der Reduktion von Übertragungsfehlern.
- Siehe http://de.wikipedia.org/wiki/Viterbi-Algorithmus

Im Menü

"Visualisierungen" \ "Viterbi"

Der Algorithmus in der kryptoanalytischen Anwendung

- Die statistische Auswertung von Wahrscheinlichkeiten von N-Grammen und die Zuhilfenahme von Wörterbüchern der Verschlüsselungssprache bilden die Grundlage.
- Das Wissen, dass der Text aus zwei Klartexten per modularer Addition bzw. per XOR entstanden ist, fließt in das Analysemodell mit ein.
- Der Geheimtext wird Buchstabe f
 ür Buchstabe in m
 ögliche Klartextbuchstaben zerlegt, dabei werden die umgebenen Zeichen und die damit entstehenden N-Gramme und deren Wahrscheinlichkeiten (in der gew
 ählten Sprache) mit in Betracht gezogen.
- Aus den Möglichkeiten der vorkommenden Buchstaben im Klartext werden Pfade generiert, denen Wahrscheinlichkeiten zugeordnet sind. Unwahrscheinliche Pfade werden nicht weiter verfolgt.

Ein Anwendungsbeispiel 1/2

Im ersten Schritt ist ein entsprechender Geheimtext für die Viterbi-Analyse zu erstellen.

Dazu bietet das Plugin einen geeigneten Textgenerator.

- Erstellen Sie zwei Klartexte oder laden Sie die Texte aus Textdateien.
- Bei der Verknüpfung der Einzelbuchstaben der Klartexte kann zwischen XOR und modularer Addition unterschieden werden.
- Durch Klicken auf "Geheimtext berechnen" wird das Chiffrat erstellt.
- Drücken Sie auf "Weiter zur Analyse".

			Ē.
(Running-Key-Versch	lüsselung Viterbi-Analyse	_
Running-Key-Verschlü:	sselung		
Dieses Plug-in führt eine Ru Geheimtext verknüpft. Wie man ein solches Runnin	ınning-Key-Verschlüs 1g-Key-Chiffrat analys	sselung durch. Dabei werden zwei Klartexte zu einem sieren kann steht im nächsten Tab (Viterbi–Analyse).	
Klartext 1		Wir testen hier die Funktionalität des Viterbi- Algorithmus. Dazu benötigen wir zwei Klartexte,	
Klartext 2		Wie werden die beiden Klartexte am Ende wohl aussehen? Ist es möglich, wieder etwas zu	
Textdatei la	den	entziffern?	
Geheimtext		12e d2 d7 c0 eb ca 165 d8 ca 15c c0 cc d2 ca 112	T
Art der Verknüpfung	Darstellung	82 c9 d2 c9 105 b4 95 139 d7 155 db 163 153 159 160 14e 114 145 e1 c0 a9 153 d7 105 f6 160	
○ XOR	• Hexadezimal	163 14d de 82 ca 122 b4 15f cc d7 d7 d7 133 88 136 e8 e7 4e 105 b7 81 e7 16b 87 14e 14e d1 15e	
• Modulare Addition	O Als Text	a0 109 de 14e 153 84 15c db 112 105 ee ee c6 15c c0 c5 e1 81 d7 e2 159 172 dd 14b 112 105 156 d7 124 c0 14d 14e d7 8b 165 161 e2 co 159	
Geheimtext be	rechnen	8e 117 c9 db c9 105 150 93	
Exportieren			

Ein Anwendungsbeispiel 2/2

Im nächsten Schritt, der "Viterbi-Analyse", wird der Viterbi-Algorithmus auf den Geheimtext angewandt, um möglich viel Information über die beiden Klartexte zurück zu gewinnen.

- Wählen Sie die vermutete Sprache des Eingabetextes.
- Stellen Sie eventuell die gewünschte Größe der N-Gramme und der Suchtiefe ein und starten Sie die Analyse.
- In den unteren beiden Textfeldern sehen Sie, wie das Ergebnis der Entschlüsselung erzeugt wird. Dort können Sie beobachten, wie sich stets ein großer Teil der Zeichenkette dynamisch verändert. Dies kann einige Sekunden dauern. Am besten im Fullscreen-Modus ansehen.

Was passiert bei der Variation der N-Gramm-Größe und der Suchtiefe?

	Running-Key-Verschlüsselung Viterbi-Analyse			
/iterbi-Analyse				
er Viterbi–Algorithmus is /ahrscheinlichkeiten des / usammenzubauen.	t eine komplexe Form der Häufigkeitsanalyse. Mithilfe von Auftretens von Zeichenketten wird versucht, die Klartexte			
ie Arbeitsweise des Viteri . Ein Buchstabe wird in al erwendet man beim klass ine modulare Subtraktion . Es wird die Wahrscheini omplexes Sprachmodell, ktuelle Zeichen, sondern . Die wahrscheinlichsten i eiter verfolgt.	bi-Algorithmus lässt sich grob in die folgenden drei Schritte einteilen: le möglichen Kombinationen der Verknüpfung zerlegt. Als Umkehrfunktion ischen XOR-Verfahren ein weiteres XOR und bei der modularen Addition chkeit dieser Kombinationen berechnet. Diese Berechnungen erledigt ein weiches längere Zeichenfolgen berücksichtigt. Es fließt also nicht nur das alle Vorgängerbuchstaben in die Berechnung mit ein. Pfade werden geordnet gespeichert. Umwahrscheinliche Pfade werden nicht			
Eingabe				
Geheimtext	12e d2 d7 c0 eb ca 165 d8 ca 15c c0 cc d2 ca 112 82 c9 d2 c9 105 b4 95 139 d7 155 db 163 153 159 160 14e 114 145 e1 c0 a9 153 d7 105 f6 160 163 14d de 82 ca 122 b4 15f cc d7 d7 d7 133 88 136 e8 e7 4e 105 b7 81 e7 16b 87 14e 14e d1 15e a0 109 de 14e 153 84			
Textdatei laden				
Darstellung	15c db 112 105 ee ee c6 15c c0 c5 e1 81 d7 e2 159 172 dd 14b 112 105 156 d7 124 c0 14d 14e d7 8b 165 161 e2 ca 159 8e 117 c9 db			
Hexadezimal Als Text	c9 105 150 93			
Parameter für die Analyse	•			
Sprache des n-Gra Deutsch Sucht Englisch	amm Größe 4 Analyse starten			
Ergebnis				
Möglicher 1. Klartext	Ich testen hier die Buchchonglicht des Viter e4zchen? Aus. Daseinenö, wieder etwas Klarteine, die wie yøben die b			
Möglicher 2. Klartext	eoo werden die beider Vorsterte1Ým Ende wohlben eiorithust es tČ`ichtigen wir zwei zu entoffern? Verklicht werden			

Fazit

- Mit dem Viterbi-Algorithmus lassen sich zwei per XOR oder modularer Addition zu einem Geheimtext verknüpfte Klartexte wieder entschlüsseln..
- Ein Defizit bei der Entschlüsselung hat der Algorithmus zu Beginn der Klartexte. Hier fehlen die umgebenen N-Gramme und es existieren noch keine Wahrscheinlichkeitspfade, auf die der Algorithmus zurückgreifen kann.
- Lange Wörter werden vom Algorithmus seltener entschlüsselt.
- Das zugrundeliegende Wörterbuch spielt eine wesentliche Rolle, da der Algorithmus die Wörter daraus zusammen sucht.
- Es werden nur N-Gramme gefunden, die auch im Wörterbuch enthalten sind. Daher ist die Länge der N-Gramme im Plugin auf N=5 beschränkt. Für größere N müssten sonst alle Wörter der Länge N im Wörterbuch vorkommen, was bei z.B. N=7 bereits sehr viele Wörter mehr wären.
- Die Variation der N-Gramm-Größe und der Suchtiefe hat direkten Einfluss auf das Ergebnis.
 Die Größe der N-Gramme gibt vor, auf welche Wörter im Wörterbuch zurückgegriffen wird.
 - Der Parameter Suchtiefe bestimmt wie viele Kandidaten für Klartextpaare (Pfade) zur Analyse des nächsten Zeichens verwendet werden (der Algorithmus verwirft ja nach jedem Zeichen unwahrscheinliche Pfade). Somit regelt die Suchtiefe den Einfluss der aktuellen Entschlüsselungsposition auf vorangehende Zeichen der Zeichenkette.

Verifiable-Secret-Sharing

Die Idee

Problematik

- Das Verifiable-Secret-Sharing (VSS) ist eine erweiterte Variante des Secret-Sharing (zu deutsch "Geheimnis-Teilung").
- Beim Secret-Sharing geht es darum, ein gemeinsames Geheimnis unter einer gewissen Anzahl an Mitwissenden, den Spielern, aufzuteilen. Die Spieler bekommen die sogenannten "Shares".
- Es soll außerdem eine Mindestanzahl an Spielern (nicht unbedingt alle) benötigt werden, damit das gemeinsame Geheimnis wieder entschlüsselt werden kann.
- Ein einzelner Share oder weniger Shares als die definierte Mindestanzahl soll hingegen nutzlos sein.

Die Erweiterung "Verifiable"

- Das VSS ist sicherer als das normale Secret-Sharing. Beim Aufteilen des Geheimnis muss demjenigen, der das Geheimnis aufteilt (dem "Dealer"), vertraut werden. Dieser könnte die Shares beim Austeilen abändern, und das Verfahren würde nutzlos.
- Um dieses Problem zu lösen, erzeugt der Dealer beim VSS zusätzliche "Commitments". Damit können die Shares von den Spielern auf ihre Richtigkeit getestet werden.

Verifiable-Secret-Sharing

Die Implementierung in JCT

Im Menü

"Visualisierungen" \ "Verifiable-Secret-Sharing"

Der Algorithmus in der Anwendung

- Statt mit einem Geheimnis in Textform wird das Geheimnis durch eine Zahl ausgedrückt.
 Vorher muss man sich eine Transformation von Text in Zahlen überlegen.
- Jeder der n Spieler erhält einen Share. Zur Rekonstruktion des Geheimnisses soll aber die Kenntnis von beliebigen t Shares genügen (1 < t <= n).
- Ein Polynom vom Grad (t-1) kann durch Kenntnis von t Punkten auf dem Polynomgraphen eindeutig rekonstruiert werden. Dazu kann man die Lagrange-Interpolation benutzen.
- Diese mathematische Erkenntnis wird beim VSS geschickt verwendet.
- Das Geheimnis wird als absoluter Term des Polynoms benutzt. Dadurch erhält man das Ergebnis ganz einfach als Funktionsauswertung des Polynoms an der Stelle 0.

Verifiable-Secret-Sharing

Ein Anwendungsbeispiel 1/2

Erster Schritt

- Wählen Sie die Gesamtanzahl n der Spieler und die benötigte Anzahl t der Spieler zur Rekonstruktion.
- Legen Sie das Geheimnis fest.

Die Zahlen "Safe Prime", "Primfaktor" und "Generator" werden dann, falls möglich, automatisch ausgefüllt.

Klicken Sie auf "Koeffizienten bestimmen".

Zweiter Schritt

Das Polynom wird jetzt festgelegt. Als Dealer haben Sie hier Einfluss auf das Polynom, aus denen die Shares berechnet werden. Aus dem Polynom werden außerdem die Commits berechnet.

- Das initiale Polynom gibt Spieler 1 zu viel Information. Deshalb sollte man den Button "Generieren" drücken, um zufällige Koeffizienten zu erzeugen.
- Sie können nun über "Commit" die Commits berechnen.

Ändern Sie das Polynom jetzt nochmal, werden die Shares, falls sie mit den vorherigen Commits überprüft, nun als ungültig erkannt.

Lassen Sie sich die "Shares berechnen".

Parameter	
Anzahl der Spieler n	6
Anzahl Spieler t zur Rekonstruktion	5
Geheimnis s	10
Safe Prime p (p>2s)	23
Primfaktor q (2q=p-1)	11
Generator g	2
Nächster Schritt: Koeffizienten be	estimmen

Verifiable-Secret-Sharing

Ein Anwendungsbeispiel 2/2

Rekonstruktions-Schritt

Das Geheimnis ist auf die Spieler aufgeteilt.

- Die Shares können per "Check" überprüft werden.
- In dem Beispiel rechts wurde das Polynom nachträglich noch einmal verändert. Die Shares sind somit ungültig. Die Vertrauenswürdigkeit des Dealers sollte also angezweifelt werden.

Commitme	nts	Shares				Rekonstruk	tion
Koeffizient	Commitment Y	-				Spieler 1	
a ₀	12	Spieler 1	24	= 2	Check	Spieler 2	
aı	2	Spieler 2	92	= 4	Check	Spieler 3	
a ₂	16	Spieler 3	274	-	Church	Spieler 4	
a3	16		274	- 10	Спеск	Spieler 5	
a4	16	Spieler 4	654	= 5	Check	Spieler 6	
		Spieler 5	1340	= 9	Check		
		Spieler 6	2464	= 0	Check	Rekonstr	uieren

Ein Share wurde in dem Beispiel als gültig verifiziert, obwohl das Polynom verändert wurde. Es genügt also nicht, sich auf die Gültigkeit eines einzigen Shares zu verlassen.

- Für die Rekonstruktion können rechts unter "Rekonstruktion" die Spieler ausgewählt werden, deren Shares benutzt werden sollen.
- Für unser Beispiel müssen wir mindestens fünf Spieler auswählen (da t=5 war).
- Anschließend kann durch "Rekonstruieren" das Geheimnis wieder erzeugt werden (ungültige Shares müssen nicht notwendigerweise ein falsches Geheimnis liefern).

Verifiable-Secret-Sharing

Fazit

- Ein Geheimnis lässt sich unter mehreren Spielern so aufteilen, dass es nur gemeinsam wieder entschlüsselt werden kann.
- Mehrere Botschafter können so z.B. brisante Informationen aufgeteilt übermitteln, ohne dass sie dabei selbst das ganze Geheimnis kennen.
- Es kann eine Toleranz geschaffen werden, dass später nicht alle Botschafter zur Rekonstruktion benötigt werden.
- Ein weiteres mathematisches Modell, die Lagrange-Interpolation, trifft auf eine interessante Anwendung.

Signatur-Demo

Problematik

- 1. Elektronische Dokumente können à priori nicht auf den Autor überprüft werden. Dazu braucht man ein Verifizierungsmerkmal des Autors, dies kann z.B. eine Unterschrift sein.
- 2. Hat man nur das elektronische Dokument, kann man eine nachträgliche Veränderung kaum erkennen.

Um diese Probleme zu umgehen, kann der Autor sein elektronisches Dokument digital signieren.

Funktionsweise

- Der Autor generiert aus dem Dokument einen Hashwert (siehe Folie <u>41</u>).
- Der Hashwert wird mit dem privaten Schlüssel des Autors verschlüsselt (bei Verwendung von RSA).
- Den verschlüsselten Hashwert und die benutzte Hashfunktion stellt der Autor mit dem Dokument öffentlich bzw. dem Empfänger zur Verfügung.
- Ein Interessent, der die Integrität des Dokuments überprüfen möchte, kann nun mit dem öffentlichen Schlüssel des Autors den Hashwert des Dokuments entschlüsseln.
- Den Hashwert kann der Interessent selbst gegenpr
 üfen, indem er die vom Autor benutzte Hashfunktion erneut auf das Dokument anwendet. Sind der entschl
 üsselte Hashwert und der neu berechnete Hashwertidentisch, kann er sich sicher sein, dass das Dokument nicht verf
 älscht wurde.

Im Menü

"Visualisierungen" \ "Signatur-Demo"

Der Algorithmus in der Anwendung

- Das Plugin bietet die Möglichkeit, ein Dokument aus einer Datei oder einen selbst eingegebenen Text zu signieren.
- Als Hashmethoden stehen die Funktionen MD5, SHA-1 und SHA-2 (SHA-256, SHA-384 und SHA-512) zur Verfügung.
- Anschließend kann, je nach gewählter Hashfunktion, DSA, RSA, ECDSA oder RSA mit MFG1 als Signaturmethode benutzt werden.
- Darunter werden die Subjekte (Schlüsselinhaber) angeboten, die einen Schlüssel zur gewählten Signaturmethode haben.*
- * Es gibt zwei Wege, um passende Schlüssel für die Subjekte (Schlüsselinhaber, Benutzer) zu generieren:
- a) in der Algorithmen-Perspektive.
- b) mit dem Visualisierungs-Plugin "Public-Key-Infrastruktur" (JCT-PKI).

Signaturmethoden
© DSA
RSA
© ECDSA
RSA und MGF1
Nählen Sie einen Schlüssel aus:
▼
Erika Mustermann - 1024Bit - de.flexiprovider.core.rsa.RSAPrivateCrtKey
Alice Whitehat - 1024Bit - de.flexiprovider.core.rsa.RSAPrivateCrtKey
eL Mustermann - 1024Bit - de flexiprovider core rsa RSAPrivateCrtKey
Bob Whitehat - 1024Bit - de.flexiprovider.core.rsa.RSAPrivateCrtKey

Signatur-Demo Ein Anwendungsbeispiel 1/2

Ein Dokument zu signieren ist nicht aufwändig und geht in zwei Schritten.

Erster Schritt: Hashwert erzeugen

- Wähle das zu signierende Dokument über "Input auswählen".
- Es erscheint ein Dialog, um entweder eine Datei zu öffnen, oder per "Direkte Eingabe" einen beliebigen Text direkt einzugeben.
- Anschließend muss eine "Hashfunktion" ausgewählt werden.
- Der Hashwert wird dann erzeugt und unten angezeigt.
 Der Hashwert ist der elektronische Fingerabdruck des Dokuments.

Signatur-Demo Ein Anwendungsbeispiel 2/2

Zweiter Schritt: Signatur erzeugen

- Durch Klick auf "Signaturfunktion" kann ein Verschlüsselungsalgorithmus ausgewählt werden, mit dem der Hashwert verschlüsselt wird.
- Wir wählen als Signaturmethode "ECDSA" aus. Darunter muss dann noch aus dem JCT-Keystore ein Schlüssel für den Signierer (hier "Alice Whitehead") ausgewählt werden.
- Durch Klick auf "Fertigstellen" wird die Signatur erzeugt und kann anschließend über "Erzeugte Signatur anzeigen" betrachtet und abgespeichert werden.

sesitzer d	er Sigantur:	-	
/erwende	ter Schlüssel/Kurve:	ANSI X9.62 prime256v	1 (256 bits)
Signaturn	iethode:	SHA384withECDSA	
Signatur			
Adresse	Hex		Ascii
00000	30 44 02 20 75 E0 76	4C 20 EB 02 A0 E6 2F	0D uàvL ë æ/
0000E	94 5C 74 73 AC 8D 5	F F9 5B 9C B2 91 1F 34	\ts¬_ù[² 4
0001C	00 6E 62 D6 D7 69 B	9 E9 02 20 47 19 8E 2C	nbÖ×i¹é G,
0002A	D0 12 32 B2 C4 CA E	A 67 94 95 F1 96 39 4B	Ð2²ÄĒêgñ9K
00038	DE F9 88 83 16 C4 25	57 C9 0A EF FC D3 8F	ÞùÄ%WÉ
Darstell	ungsmöglichkeiten der -Dump (Hex und Ascii)	Signatur Oktal ODezi	imal 🔵 Hex
Darstell • Hex	ungsmöglichkeiten der -Dump (Hex und Ascii) Nachricht	Signatur Oktal ODezi	imal 🔿 Hex
Darstell • Hex Signierte	ungsmöglichkeiten der -Dump (Hex und Ascii) Nachricht Hex	Signatur Oktal ODezi	imal O Hex
• Hex • Hex Signierte Adresse 00000	ungsmöglichkeiten der -Dump (Hex und Ascii) Nachricht Hex 55 6E 64 20 77 65 6E	Signatur Oktal Dezi 6E 20 73 69 65 20 6E	Ascii Und wenn sie n
Darstell O Hex Signierte Adresse D0000 D000E	ungsmöglichkeiten der -Dump (Hex und Ascii) Nachricht Hex 55 6E 64 20 77 65 6E 69 63 68 74 20 67 65	Signatur Oktal Dezi 6E 20 73 69 65 20 6E 5 73 74 6F 72 62 65 6E	mal Hex Ascii Und wenn sie n icht gestorben
Darstell Hex Signierte Adresse 00000 0000E 0001C	ungsmöglichkeiten der -Dump (Hex und Ascii) Nachricht Hex 55 6E 64 20 77 65 6E 69 63 68 74 20 67 65 20 73 69 6E 64 2C 20	Signatur Oktal Dezi 66 20 73 69 65 20 6E 73 74 6F 72 62 65 6E 73 6F 20 6C 65 62 65	Mal Hex Ascii Und wenn sie n icht gestorben sind, so lebe
Darstell • Hex Signierte Adresse 00000 0000E 0001C 0002A	ungsmöglichkeiten der -Dump (Hex und Ascii) Nachricht Hex 55 6E 64 20 77 65 6E 69 63 68 74 20 67 65 20 73 69 6E 64 2C 20 6E 20 73 69 65 20 6E	Signatur Oktal Dezi 66 20 73 69 65 20 6E 73 74 6F 72 62 65 6E 73 6F 20 6C 65 62 65 6F 63 68 20 68 65 75	Mal Hex Ascii Und wenn sie n icht gestorben sind, so lebe n sie noch heu
Darstell ignierte Adresse 00000 0000E 0001C 0002A 00038	ungsmöglichkeiten der -Dump (Hex und Ascii) Nachricht Hex 55 6E 64 20 77 65 6E 69 63 68 74 20 67 65 20 73 69 6E 64 2C 2C 6E 20 73 69 65 20 6E 74 65 2E 20 0A 55 6E	Signatur Oktal Dezi 6E 20 73 69 65 20 6E 73 74 6F 72 62 65 6E 73 74 6F 72 62 65 6E 73 6F 20 6C 65 62 65 6F 63 68 20 68 65 75 64 20 77 65 6E 6E 20	Ascii Und wenn sie n icht gestorben sind, so lebe n sie noch heu te.
Darstell Hex Gignierte Adresse D0000 D000E D001C D002A D0038 D0046	ungsmöglichkeiten der -Dump (Hex und Ascii) Nachricht Hex 55 6E 64 20 77 65 6E 69 63 68 74 20 67 65 20 73 69 6E 64 2C 20 6E 20 73 69 65 20 6E 74 65 2E 20 0A 55 6E 69 68 72 20 50 72 6F	Signatur Oktal Dezi 6E 20 73 69 65 20 6E 73 74 6F 72 62 65 6E 73 6F 20 6C 65 62 65 6F 63 68 20 68 65 75 64 20 77 65 6E 6E 20 66 69 6C 20 76 65 72	Mal Hex Ascii Und wenn sie n icht gestorben sind, so lebe n sie noch heu te. ihr Profil ver
Darstell Hex Adresse 00000 0001C 0001C 0002A 00038 00046	ungsmöglichkeiten der -Dump (Hex und Ascii) Nachricht Hex 55 6E 64 20 77 65 6E 69 63 68 74 20 67 65 20 73 69 6E 64 2C 20 6E 20 73 69 6E 64 2C 20 6E 20 73 69 65 20 6E 74 65 2E 20 0A 55 6E 69 68 72 20 50 72 6F	Signatur Oktal Dezi 6E 20 73 69 65 20 6E 73 74 6F 72 62 65 6E 73 6F 20 6C 65 62 65 6F 63 68 20 68 65 75 66 69 6C 20 76 65 72	Mal Hex Ascii Und wenn sie n icht gestorben sind, so lebe n sie noch heu te. ihr Profil ver
Darstell Hex Gignierte Adresse DoolC DoolC DoolC DoolC DoolA Dool	ungsmöglichkeiten der -Dump (Hex und Ascii) Nachricht Hex 55 6E 64 20 77 65 6E 69 63 68 74 20 67 65 20 73 69 6E 64 2C 20 6E 20 73 69 65 20 6E 74 65 2E 20 0A 55 6E 69 68 72 20 50 72 6F signierte Nachricht: 14	Signatur Oktal Dezi 6E 20 73 69 65 20 6E 73 74 6F 72 62 65 6E 73 6F 20 6C 65 62 65 6F 63 68 20 68 65 75 64 20 77 65 6E 6E 20 66 69 6C 20 76 65 72	Mal Hex
Darstell • Hex iignierte Adresse 20000 2000E 2001C 2002A 2002A 20046 	ungsmöglichkeiten der -Dump (Hex und Ascii) Nachricht Hex 55 6E 64 20 77 65 6E 69 63 68 74 20 67 65 20 73 69 6E 64 2C 2 6E 20 73 69 6E 64 2C 2 6E 20 73 69 6E 64 2C 2 6E 20 73 69 65 20 6E 74 65 2E 20 0A 55 6E 69 68 72 20 50 72 6f ignierte Nachricht: 14 ignierte Dokument und nen". Dort können Sie o	Signatur Oktal Dezi 6E 20 73 69 65 20 6E 73 74 6F 72 62 65 6E 73 6F 20 6C 65 62 65 6F 63 68 20 68 65 75 64 20 77 65 6E 62 20 66 69 6C 20 76 65 72 3 Bits die erzeugte Signatur ar lie Signatur speichern, fa	imal Hex Ascii Und wenn sie n icht gestorben sind, so lebe n sie noch heu te. ihr Profil ver nzuzeigen, klicken Sie auf "Hex alls Sie diese verifizieren

Signatur-Demo

Fazit

- Die Integrität von elektronischen Dokumenten kann mit Hilfe einer Signatur überprüft werden.
- Krypto-Algorithmen helfen, um den Autor und die Integrität des Dokuments zu verifizieren.
- Wird ein Dokument verfälscht, so ändert sich damit auch dessen Hashwert.
- Um sicher zu stellen, dass das Dokument vom angegebenen Autor stammt, signiert es der Autor mit seinem privaten Schlüssel.

Nur mit dem "richtigen" öffentlichen Schlüssel (also dem des angegebenen Signierers) kann man den originalen Hashwert verifizieren (und damit die Integrität des Dokuments).

Somit kann der Hashwert, obwohl er öffentlich verfügbar ist, nicht geändert werden.

Wie funktioniert heutige Verschlüsselung, die Sicherheit garantiert?

- Für Daten, die auf öffentlichen Kanälen übertragen werden, sollten Verschlüsselungsverfahren verwendet werden. Ein solches ist das RSA-Verfahren (sofern es mit den richtigen Parametern benutzt wird).
- Das RSA-Verfahren ist ein asymmetrisches Verfahren, es benötigt zwei Schlüssel: einen privaten und einen öffentlichen Schlüssel. Jeder Teilnehmer benötigt ein eigenes Schlüsselpaar, das er zunächst generieren (lassen) muss.
- Inhalte, die mit dem öffentlichen Schlüssel eines Teilnehmer verschlüsselt wurden, können lediglich mit dem entsprechenden privaten Schlüssel wieder entschlüsselt werden.
- Für die verschlüsselte Kommunikation mit einer anderen Person muss man im Besitz von deren öffentlichen Schlüssel sein. Zunächst muss daher ein Schlüsselaustausch für die öffentlichen Schlüssel stattfinden.

Um diesen Prozess zu vereinfachen wird oftmals eine "Certificate Authority" (CA, Trustcenter, PKI) benutzt, die öffentliche Schlüssel speichert, verwaltet und verifiziert und Zertifikate ausstellt.

→ Siehe auch das Visualisierungs-Plugin "Public-Key-Infrastruktur"(JCT-PKI), das die Vorgänge in einer PKI mit ihren Instanzen Benutzer, RA und CA visualisiert.

Die Implementierung in JCT

Im Menü

"Visualisierungen" \ "Erweitertes RSA-Kryptosystem"

Funktionsweise

- Dieses Plugin in JCT ermöglicht es, Identitäten sowie Schlüssel zu verwalten und Nachrichten zu verschicken und zu empfangen.
- Zusätzlich ist es möglich, einen Angriff auf die Schlüssel auszuführen. Dabei wird mit Brute-Force-Methoden versucht, den Modul "n" in seine beiden Primfaktoren zu zerlegen.
- Das Plugin bietet also eine vollständige, unabhängige Kommunikationsplattform. Der Benutzer kann außerdem experimentieren und Sicherheitslücken des RSA-Verfahrens herausfinden.

Ein Anwendungsbeispiel 1/2

Primzahlerzeugung

- Zunächst einmal generieren wir uns einen Schlüssel, den es zu knacken gilt.
- Dazu bietet das Plugin die Option "Schlüssel verwalten".
 Dort wählen wir die Prim-

zahlen p und q sowie ein zufälliges e.

- Schließlich wird der Schlüssel in einem Keystore gespeichert, wozu man unten rechts ein Passwort eingeben muss.
- Nachdem wir einen Schlüssel für die Identität "Alice Whitehat" erstellt haben, möchten wir den Schlüssel angreifen (versuchen zu knacken). Beim RSA-Verfahren bedeutet dies, die Primfaktorzerlegung der Zahl n = p*q zu finden.
- Da Alice ihre Schlüssel kennt, wechseln wir die Sichtweise, indem wir zum Reiter "Bob Whitehat" wechseln. (Die Identitäten Bob und Alice sind standardmäßig in JCT vorhanden.)

	Alice Whitehat Bob Whitehat
Aktionen:	Aktionsfenster
Aktionen: Nachricht verschlüsseln und senden Nachricht empfangen und entschlüsseln Schlüssel verwalten Offentlichen Schlüssel angreifen	Neuen Schlüssel erstellen Neuen Schlüssel erstellen

Ein Anwendungsbeispiel 2/2

Der Angriff

- Bob White kann jetzt den öffentlichen Schlüssel von Alice angreifen.
- Dazu klickt man als Bob den Button "Öffentlichen Schlüssel angreifen" und wählt den passenden Schlüssel von Alice. Den soeben generierten Schlüssel erkennt man an der Bitlänge (hier 20 bit).
- Aufgrund der geringen Bitlänge kann anschließend über den Button "Schlüssel attackieren" der von Alice generierte Schlüssel ohne Kenntnis der Primzahlen p und q wieder faktorisiert werden.
- Hier wird dazu nur ein Brute-Force-Angriff auf den Schlüssel angewendet.
- Eine Bitlänge von nur 20 bit ist bei weitem nicht ausreichend für die Sicherheit des RSA-Verfahrens.

Aktionen: Nachricht verschlüsseln und senden Nachricht empfangen und entschlüsseln Schlüssel verwalten Offentlichen Schlüssel angreifen	Alice Whitehat - Alice Whitehat - Erika Mustermar Alice Whitehat - Alice Whitehat - Alice Whitehat - Erika Mustermar Lit Klick auf "Schi Itlänge von N: 20 V: 962261	10248it - RSAPublicKey - KeylD: 9 208it - RSAPublicKey - KeylD: 1 nn - 10248it - RSAPublicKey - KeylD: 5 nn - 10248it - RSAPublicKey - KeylD: 6 10248it - RSAPublicKey - KeylD: 6 208it - RSAPublicKey - KeylD: 10 nn - 10248it - RSAPublicKey - KeylD: 2 lüssel attackieren" wird versucht, den Modul obit	Alice Whitehat Bob Whitehat Schlüssel attackieren us N von Alice Whitehat zu faktorisieren:	Schlüssel rekonstruieren
Pa	arameter	Wert		
Pa	arameter	Wert 971		
Pa p q	arameter	Wert 971 991		
Pa p q e	arameter	Wert 971 991 733		
Pa p q e d	arameter	Wert 971 991 733 233197		
Pa p q e d	arameter	Wert 971 991 733 233197		
Pa p e d	arameter	Wert 971 991 733 233197		
Pa p q d	arameter	Wert 971 991 733 233197		
Pa p q e d	arameter	Wert 971 991 733 233197		
Pa q e d	arameter	Wert 971 991 733 233197		
Pa p e d	arameter	Wert 971 733 233197		

Fazit

- Faktorisierungs-Angriffe können Schlüssel mit kurzer Bitlänge sehr schnell faktorisieren.
 Beispielsweise kann ein Modulus n mit 64 bit (die Binärdarstellung hat 64 Stellen, was circa 20 Dezimalstellen entspricht, wie z.B. die Zahl 2^64-15) in weniger als 1 Sekunde mit einem aktuellen Notebook (Intel Core i7 2,4GHz) faktorisiert werden.
- Falls ein Angreifer eine Faktorisierung des Modul n finden kann, kann er die gesendeten Nachrichten auch entschlüsseln.
- Erst Bitlängen von 2048 bit werden heutzutage als sicher bewertet.

Und mehr ...

 Das Plugin ermöglicht es, Nachrichten mit dem RSA-Verfahren verschlüsselt an einen Gesprächspartner zu versenden.

SETUP-Angriff auf die RSA-Schlüsselgenerierung (Kleptographie) Die Idee

Problematik

- Es existieren einige "Backdoor"-Angriffe, welche das RSA-Verfahren unsicher machen können.
- Einstiegspunkt der meisten dieser Angriffe auf das RSA-Verfahren ist die Schlüsselgenerierung, denn dabei müssen zufällige Primzahlen erzeugt werden. Auf das "zufällige" Ergebnis dieser Generatoren muss vertraut werden können, dies ist jedoch nicht immer möglich.
- Dies ist auch bei dem sogenannten SETUP-Angriff (engl. "secretly embedded trapdoor with universal protection", d.h. ein geheim eingebauter, universal geschützter Falltürangriff) der Fall.

Hierzu eine kurze Zusammenfassung des Angriffs:

Funktionsweise

- Es werden zusätzliche Werte und Schlüssel in das System injiziert.
- Die öffentlichen Schlüssel des Verfahrens werden so beeinflusst, dass aus diesen direkt Informationen für die Entschlüsselung gewonnen werden können.
 Ohne die konkrete Implementierung der Schlüsselgenerierung zu kennen, erscheinen diese Werte hingegen weiterhin als zufällig.

SETUP-Angriff auf die RSA-Schlüsselgenerierung Die Implementierung in JCT

Im Menü

"Visualisierungen" \ "Kleptographie"

Funktionsweise im Detail

- Allgemein werden beim RSA-Verfahren zwei zufällige, geheime Primzahlen P und Q benötigt, deren Produkt das Modul N = P*Q bildet. Der Wert N ist öffentlich.
- Bei dem Angriff wird zunächst die Primzahl P erzeugt und diese mit dem öffentlichen Schlüssel des Angreifers verschlüsselt. Die Primzahl Q wird anschließend so gewählt, dass die ersten Zahlen des Moduls N der verschlüsselten Primzahl entsprechen.
- Durch dieses Wissen kann der Angreifer mit seinem privaten Schlüssel die Primzahl P zurückgewinnen, und das Verfahren ist geknackt.
- Da nur die verschlüsselte Primzahl P im Modul N enthalten ist und P zufällig gewählt wurde, erscheint das Modul N als Produkt von P und Q zufällig.

Da P für jedes neue Schlüsselpaar neu erzeugt wird, ist der Angriff nicht erkennbar ohne ein Reverse-Engineering des Codes zur Schlüsselgenerierung.

SETUP-Angriff auf die RSA-Schlüsselgenerierung Ein Anwendungsbeispiel 1/2

Der Angriff teilt sich in zwei Schritte auf: die Schlüsselgenerierung und das Entschlüsseln des Angreifers.

Die Schlüsselgenerierung

- Wähle im Dropdown-Menü das Verfahren "Angriff 4: SETUP".
- Zunächst müssen die beiden Schlüssel des Angreifers generiert werden.
 Dies geschieht über den Button "Neue Schlüssel für den Angreifer erzeugen".
- Anschließend können die üblichen, für das RSA-Verfahren benötigten
 Primzahlen P und Q erzeugt werden.

Einstellungen				
Verfahren: Bitlänge der Schlüssel:	Angriff 4	: SETUP dezimal)	÷)	OBinär ODezimal O Hexadezimal
Zusätzliche Kryptosyst	emwerte			
[Neue Schlüssel fü	r den Angreifer erzeugen	
N des Angreifers	df9b5945			
E des Angreifers Verschlüsselte P	81386321 ba69fea8			
N' (vorläufiges Modul)	ba69fea80	b64e2af		
Standard-Kryptosyster	nwerte			
		Alles auf	einmal erzeugen	
Primzahlen P und Q	erzeugen	P (Primzahl) da7f23db	Q (Primzahl) da6920c7	
N berechner	1	N = P * Q ba69fea7f0233f3d		
		E (öffentlicher Exponent) 10001	Neues E erzeugen	Standard-E wiederherstellen
D berechner	1	D (privater Exponent)		

- Die Primzahl Q wird dabei so gewählt, dass der Modul N die verschlüsselte Primzahl P enthält (in der Abbildung gelb hervorgehoben).
- Nach dem Berechnen von N und D kann im Textfeld im unteren Drittel des Plugins ein Klartext verschlüsselt werden.
- Durch den Button "Öffentlichen Schlüssel und Geheimtext speichern" ist es anschließend möglich, im Reiter "SETUP-Angriff" den Geheimtext wieder zu entschlüsseln.

SETUP-Angriff auf die RSA-Schlüsselgenerierung Ein Anwendungsbeispiel 2/2

Die Entschlüsselung durch den Angreifer

- Wähle als Verfahren "SETUP-Angriff".
- Die Daten, die dem Angreifer vorliegen, sind an den entsprechenden Stellen bereits eingetragen: Dies sind die Schlüssel des Angreifers, das Modul N sowie der Exponent E. Die letzten beiden Werte sind öffentlich, da sie vom Kommunikationspartner zur Verschlüsselung des Textes benötigt werden.
- Durch die oberen vier Buttons links lässt sich der Text durch den Angreifer entschlüsseln.
- Zunächst wird dazu aus dem Modul N die verschlüsselte Primzahl P ausgelesen und entschlüsselt.

	Schlüsselgenerieru	ng und Verschlüsselung SETUP-Angri	ff		
a Paranaktiva das Anaraifars					
s Ziel eines Angreifers ist es, mit öffentlich verfügbaren D ponents D führen.	aten, d.h. öffentliche Schlüssel und	Geheimtexte, an Informationen zu gelan	gen, die zur Faktorisierung des Moduls N und Nachbildung des privaten		
Verschlüsselte P entschlüsseln	Offentlicher Schlüssel				
Private Schlüssel berechnen	Der öffentliche Schlüssel ist de dem ersten Tab übernommen.	efinitionsgemäß öffentlich verfügbar und	folglich sichtbar für einen Angreifer. Dieser Schlüssel wurde direkt aus		
Gebeimtexte entschlüsseln	N (Modul)		E (öffentlicher Exponent)		
denember ensemblasem	ba69fea7f0233f3d		10001		
Zurück zur Schlüsselerzeugung und Verschlüsselung	Zusätzliche Daten				
	Das verschlüsselte P wird von eigenen privaten Schlüssel.	den oberen Bits des öffentlichen Moduls	N gelesen und um sie zu entschlüsseln braucht der Angreifer seinen		
	Verschlüsselte P		D des Angreifers (privater Exponent)		
	ba69fea7		9443dea1		
	Berechnungen				
	Der Angreifer wird die mit sein möglichen Bitübertragung in o verschlüsselten P plus eins en zu berechnen.	nem öffentlichen Schlüssel verschlüsselte ler Teilung im Primzahlerzeugungalgoriti tschlüsselt. Der Angreifer kann P nutzen,	Primzahl P in den oberen Bits des Moduls N finden. Wegen einer hmus muss der Angreifer auch P' berechnen, indem er den Wert des um Q und dann D zu berechnen, aber muss auch P' nutzen, um Q' und D'		
	Entschlüsselte P		Entschlüsselte P' (P + 1)		
Durchführung des SETUP-Angriffs	907894fe		da7f23db		
ichritt 7: Die verschlüsselte Primzahl P wird von den weren Bits des Moduls N entnommen. Entschlüsselung	Q = N / entschlüsselte P		Q' = N / entschlüsselte P'		
lieses Wertes mit dem privaten Schlüssel des Angreifers	14a527f88		da6920c7		
rgibt die Primzahl P, es sei denn, ein Ubertragungsbit wurde in der früheren Teilung genommen. Da der	D (privater Exponent)		D' (privater Exponent)		
Angreifer nicht wissen kann, ob das passiert ist, muss er	98dc8429a4704210		4037dd9b049297dd		
das verschlusselte P und P plus eins (= P) entschlusseln.	Geheimtext				
Schritt 8: Mithilfe von P und P' sowie dem öffentlichen Schlüssel kann der Angreifer die zweite Primzahl Q und Janach den privaten Schlüssel nachbilden. Der Angreifer	Der Geheimtext wird öffentlich	n übermittelt und ist folglich komplett sic	htbar für einen Angreifer oder anderen Beobachter.		
danach den privaten Schlüssel nachbilden. Der Angreifer muss Q und Q'brechnen, obwohl nur eine Primzahl ergeben wird, die N ohne Rest teilt. Schritt 9: Es gibt jetzt zwei mögliche Schlüssel, mit dem man der Geheintext entschlüssel hann. Der Angreifer könnte schon vorab prüfen, welcher Wert der Richtige sit, aber einer wird immer die ursprüngliche Klartext- Nachricht und der andere Unsinn ergeben.	4403eb5d012ab9ecs5080f7Ca00 5e3b5646362d112a32a33eba eba2c4a467bc1cd3782b012a32a33eba 33a1a35712b0537e8d5712b037 88a1141459043564c23914e013 88a1141459043564c23914e01342 bb60583277241652c012c138b43 20b543e5d160378a51a48864 e9394337991c1c538c42877344		Rec 530013 datics 11 dbs49a31ecf4 (de4e7b1c1c237a161747ch663) 272703500014310147cf106631 27270350001431014cf1098ech4f1 27270350001431014cf1098ech4f1 272642753001431044cf1098ech4f1 272642753001430144cf1098ech4f1 27264275427542764272cf109815(fbc254e		
	Entschlüsselte Texte				
	Der Angreifer kann den Klartext durch Entschlüsselung mit einem nachgebildeten privaten Schlüssel erlangen. Aber er kann nicht wissen, ob D oder D' der richtige private Expontent ist und muss deswegen beide benutzen.				
	Mit D entschlüsselter Geheimte	xt	Mit D' entschlüsselter Geheimtext		
	廣◆皆將國營糧輕拾125日才潮當日 發心互林回(紛緩回 蟹試網回 頌興 期個回 雲の制高+前小戰吳由臺跋強用 貯回貝麼回、禅契档。4月他 回派	目田智の聽眠四難⊘解熱又激明四難等の 受緊部後感給肉洗○○只辨熱技他│○沈 1数2甲読録eo慮已で漲消咳慮前張所容望宋 必会行消涕者i囚	Es ist also tattächlich möglich diese scheinbar all sicher verschlüsselte Nachricht durch den SETUP-Angriff zu entschlüsseln.		

 Da eine Bitverschiebung und damit zwei verschiedene Fälle auftreten können, werden diese beiden Möglichkeiten analysiert.

SETUP-Angriff auf die RSA-Schlüsselgenerierung

Fazit

- Durch geschicktes Eingreifen in die Schlüssel-Erzeugung ist es für einen Angreifer möglich, den verschlüsselten Geheimtext mit der Hilfe seines eigenen privaten Schlüssel zu entschlüsseln.
- Fast alle effektiven Angriffe auf RSA setzen bereits bei der Schlüsselgenerierung an. Daher müsste das Vertrauen in die Schlüsselgenerierung, die oft von einer Zertifizierungsstelle (engl. "Certificate Authority") oder in einem Hardware-Security-Module (HSM) durchgeführt wird, gewährleistet sein.
- Das Modul N scheint bei der Erzeugung zweier unterschiedlicher Schlüsselpaare zufällig, da die Primzahlen P und Q jeweils neu gewählt werden. Daher ist es allgemein schwierig, den Angriff anhand des Output aufzudecken -- ohne Reverse Engineering zu betreiben.
- Für den Angriff wird nur der öffentliche Schlüssel des Angreifers benötigt, so dass ein Aufdecken des Angriffes keine weitere Unsicherheit für die Kommunikation des Angreifers darstellt.

Problematik

- Eine Person A möchte eine Person B davon überzeugen, dass sie ein Geheimnis kennt, welches auch Person B kennt.
- Die Überprüfung soll dabei so stattfinden, dass das eigentliche komplette Geheimnis nicht preisgegeben werden muss. Dadurch ist es möglich, den Abgleich öffentlich durchzuführen und einem Mithörer ist es nicht möglich, das Geheimnis zu lüften.
- Eine Lösung für diese Problemstellung wird Zero-Knowledge-Protokoll genannt.
- Wichtig ist, dass die Beteiligten eines Zero-Knowledge-Protokolls ehrlich sind. Dies bedeutet, dass eine dritte Person C die Person B nicht davon überzeugen kann, vorzugeben das Geheimnis zu kennen, obwohl sie es nicht kennt.

In diesem Anwendungsbeispiel zeigen wir das Zero-Knowledge-Protokoll Fiat Shamir. Es gibt jedoch noch weitere, z.B. Feige Fiat Shamir, oder eine Variante über einen Graphenisomorphismus.

Die Implementierung in JCT

Im Menü

"Visualisierungen" \ "Fiat Shamir"

Funktionsweise

- Beim Verfahren Fiat Shamir wird ausgenutzt, dass im Restklassenring modulo n die Quadratwurzel einer Zahl nur über die Primfaktorenzerlegung der Zahl n gefunden werden kann.
- Ist n zusätzlich das Produkt zweier geheimer Primfaktoren p und q, und sind p und q genügend groß, dann ist eine Primfaktorzerlegung von n nicht effizient möglich.
- Da das Verfahren auf Zahlen operiert, muss das Geheimnis s als Zahl gegeben sein.
- Person A veröffentlicht die Zahl v = s² mod n, generiert eine Zufallszahl r < n und bekommt von Person B eine Zufallszahl b übersendet, die 0 oder 1 ist. Person B erhält die Zahl x = r² mod n.
- Person A berechnet y = rs^b mod n und schickt diese Zahl an Person B. Person B verifiziert, ob die Gleichung Zahl y²=xv^b mod n gilt. Ist diese erfüllt, so gilt das Geheimnis als verifiziert.

 $y^2 = (rs^b)^2 = r^2s^{2b} = xv^b \mod n$

Ein Anwendungsbeispiel 1/2

Als Prüfer

- Wähle oben den Radio-Button "Prüfer".
- Zunächst müssen die beiden Primzahlen p und q generiert werden, deren Produkt ist der öffentliche Modul n. Zusätzlich muss das Geheimnis s erstellt werden.
- Unter "Ablauf" können dann die Schritte, die zur Verifizierung benötigt werden, durchgeführt werden.
- Alle Werte öffentliche sowie private die bei dem Verfahren berechnet werden, sind im unteren Teil des Plugins aufgeführt.
- Da die geprüfte Person Alice hier tatsächlich das Geheimnis kennt, wird ihr Kommunikationspartner dies positiv verifizieren (grüner Hinweis im Screenshot unten links).

) Prüfer Wählen Sie z) Angreifer s < n und v	wei Primzahlen p und q. D = s² mod n. v wird öffentli	Die Zahl n = pq ist der öffe ch bekannt gegeben.	ntliche Modul. Alice kennt eine Zahl
rimzahleingabe			Drimmehlen generiteren
197	n: 2974	7	Cohoimpis orstoller
151 Primzahlen überne	hmen		
blauf			
oldi i	Zufallszahl erstellen	Alice generiert eine Zufa schickt x = r ² mod n an	liszahi r < n und Bob.
	b generieren	Bob generiert ein Zufalls und sendet b an Alice.	bit b aus {0,1}
	Antwort berechnen	Alice berechnet eine Antu und sendet diese an Bob $y = rs^b$.	wort y
	Verifizieren	Bob verifiziert Alices An Er überprüft, ob gilt: $y^2 = xv^b$.	ntwort.
Zurücksetzen		Neuer Durchlauf	Mehrmals ausführen
formation			
Bob	Alice		
b: 1	Gehei	m	Offentlich
y ² : 7490		r: 6138	v = s* mod n 5286
x v^b : 7490		s: 1360	y: 18520
urde verifiziert			$x = r^2 \mod n 15342$

Zero-Knowledge-Protokoll: Fiat Shamir Ein Anwendungsbeispiel 2/2

Als Angreifer

- Das Verfahren bietet jedoch auch Angreifern die Möglichkeit vorzutäuschen, sie besäßen das Geheimnis. Dies lässt sich durch die Auswahl "Angreifer" nachspielen und verstehen.
- Durch geschickte Wahl der Werte x und y, mit deren Hilfe die Glaubwürdigkeit überprüft wird, lässt sich in 50% der Fälle vortäuschen, dass der Angreifer das Geheimnis kennt.
- Dies lässt sich in diesem Szenario durchspielen. Durch n-faches Ausführen wird letztlich mit einer Wahrscheinlichkeit 1-(0,5)ⁿ. aufgedeckt, dass es sich nicht um den wahren Geheimnisträger handelt.
- Je häufiger der Test wiederholt wird, umso sicherer wird ein Angreifer entdeckt.

Situation Prüfer Wählen Si Angreifer sie sei Ali	e zwei Primzal ce und kenne	hlen p und eine Zahl s	q. Die Zahl n = pq ist de mit v = s² mod n. v wird	r öffentliche Modul. Carol behauptet, öffentlich bekannt gegeben.
Primzahleingabe				
131		n : 299	99	Primzahlen generieren
þ29				Geheimnis erstellen
Primzahlen überne	ehmen			
Ablauf				
	Zufallszahl e	erstellen	Carol generiert eine Zufa r < n und ein Bit c aus {0 sendet x = r ² v^-c mod n	llszahl ,1}. Sie an Bob.
	b generi	eren	Bob generiert ein Zufalls sendet b an Carol.	bit b aus {0,1} und
	Antwort ber	rechnen	Carol berechnet eine Ant und sendet diese an Bob $y = r$.	wort y
	Verifizie	ren	Bob verifiziert Carols A Er überprüft, ob gilt: y ^z = xv^b.	ntwort.
Zurücksetzen			Neuer Durchlauf	Mehrmals ausführen
Information				
Bob		Carol		
b: 0		Gehei	n	Öffentlich
y ² : 9022			r: 6711	$v = s^2 \mod n$ 6955
x v^b : 15926			s: ?	y: 6711
			c: 1	$x = r^2 v^{A-c}$: 15926

n	1	2	3	4	5	6	7	8	9	10
P(n)	0,5	0,75	0,875	0,9375	0,96875	0,984375	0,9921875	0,99609375	0,998046875	0,999023438

Fazit

- Zero-Knowledge-Protokolle sind Verfahren, die eingesetzt werden, um jemand anderen zu überzeugen, dass man ein Geheimnis kennt. Dabei soll das Geheimnis jedoch nicht offen gelegt werden.
- Das Fiat-Shamir-Protokoll ist ein solches Verfahren.
- Es ist wichtig zu wissen, dass ein Angreifer das Verfahren mit Wahrscheinlichkeit (0,5)ⁿ hintergehen kann (n ist die Anzahl der Wiederholungen des Tests). Je öfter das Verfahren wiederholt wird, desto besser ist die Qualität der Aussage.
- Hinweis: Wenn sehr große Zahlen effizient und schnell in ihre Primfaktoren zerlegt werden können, dann ist das Verfahren nicht mehr sicher (d.h. dann gelten die oben genannten Wahrscheinlichkeiten nicht).

Android-Mustersperre (AUP)

Problematik

- Smartphones bieten heutzutage neben dem Telefonieren und Nachrichten verschicken viele weitere Funktionen, wie z.B. Mails bearbeiten, Notizen erstellen oder Online-Banking machen. Das Nutzen solcher Funktionen führt dazu, dass viele vertrauliche Daten auf dem Smartphone (oder in einer Cloud) gespeichert werden.
- Wer sein Smartphone einmal verloren hat, fragt sich häufig, ob jemand an seine sensiblen Daten herankommt. Wie sicher ist die Sperre des Smartphones? Was unterscheidet eine einfache PIN-Eingabe von der bei Android zum Einsatz kommenden Mustersperre^[1].
- Die Mustersperre des Betriebssystems Android ist in JCT visualisiert, und in der Onlinehilfe werden die Sicherheitsbewertungen dazu dargestellt und mit anderen Mustersperren verglichen.

Android-Mustersperre

Die Implementierung in JCT

Im Menü

"Visualisierungen" \ "Android-Mustersperre (AUP)"

Funktionsweise

- Die Android-Mustersperre kann als Bildschirmsperre bei Smartphones mit dem Betriebssystem Android benutzt werden. Typischerweise sind dazu neun Punkte auf dem Bildschirm im Quadrat angeordnet, und der Benutzer kann durch Verbinden der Punkte (nach bestimmten Regeln) ein Muster anlegen, das er dann zum Entsperren des Smartphones eingeben muss.
- Die Visualisierung bietet die Möglichkeit, verschiedene Muster auf ihre Sicherheit zu pr
 üfen. Dabei wird ein Sicherheitsindikator angezeigt, der anzeigt, wie viele verschiedenen Kombinationen mit der benutzen Anzahl an Punkten auf dem Muster möglich ist.

Android-Mustersperre

Ein Anwendungsbeispiel

Muster setzen

- Startet man die Visualisierung, sieht man den typischen Sperrbildschirm von Android.
- Nun kann man ein Muster festlegen, indem man auf einen der Punkte klickt und anschließend die Maus über die andere Punkte bewegt. Um das Muster abzuschließen, muss man auf den Endpunkt des Musters klicken.
- Ist das Muster angelegt, wird im rechten Textfeld der Sicherheitsindikator angezeigt. Dieser gibt einen Hinweis darauf, wie sicher das Passwort ist. Z.B gibt es für ein Muster mit 5 Punkten 8776 verschiedene Kombinationsmöglichkeiten.

Muster ändern, Muster prüfen

 Das Plugin bietet zusätzlich noch die Möglichkeit, das Muster zu speichern und danach ein anderes Muster mit dem gespeicherten zu vergleichen.

 Das gespeicherte Muster kann auch geändert werden. Hierzu wird das zuletzt gespeicherte Muster benötigt. Kennt man das Muster nicht mehr, kann man das Plugin einfach komplett zurücksetzen.

Android-Mustersperre

Fazit

- Für das AUP-Muster ist die Reihenfolge der besuchten Felder entscheidend.
- Ein Muster der Android-Mustersperre muss gewisse Regeln erfüllen, beispielsweise darf jedes Feld nur einmal besucht werden.
- Durch diese (und weitere) Einschränkungen reduziert sich die Anzahl der möglichen Muster.
 Insgesamt gibt es 389.112 verschiedene Muster.
- Vergleicht man das AUP-Muster mit einer vier- bis neunstelligen PIN aus den Ziffern 1 bis 9, bei der jede Ziffer höchstens einmal vorkommt, so gibt es hierfür 985.824 PIN-Kombinationen.
 Bei der Android-Mustersperre gilt die Regel, dass Verbindungen zwischen zwei Feldern, deren Verbindungslinie ein ungenutztes Feld schneidet, unzulässig sind. Würde man diese Regel vernachlässigen, so hätte die Mustersperre genauso viele Möglichkeiten wie die PIN, bei der jede Zahl höchstens einmal vorkommt.

Funktionalität

- Mit dem Aktionen-Fenster lassen sich Abfolgen (Kaskaden) von Aufrufen von Krypto-Verfahren aufnehmen und erneut ausführen (dies ist also ein Rekorder und Player für die JCT-Funktionen).
- Es können beliebig viele Algorithmen aus der Standard-Perspektive aufgenommen und wieder abgespielt werden.
- Kaskaden klassischer Krypto-Verfahren lassen sich auch mit der Krypto-Konsole abbilden (siehe Folie <u>73</u>).

Anwendungsbeispiele

- Dateien lassen sich schnell mit den denselben Algorithmen und Einstellungen und gleicher Reihenfolge ver- bzw. entschlüsseln.
- Mit der Kaskadenfunktion lässt sich die Kommutativität, also die Vertauschbarkeit der Reihenfolge zweier Verschlüsselungsverfahren, leicht ausprobieren (siehe Folien <u>66</u> ff).

Mit dem Aktionen-Fenster kann man Prozeduren automatisieren und abspielen – ähnlich wie mit Stapeldateien auf der Kommandozeile. Es kann vorkommen, dass aufgenommene Kaskaden nicht dasselbe Ergebnis liefern wie bei der Aufnahme.

Die Implementierung in JCT

Im Menü

"Fenster" \ "Sicht anzeigen"\ "Aktionen"

Erstellen einer Aufnahme

- Um eine Kaskaden-Aufnahme zu starten, den Button 😤 drücken.
- Alle Algorithmen, die nun ausgeführt werden, werden gespeichert.
- Zum Beenden der Aufnahme erneut den Button 😤 drücken.

Aufnahme bearbeiten, speichern und ausführen

- In der Liste unterhalb der Icon-Leiste sind alle Algorithmen in der Reihenfolge aufgelistet, wie sie ausgeführt wurden.
- Wählt man eine Zeile in der Liste aus, werden im unteren Bereich des Fensters Details zu den Einstellungen der Ver-/Entschlüsselung angezeigt.
- Nun lässt sich die erstellte Kaskade auf eine in JCT geöffnete Datei durch Drücken von le anwenden.
- Mit den beiden Buttons in und Iassen sich die Kaskaden importieren bzw. exportieren (laden und abspeichern).

🕭 Datei-l	Explor 🙆 Aktior	nen 🛛 🦷	
	📫	🧏 🕨 🗶 🔛 🖂	
Aktion	Algorithmus	Dateiname	
<u>ل</u> ا:	Bifid	out007.txt	
	LFSR	out008.bin	
X	Vigenère	out009.txt	
Bifid Playfair nullcha key:	r- Alphabet (A-2 r: 0 F	Z ohne J)	^
key2: output	null I S : null		
transfo	rmData:		
4			
upper/le	owercase=uppe	case,	
upper/le filterBla	owercase=uppe nks=on, filterUm	nlauts=on	

Ein Anwendungsbeispiel 1/3

An einem Beispiel wird gezeigt, dass man die Reihenfolge des Caesar- und des Transpositionsverfahrens beim Entschlüsseln vertauschen kann (Kommutativität).

Eine erste Aufnahme

- Start der Kaskaden-Aufnahme mit 😤 .
- Verschlüsselung eines beliebigen Textes mit Caesar: "Algorithmen" \ "Klassisch" \ "Caesar"
- Hinzufügen einer Transpositions-Verschlüsselung: "Algorithmen" \ "Klassisch" \ "Transposition"
- Anwenden einer Transpositions-Entschlüsselung, die die letzte Verschlüsselung wieder rückgängig macht: Dazu sind die gleichen Einstellungen wie bei der entsprechenden Verschlüsselung zuvor zu wählen, nur diesmal mit der Richtung "Entschlüsseln".
- Entschlüsselung der zuerst ausgeführten Caesar-Verschlüsselung.
- Stoppen der Aufnahme mit
 Stoppen der Aufnahme mit

Das Aktionen-Fenster sollte nun wie rechts abgebildet aussehen.

🕭 Datei-B	Explorer 🖉 Aktic	onen 🛛		3
		📫 😤 🕨 🗶 🖄	4	\bigtriangledown
Aktion	Algorithmus	Dateiname		
X :	Caesar	out001.txt		
X	Transposition	out002.txt		
P	Transposition	out003.txt		
Ę	Caesar	out004.txt		
Caesar				~
Lateinis	ches Alphabet	(A-Z,a-z)		
nullcha	r: 0			
key:	K			
key2:	null			
outputl	S: null			
transfo	rmData:			
filterNo	onAlphaChars:	true		

Ein Anwendungsbeispiel 2/3

Die Kaskade, die wir auf der letzten Folie erstellt haben, sollte uns jetzt jeden Text wieder unverschlüsselt anzeigen, denn sie entschlüsselt gleich wieder, was sie zuvor verschlüsselte.

Die aktuelle Abfolge der Algorithmen

- Es sollte folgende Abfolge von Krypto-Operationen vorliegen, wobei hier E für die Encryption (Verschlüsselung) und D für Decryption (Entschlüsselung) steht.
 - --> E (Caesar) --> E (Transposition) --> D (Transposition) --> D (Caesar)
- Erkennbar ist die Zwiebel-artige Reihenfolge der Verschlüsselungsalgorithmen und die Anwendung des jeweils inversen Algorithmus. Eine solche Struktur liefert mit allen Algorithmen die Identitätsabbildung – der Klartext bleibt also invariant.
- Damit kommt die Frage auf: Inwieweit lassen sich die Entschlüsselungsalgorithmen in ihrer Reihenfolge vertauschen, so dass weiterhin in den Klartext "entschlüsselt" wird?

🗏 Datei-	Explorer 🙆 Aktic	onen 🛛	
		📫 😤 🕨 🗶 🖄 🗈 🖬	2 - 2
Aktion	Algorithmus	Dateiname	
X	Caesar	out001.txt	
X :	Transposition	out002.txt	
F	Transposition	out003.txt	
F	Caesar	out004.txt	
Caesar			
Lateinis	sches Alphabet	(A-Z.a-z)	
nullcha	r : 0		
key:	К		
key2:	null		
output	I S : null		
transfo	rmData:		
filterNo	onAlphaChars	true	

Ein Anwendungsbeispiel 3/3

Wir wollen nun die Reihenfolge der Entschlüsselungs-Algorithmen ändern und beobachten, was passiert.

Aufnahmen umsortieren

 Ein Rechtsklick auf eine Zeile (z.B. die Caesar-Entschlüsselung) und die Auswahl "Nach oben" und "Nach unten" erlauben es, die Reihenfolge der Operationen zu ändern.

Eine neue Reihenfolge

- Damit ergibt sich die geänderte Reihenfolge der Algorithmen:
 - --> E (Caesar)
 - --> E (Transposition)
 - --> D (Caesar)
 - --> D (Transposition)
- Öffne eine beliebige Textdatei in JCT.
- Wende mit
 unsere neue Kaskade auf die Datei an.

Was passiert nun mit dem Klartext?

Funktioniert dies auch mit anderen Verschlüsselungsverfahren?

Kaskaden mit dem Aktionen-Fenster Lernziel

Fazit

 Die Kaskadenfunktion eignet sich hervorragend, um Abfolgen kryptografischer Operationen zu speichern und auf unterschiedliche Dateien automatisch anzuwenden.

Fazit anhand eines Beispiels

- Wurde auf einen Klartext die Caesar- und die Transpositionsverschlüsselung angewandt, dann ist die Reihenfolge bei der Entschlüsselung beliebig. Diese Verfahren sind bei der Entschlüsselung kommutativ.
- Dies ist möglich, da das Caesar-Verfahren jeden einzelnen Buchstaben um eine feste Anzahl an Buchstaben im Alphabet verschiebt. Das Transpositionsverfahren permutiert jeden Buchstaben im Text. Beide arbeiten exakt auf denselben (Teil-)Objekten.
 Genauso wäre es auch, wenn man statt Caesar eine monoalphabetische Substitution nimmt.
- Viele Verfahren (z.B. ADFGVX und Playfair) arbeiten mit einer sogenannten "Fraktionierung". Sie substituieren beispielsweise Buchstabenpaare, transponieren aber Einzelbuchstaben. Dann sind die Substitution und die Transposition nicht mehr kommutierbar.

Variable Alphabete für klassische Algorithmen Die Idee

Benutzer-definierte Alphabete

- Der verschlüsselte Text hängt bei den meisten klassischen Verschlüsselungs-Algorithmen (beispielsweise Vigenère) vom verwendeten Klartext-Alphabet ab.
- Häufig verwendete Alphabete sind Groß- und Kleinbuchstaben (A-Z, a-z), mit oder ohne Ziffern (0-9).
- Viele Kryptografie-Tools beschränken sich auf einen festen Satz von Alphabeten oder Zeichen, bei dem Rest müssen die Buchstaben des Alphabets einzeln angegeben werden.
- Es ist wünschenswert, dass der Benutzer die einzelnen Verfahren mit eigenen Alphabeten schnell und unkompliziert ausprobieren kann, um deren Bedeutung besser zu verstehen.
- Lösung mit JCrypTool:
 - Bei den klassischen Verfahren wird immer ein Wizard f
 ür die Erstellung von eigenen Alphabeten angeboten.
 - Eigene Alphabete können durch einfaches
 Zusammenfügen häufig benutzter Bausteine erstellt werden.

0 0	Alphabeterstellung
phabet eben Sie Namen und	Zeichen des neuen Zeichensatzes ein
1) Geben Sie einen N	amen für das Alphabet an:
Deutsches Alphabet	
2) Geben Sie die Zeic	hen des Alphabets an:
• Ein Alphabet aus	Alphabet-Bausteinen' zusammenstellen
Alphabet manuel	eingeben
Klicken Sie auf die	Alphabetbausteine, um ein neues Alphabet zusammenzustellen:
A-Z a-z	0-9 aous AOU [Leerzeichen] Zeilenumbruch (Unix/Windows),-!? ASCII-Zeichen außer dem lateinischen Alphabet
	🔶 Neuer Alphabetbaustein
Ausgewählte Baust	eine und das daraus resultierende Alphabet:
A-Z a-z	aous ÃOU
(Klicken Sie mit der rechte	n Maustaste auf die Bausteine für weitere Optionen)
Ergebnis (zusamme	ngestelltes Alphabet):
Alphabetzeichen:	ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzäöüßÄÖÜ
Alphabetlänge:	59

Variable Alphabete für klassische Algorithmen Die Implementierung in JCT 1/2

Ein eigenes Alphabet anlegen

 Sofern das Krypto-Verfahren dies unterstützt, kann der Benutzer eigene Alphabete für die Verund Entschlüsselung definieren.

Caesar	— 🗆 🗙
Caesar	
Zum Verschlüsseln des gewählten Dokuments müssen Sie einen Außerdem können Sie ein Alphabet auswählen.	Schlüssel eingeben.
Operation Verschlüsseln	O Entschlüsseln
Alphabet (aktuelle Länge: 52) Nur Alphabetzeichen werden bei der Verschlüsselung beachtet. Klar-/Geheimtestalphabet:	Alphabet asswähler: Lateinisches Alphabet (A-Z.a-z) Alphabet anzeigen Gegenes Alphabet ersteller Grehung herausfilten
Schlüssel	
Geben Sie den Schlüssel ein. Als Alphabetbuchstabe: C Interpretation des ersten Alphabetzeichens: Verschiebewert	oder als Zahl (Verschiebewert entlang des Alphabets): 2 v = 0 () Verschiebewert = 1
Vorangehende Texttransformation	Ver-/Entschlüsselung anwenden (nächste Seite)
JCT-Kommandozelle Das Verfahren mit den in dieser Maske gewählten Parametern kr entsprechende Kommando: caesar – E – ed	onnen Sie auch über die JCrypTool-Konsole ausführen (Fenster -> Sicht anzeigen -> Konsole). Hier ist das $-k \ C \ -a \ "Lateinisches \ Alphabet \ (A-Z, a-z) \ "$
0	< Zurück Weiter > Eertigstellen Abbrechen

 Sonderzeichen, die nicht auf der Tastatur erscheinen, können über ihren ASCII-Wert innerhalb von geschweiften Klammer ebenfalls eingegeben werden, z.B. {10} für den Zeilenumbruch.

1) Geben Sie einen Namen für das Alphal	bet an:
Deutsches Alphabet	
2) Geben Sie die Zeichen des Alphabets a	an:
• Ein Alphabet aus 'Alphabet-Bausteine	en' zusammenstellen
O Alphabet manuell eingeben	
Klicken Sie auf die Alphabetbausteine,	um ein neues Alphabet zusammenzustellen:
A-Z a-z 0-9 āöüß	AÖÜ [Leerzeichen] Zeilenumbruch (Unix/Windows),-17 ASCII-Zeichen außer dem lateinischen Alp
	🕂 Neuer Alphabetbaust
Ausgewählte Bausteine und das daraus	s resultierende Alphabet:
A-Z a-z ăöüß ÄÖÜ	
(Klicken Sie mit der rechten Maustaste auf die Baustei	ine für weitere Optionen)
Ergebnis (zusammengestelltes Alphabe	tt):
Alphabetzeichen: ABCDEFGHIJKLMN	OPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzäöüBÄÖÜ
	Manuelle Fingabe
	Manuelle Eingabe
00	Manuelle Eingabe
) O Nphabet	Manuelle Eingabe
Iphabet Geben Sie Namen und Zeichen d	Manuelle Eingabe Alphabeterstellung des neuen Zeichensatzes ein
Ceben Sie einen Namen für	Manuelle Eingabe Alphabeterstellung des neuen Zeichensatzes ein das Alphabet an:
Uphabet Geben Sie Namen und Zeichen d 1) Geben Sie einen Namen für A-Z,a-z. Sonderzeichen, Zeiler	Manuelle Eingabe Alphabeterstellung des neuen Zeichensatzes ein das Alphabet an: numbruch
Ceben Sie Namen und Zeichen of Deben Sie einen Namen für A-Z,a-z. Sonderzeichen, Zeiler 2) Geben Sie die Zeichen des A	Manuelle Eingabe Alphabeterstellung des neuen Zeichensatzes ein das Alphabet an: numbruch Nphabets an:
Iphabet Geben Sie Namen und Zeichen of 1) Geben Sie einen Namen für A-Z,a-z. Sonderzeichen, Zeiler 2) Geben Sie die Zeichen des A Ein Alphabet aus 'Alphabet	Manuelle Eingabe Alphabeterstellung des neuen Zeichensatzes ein das Alphabet an: numbruch Alphabets an:
Uphabet Geben Sie Namen und Zeichen G 1) Geben Sie einen Namen für A-Z,a-z. Sonderzeichen, Zeiler 2) Geben Sie die Zeichen des A Ein Alphabet aus 'Alphabet • Alphabet manuell eingeber	Manuelle Eingabe Alphabeterstellung des neuen Zeichensatzes ein das Alphabet an: numbruch Nphabets an: t=Bausteinen' zusammenstellen n
Jphabet Geben Sie Namen und Zeichen of 1) Geben Sie einen Namen für A-Z,a-z. Sonderzeichen, Zeiler 2) Geben Sie die Zeichen des A Ein Alphabet aus 'Alphabet 3 Alphabet manuell eingeber [ABCDEF(13)(10)	Manuelle Eingabe Alphabeterstellung des neuen Zeichensatzes ein das Alphabet an: numbruch Alphabets an: t-Bausteinen' zusammenstellen n

Baustein-Zusammenstellung

Variable Alphabete für klassische Algorithmen Die Implementierung in JCT 2/2

Weitere Hinweise

- Selbst definierte Alphabete können zur permanenten Nutzung abgespeichert werden.
- Solange man JCT nicht beendet, können in einer JCT-Sitzung auch selbstdefinierte und noch nicht abgespeicherte Alphabete wieder aufgerufen werden (ohne Neueingabe).

	Alphabeterstellung
n eigenes Alpl	nabet erstellen
ie können hier f	rüher erstellte Alphabete wieder verwenden, und bestimmen, ob das gewählte Alphabet dauerhaft gespeichert werden soll oder nicht.
Dauerhafte Spei	cherung des Alphabets
Das Alphabet, w	elches Sie erstellen, kann einmalig genutzt werden, aber auch in das Alphabet-Verzeichnis von JCrypTool dauerhaft abgespeichert werden.
Selbst wenn Sie I unten in diesem	hr erstelltes Alphabet nicht dauerhaft speichern, können Sie es innerhalb dieser Sitzung wieder verwenden. Alle selbst erstellten Alphabete erscheinen Dialog.
🗹 Das erstellte	Alphabet dauerhaft speichern
Ein Alphabet wi	ederverwenden
🗌 Verwende eir	früher erstelltes Alphabet wieder
Name: A	-Z,a-z. Sonderzeichen, Zeilenumbruch
Inhalt: A	BCDEF\r\n
Das ausgewä	hte Alababet dauerbaft speichers

- Die gespeicherten Alphabete lassen sich in den globalen Einstellungen von JCT verwalten und nachträglich bearbeiten:
 - Windows + Linux: "Fenster" \ "Benutzervorgaben"
 - MacOS: "JCrypTool" \ "Einstellungen"

Variable Alphabete für klassische Algorithmen Lernziel

Fazit

- Neue Alphabete können in JCrypTool spielerisch aus Bausteinen zusammen gefügt werden.
- Die Verwendung der Alphabete ist mächtig, da auch alle Sonderzeichen verwendet werden können.
- Dadurch, dass das Erstellen, Verwenden und Wiederverwenden von eigenen Alphabeten f
 ür den Nutzer effizient und leicht verst
 ändlich ist, wird zum Ausprobieren angeregt.
- Klassische Verfahren sind in den meisten herkömmlichen Krypto-Tools auf ein festes Set von verwendbaren Alphabeten eingeschränkt. JCrypTool ist hier maximal flexibel.
JCrypTool-Konsole für klassische Verfahren Die Implementierung in JCT

Die Konsole

Die klassischen Verfahren in JCrypTool können auch über eine Kommandozeile gestartet werden:

```
😑 Konsole 🖾
JCrypTool Krypto Konsole
Willkommen bei der JCrypTool-Konsole.
Durch Eingabe von 'help' oder 'help <Befehl>' erhalten Sie Hilfe.
JCrypTool=>help
In der JCrypTool-Konsole können Sie die kryptografischen Algorithmen von der Kommandozeile aufrufen.
Geben Sie 'help -1' ein, um eine vollständige (alphabetisch geordnete) Liste der Algorithmen zu erhalten.
Zu jedem Befehl liefert die Hilfe sowohl die Befehlssyntax als auch Aufrufbeispiele:
SYNTAX-HILFE:
Zu jedem Befehl gibt es eine kurze und eine ausführliche Syntaxausgabe, die man auf folgende Weise aufrufen kann:
Kurz:
                        Ausführlich:
'help <command>'
                        'HELP <command>'
'? <command>'
                       '?? <command>'
'<command> help'
                      '<command> HELP'
'<command> ?'
                       '<command> ??'
BEISPIELE:
Viele Befehle bieten Beispiele ihrer Benutzung an. Sie können sie mit 'help -x <command>' aufrufen.
Versuchen Sie doch einmal, die Beispiele dieses 'help'-Befehls (mit 'help -x help') aufzurufen!
JCrvpTool=>
```

- Das Kommando "help" gibt Auskunft über die Konsole im Allgemeinen (siehe oben).
- Zusätzlich kann man auch für jedes einzelne Verfahren Hilfe und Beispiele erhalten.

JCrypTool-Konsole für klassische Verfahren Ein Anwendungsbeispiel 1/2

Beispiel Autokey-Vigenère

- Von der Kommandozeile lassen sich alle klassischen Verfahren sowohl auf Textdateien und Editor-Inhalte als auch auf als Kommandozeilenargument übergebenen Text anwenden.
- Aufruf der Konsole in der Icon-Leiste (unter dem Hauptmenü) über das ff. Icon:
- Beispiel mit dem Autokey-Vigenère-Verfahren:
 - Hilfe und Beispiele aufrufen:

```
JCrypTool=>help autovigenere

Vigenère-Verschlüsselung, bei der mit Hilfe des Klartextes ein langer Schlüssel generiert wird.

Syntax:autovigenere [-a <ALPHABET>] -D | -E -ed | -f <FILE_PATH> | -t <TEXT> -k <KEY> [-noFi]

Beispiele zur Benutzung des Befehls erhalten Sie durch 'help -x autovigenere'.

Ausführlichere Hilfe erreichen Sie mit 'HELP autovigenere'.

Weitere Informationen zu dem Verfahren finden Sie in der JCrypTool Onlinehilfe.

JCrypTool=>help -x autovigenere

'autovigenere -E -ed -k akey' -> Verschlüsselt den Text im aktiven Editor mit dem Schlüssel "akey"

'autovigenere -D -ed -k akey' -> Entschlüsselt den Text im aktiven Editor mit dem Schlüssel "akey"

'autovigenere -E -a A-Z -t "TEST TEXT" -k AKEY' -> Verschlüsselt den Text "TEST TEXT" mit dem Schlüssel "AKEY", über dem Großbuchstaben-Alphabet
```

- Der obige Screenshot zeigt, wie die Kommandozeilenoptionen in der Konsolen-Hilfe erklärt werden (hier am Beispiel "HELP autovigenere").

=

JCrypTool-Konsole für klassische Verfahren Ein Anwendungsbeispiel 2/2

Ver- und Entschlüsselung mit Autokey-Vigenère

Als Klartext nehmen wir "ZUGRIFFxCODExTAGJTT", als Schlüssel nehmen wir "THEKEY":

```
JCrypTool=>autovigenere -E -a a-zA-Z -t "ZUGRIFFxCODExTAGJTT" -k THEKEY
sbKbMdeRIfLJCQCUMXQ
```

- Die zweite Zeile zeigt den erstellten Geheimtext "sbKbMdeRIfLJCQCUMXQ", erzeugt mit dem Befehl "autovigenere -E -a a-zA-z -t "ZUGRIFFxCODExTAGJTT" -k THEKEY"
- Durch den Austausch von "-E" durch "-D" im Befehl macht man die Verschlüsselung rückgängig: "autovigenere -D -a a-zA-Z -t "sbKbMdeRIfLJCQCUMXQ" -k THEKEY"

```
JCrypTool=>autovigenere -D -a a-zA-Z -t "sbKbMdeRIfLJCQCUMXQ" -k THEKEY
ZUGRIFFxCODExTAGJTT
```

JCrypTool-Konsole für klassische Verfahren Lernziel 1/2

Vorteile der Verwendung der Konsole

- Parameter einer Operation (wie eben das Alphabet und der Schlüssel) können in der Kommandozeile bequem durch Copy&Paste noch einmal verwendet werden.
- Je mehr Parameter es gibt (nicht nur Alphabet, Schlüssel und das Filtern von Nichtalphabetzeichen), desto größer ist der Nutzen.
- Das Transpositionsverfahren z.B. hat eine große Anzahl von Parametern:
 - Für die erste und zweite Runde kann man jeden der ff. Parameter setzen (insgesamt also 6):
 - Einleserichtung
 - Ausleserichtung
 - Schlüssel
 - Alphabet
 - Filtern von Nichtalphabetzeichen
- Eine per Maske erstellte Kommandozeile enthält alle gewünschten Parameter.
- Lädt ein zum Wiederverwenden bzw. leichten Abändern durch Copy&Paste.

🔄 Transposition – 🗆 🗙					
Transposition Bitte wählen Sie für die Transposition Ein- und Auslesereihenfolge und Transpositionsschlüssel.					
Operation Verschlüsseln		O Entschlüsseln			
Alphabet Klar-/Geheimtextalphabet: Printable ASCII Alphabet anzeigen Alphabet-Zeichen im Eingabedokument vor der Ver-/Entschlüsselung herausfiltern					
Transposition(en)					
1. Transposition 1) Text in die Transpositionstabelle einlesen Spaltenweise Elenweise		 ✓ 2. (optionale) Transposition 1) Text in die Transpositionstabelle einlesen ○ Spaltenweise ● Zeilenweise 			
2) Transpositionsschritt - Schlüssel eingeben CAD4 3(2)(4)1		2) Transpositionsschritt - Schlüssel eingeben RT334 di511/213			
3) Text aus der Transposit Spaltenweise OZe	iionstabelle auslesen ilenweise	 3) Text aus der Transpositionsta Spaltenweise O Zeilenw 	abelle auslesen eise		

Entsprechender Konsolenbefehl:

transposition -Eeditor -a "Printable ASCII"key	CAD4	
-tlReadIn rw -tlReadOut cwkey2 RT334 -t2ReadIn rw	-t2ReadOut d	CW

JCrypTool-Konsole für klassische Verfahren Lernziel 2/2

Detaillierte Hilfe über die Konsole

Konsolen-Hilfe zum Transpositionsverfahren:

```
JCrypTool=>HELP transposition
Vertauscht die Buchstaben im Klartext untereinander (spaltenweise Transpositionsverschlüsselung mit einstellbarer Einlese-/Ausleserichtung).
Syntax:transposition [-a <ALPHABET>] -D | -E -ed | -f <FILE PATH> | -t <TEXT> -k <KEY> [-k2 <KEY>] [-noFi] [-t1ReadIn
       <ORDER = 'cw'/'rw'>] [-t1ReadOut <ORDER = 'cw'/'rw'>] [-t2ReadIn <ORDER = 'cw'/'rw'>] [-t2ReadOut <ORDER =</pre>
       'cw'/'rw'>]
Erläuterung der Optionen:
   -a, --currentAlphabet <ALPHABET>
                                                                        Eines von ASCII, a-zA-Z, A-Z, a-z, Playfair,
                                                                        ADFGVX, Xor32, Xor64, 0123456789abcdefx,
                                                                        Standard: ASCII
   -D,--modeDecrypt
                                                                        Entschlüsselung durchführen
   -E,--modeEncrypt
                                                                        Verschlüsselung durchführen (Standard, wenn weder
                                                                        Ver- noch Entschlüsselungsoption angegeben)
   -ed,--editor
                                                                        Aktiven Editor als Eingabe verwenden
   -f,--inputFile <FILE PATH>
                                                                        datei als Eingabe verwenden
   -k,--key <KEY>
                                                                        Schlüssel (es sind nur Buchstaben aus dem
                                                                        ausgewählten Alphabet erlaubt)
   -k2,--kev2 <KEY>
                                                                        Zweiter Transpositionsschlüssel, dessen Angabe
                                                                        eine zweite Transposition bewirkt (Doppelte
                                                                        Spaltentransposition)
   -noFi, --noFilter
                                                                        Filterung von Nichtalphabet-Zeichen weglassen
   -t,--inputText <TEXT>
                                                                        Text als Eingabe verwenden (als String zwischen
                                                                        nn)
    -t1ReadIn, --transposition1ReadInOrder <ORDER = 'cw'/'rw'>
                                                                        RICHTUNG = 'cw' (zeilenweise) / 'rw'
                                                                        (spaltenweise). Einleserichtung des Klartextes in
                                                                        die Transpositionstabelle (wenn nicht angegeben,
                                                                        zeilenweise). (wird auf die 1. Transposition
                                                                        angewendet)
   -t1ReadOut, -- transposition1ReadOutOrder <ORDER = 'cw'/'rw'>
                                                                        siehe Beschreibung v. 't1ReadIn' (Wenn nicht
                                                                        angegeben, spaltenweise).
   -t2ReadIn, --transposition2ReadInOrder <ORDER = 'cw'/'rw'>
                                                                        siehe Beschreibung v. 't1ReadIn' (Wenn nicht
                                                                        angegeben, zeilenweise).
   -t2ReadOut, -- transposition2ReadOutOrder <ORDER = 'cw'/'rw'>
                                                                        siehe Beschreibung v. 't1ReadIn' (Wenn nicht
                                                                        angegeben, spaltenweise).
```

Beispiele zur Benutzung des Befehls erhalten Sie durch 'help -x transposition'. Andere Namen für diesen Befehl sind 'transp'. Weitere Informationen zu dem Verfahren finden Sie in der JCrypTool Onlinehilfe.

Die Perspektive "Algorithmen" Die Implementierung in JCT

JCT-Perspektiven

- In JCT gibt es <u>zwei Hauptansichten</u>: die Standard-Perspektive und die Algorithmen-Perspektive.
- Die Algorithmen-Perspektive ist Funktions-orientiert und bietet erweiterte Einstellmöglichkeiten.

Die Algorithmen-Perspektive gliedert sich – neben dem Editor und der Hilfe – in die 3 Fensterbereiche:

- 1. Schlüsselspeicher (Keystore)
- Ermöglicht das Speichern von Schlüsseln und Schlüsselpaaren zur späteren Wiederverwendung.
- 2. Algorithmen
- Ein Explorer f
 ür die Algorithmen. Die Algorithmen stammen aus den Krypto-Bibliotheken FlexiProvider^[1] und BouncyCastle^[2]. Im Gegensatz zum Krypto-Explorer der Standard-Perspektive sind hier auch einzelne Varianten der Algorithmen direkt aufgelistet und auswählbar. Insgesamt ist der Algorithmen-Explorer umfangreicher als der Krypto-Explorer.

3. Operationen

 Hier wird der Algorithmus aufgelistet, der per Doppelklick im Algorithmen-Explorer ausgewählt wurde. Zusätzliche Einstellmöglichkeiten (z.B. die Quelle der Eingabe und Ziel der Ausgabe, Schlüssel und Parameter) sind unter jedem Algorithmus aufgeführt.

[1] <u>http://www.flexiprovider.de</u>

^{[2] &}lt;u>http://www.bouncycastle.org</u>

Die Perspektive "Algorithmen" Die Implementierung in JCT

Algorithmen-Perspektive erklärt

 Wenn die Algorithmen-Perspektive zum ersten Mal geöffnet wird, erscheint eine Slide-Show, die die grundlegende Funktionsweise dieser Perspektive erklärt.

Ein Anwendungsbeispiel 1/3: Auswählen und Parametrisieren der AES-Operation

In diesem Beispiel wird ein Text aus dem geöffneten Editor mit AES verschlüsselt und das Chiffrat in eine Datei ausgegeben.

Neuen Schlüssel erzeugen und einem Kontakt zuordnen

- Als Erstes erzeugen wir einen Schlüssel, den wir zur Verschlüsselung benutzen.
- Mit Signature Mit Als symmetrisches Kryptosystem benötigt AES genau einen geheimen Schlüssel (statt eines Schlüsselpaars).
 Alternativ kann man für asymmetrische Kryptosysteme Schlüsselpaare mit anlegen.
 Das ist Schritt 1 in der Grafik auf Folie <u>83</u>.
- Im Wizard "Neuer geheimer Schlüssel" wählen wir unter Algorithmus den "AES, Rijndael (OID 2.16.840.1.101.3.4.1)"^[1], geben einen gewünschten Kontaktnamen an und setzen ein beliebiges Passwort.
- Der Schlüssel ist damit im JCT-Keystore (Schlüsselspeicher) unter dem gewählten Kontaktnamen (im Beispiel-Screenshot "Max Mustermann") gespeichert.

[1] OID: Object Identification, ein eindeutiger Bezeichner eines Algorithmus. Festgelegt von der ITU (http://en.wikipedia.org/wiki/Object_identifier).

Ein Anwendungsbeispiel 2/3: Auswählen und Parametrisieren der AES-Operation

Auswahl des Algorithmus für die aktuelle Operation

- Jetzt kann der entsprechende Algorithmus ausgewählt werden: Im Reiter "Algorithmen" unter Blockchiffren befindet sich der AES-Rijndael-Algorithmus.
- Mit einem Doppelklick kann der Algorithmus ausgewählt werden (Schritt 2 auf Folie <u>83</u>).
- Es erscheint ein Wizard, in dem man Padding und Modus^[1] der Blockchiffre einstellen kann. Außerdem können weitere spezifische Einstellungen des Algorithmus vorgenommen werden. (z.B. bei AES die Blocklänge in Bits).
- Analog zum Krypto-Explorer sind die Algorithmen nach Art des kryptografischen Verfahrens gruppiert.
- Anmerkung zur Bedienung:

Schritt 2 (Auswahl des Algorithmus) kann auch VOR

Schritt 1 (Erzeugen eines Schlüssels für den Besitzer im Keystore)

durchgeführt werden. Die Reihenfolge von Schritt 1 und 2 ist also egal. Und wenn der Kontakt (Besitzer) schon einen Schlüssel für diesen Alg. hat, kann man auch gleich mit Schritt 2 beginnen.

[1] Der Modus einer Blockchiffre steuert das Mapping des Klartextes auf die Blöcke, die verschlüsselt werden. Sollten im letzten Block Bits fehlen, regelt das Padding das Auffüllen der fehlenden Bits.

Ein Anwendungsbeispiel 3/3: Auswählen und Parametrisieren der AES-Operation

Einstellungen zu Ein- und Ausgabe für die aktuelle Operation

- Durch den Doppelklick (rechts im Algorithmen-Reiter) kam im Operationen-Reiter Rijndael hinzu.
- Der erstellte Schlüssel (aus dem JCT-Keystore links) kann nun per Drag'n'Drop auf das Schlüssel-Feld des Algorithmus gezogen werden (siehe Folie <u>83</u>, Schritt <u>3</u>).
- Unter Ein-/Ausgabe kann per Doppelklick die Quelle und das Ziel der Verschlüsselung gewählt werden. Z.B. kann man beim Input den Text aus einer Datei oder aus einem aktiven Editorfenster laden. Gleiches gilt für die Ausgabe (siehe Folie <u>83</u>, Schritt <u>4</u>).
- Per Rechtsklick auf "Operation" kann man zwischen Verschlüsseln und Entschlüsseln wechseln.
- Nachdem nun alle Parameter gefüllt sind, startet man die Operation per Klick auf den grünen Pfeil rechts in der Titelleiste des Operationen-Fensters.

 Bei asymmetrischen Verfahren wird die Operation (ver-/entschlüsseln, signieren/verifizieren) durch die Art des verwendeten Schlüssels festgelegt. Ein öffentlicher Schlüssel verschlüsselt oder verifiziert, ein privater Schlüssel entschlüsselt oder signiert.

Überblick: 4 Schritte, um eine Operation auszuwählen und zu parametrisieren

Ergebnis nach Ausführung der Operation (Eingabe und Ausgabe stehen in 2 Reitern im Editor)

S JCroTool						
Datei Bearbeiten Fenster Hilfe						
Standard [™] Algorithme						
📔 Schlüsselspeicher 🛛 🕒 🕞 🖛	🗑 unbenannt001.txt 📓 out001.bin 🛛 🗌 🗆	S Algorithmen 🕱 📃 🗖				
JCrypTool Keystore	Offset 0 1 2 3 4 5 6 7 8 9 A B C D E	Asymmetrische Blockchiffren				
JCrypTool Keystore A. Prism Alice Whitehat Geheime Schlüssel AES, Rijndael (OID: 2.16.840.1.101.3.4.1) (Schlüsselstärke: 128) HmacMD5 (OID: 1.3.6.1.5.5.8.1.1) (Schlüsselstärke: 128) HmacMD5 (OID: 1.3.6.1.4.1.188.7.1.1) (Schlüsselstärke: 128) KC6 (Schlüsselstärke: 128) Schlüsselstärke: 128) Schlüsselstärke: 128) Schlüsselstärke: 128) JCT-PKI Root Certificates - DO NOT DELETE JCT-PKI Root Certificates - DO NOT DELETE Inhalt SSuchen SVerwandte Themen Lesezeichen Verzeichnis Operationen Die Operationen Sicht listet die in der Algorithmen Sicht ausgewählten Verzeichnis Operationen Sicht listet die in der Algorithmen Sicht ausgewählten Verfahren auf. Für diese Verfahren lassen sich hier verschiedene Parameter einstellen, wie beispielsweise die Ein- beziehungsweise Ausgabedatei oder der verwendete Schlüssel. Klicken Sie dazu mit der rechten Maustaste auf die Einträge zu einem Algorithmus und wählen den gewünschten Eintrag aus. Schlüssel können Sie per Drag&Drop aus der Schlüsselspeicher Sicht auf den Eintrag Schlüssel ziehen. Der Eintrag Operation pasts tich dabei automatisch dem gewählten Schlüsseltyp an und führt entweder eine Ver-	Offset 0 1 2 3 4 5 6 7 8 9 A B C D E 00000 A5 A9 71 E3 B0 95 1D 98 DF 72 33 13 05 C7 CA 00000 58 77 CC 47 23 06 44 DC 08 BC 49 D2 B2 7D 18 00000 3B B5 11 44 D9 32 DC BA 9E 1B B7 59 F3 30 A7 00000 06 C4 00 87 3B FF 8F 8A 39 BD C4 1D 66 A9 CA 00000 CD 75 98 47 25 41 73 38 BD 23 D6 A2 DD D9 1D . . Offset: 00000000h n00000065Fh Wert: 0xA5 (he	 Asymmetrische Blockchiffren ElGamal (OID: 1.3.14.7.2.1.1) McEliecePKCS (OID: 1.3.6.1.4.1.8301 MeRSA MpRSA Niederreiter RSA_PKCS1_v1_5 (OID: 1.2.840.1135- RSA_PKCS1_v2_1 (OID: 1.2.840.1135- RSA_PKCS1_v2_1 (OID: 1.2.840.1135- CBCMac CBCMac CBCMac CMac HMac TwoTrackMac Blockchiffren Camellia DESede JDEA (OID: 1.3.6.1.4.1.188.7.1.1) MARS Misty1 RC2 RC5 RC6 Rijndael AES (OID: 2.16.840.1.101.3.4.1) SAFER+ SAFER++ Serpent (OID: 1.3.6.1.4.1.11591.13.2) Shacal Shacal2 				
Mit Klick auf Ausführen wird, sofern alle Parameter korrekt angegeben wurden, der ausgewählte Algorithmus angewendet.		Twofish Twofish Hash-Funktionen Hybride Verschlüsselung				
Weitere Ergebnisse: □◆						

Weitere Funktionen in JCrypTool

Weitere Beispiele, was JCrypTool bietet

- Tri-partite Schlüsselvereinbarung
- Visualisierung der inneren Zustände bei DES
- Visualisierung von Elliptische Kurven-Berechnungen über reellen und diskreten Körpern
- ElGamal-Kryptosystem (zum Verschlüsseln und Signieren)
- Visualisierung der Simple Power Analysis-Angriffe gegen RSA (SPA)
- Schnelle Lösung des Zahlenhai-Spiels mit heuristischen Methoden; Lösung von Sudoku-Varianten
- Mathematische Spiele: Zahlenhai, Teilerspiel, Zero-Knowledge-Sudoku (Zudo-Ku)
- Entropie-Untersuchungen
- Dynamische Visualisierung von Huffman-Bäumen
- Signatur-Demo, Signatur- und Zertifikats-Verifikation (zeigt Auswirkung versch. Gültigkeitsmodelle)
- Visualisierung des SSL- / TLS-Handshake (Protokoll)
- Implementierung und Visualisierung von ARC4 und Spritz
- Visualisierung von Post-Quantum Signierverfahren [SPHINCS+, MerkleTree XMSS-MT, WOTS , McEliece (error-correcting code), multivariate Kryptografie (rainbow signature scheme)]
- Schnelle Kryptoanalyse der Fleißner-Schablone (Grille)

•

Übersicht über alle Funktionen in JCrypTool

Sichtbar in JCT selbst. Alternativen: CrypTool-Portal (siehe unten) / mit dem JCT-Admintool

https://www.cryptool.org/de/ documentation/functionvolu me

Legende:

[A] in Algorithmen-Perspektive

[D] in Standard-Perspektive (D für default) Einführung in das JCrypTool-Programm

Anwendungsbeispiele

Möglichkeiten zur Mitwirkung

2

22

87

JCrypTool – Bitte um Mitwirkung	Seite 89
Mitwirkung bei JCrypTool	Seite 90
Kontaktadressen	Seite 92

JCrypTool – Bitte um Mitwirkung

Wir freuen uns über jede weitere Mitarbeit

- Feedback, Kritik, Anregungen und Ideen
- Einbau weiterer Algorithmen, Protokolle, Analysen
- Hilfe, um Konsistenz und Vollständigkeit zu sichern
- Mithilfe bei der Entwicklung (Programmierung, Layout, Übersetzung, Test, Webseiten-Erweiterung)
 - im bisherigen C/C++-Projekt CrypTool 1 und
 - in den neuen Projekten (bevorzugt):
 - C#-Projekt: "CrypTool 2" = CT2 (<u>https://www.cryptool.org/de/ct2/volunteer</u>)
 - Java-Projekt: "JCrypTool" = JCT (<u>https://www.cryptool.org/de/jct/volunteer</u>)
 - Browser-Projekt: "CrypTool-Online" = CTO (<u>http://www.cryptool-online.org</u>)
- Insbesondere Lehrstühle, die JCrypTool zur Ausbildung verwenden, sind herzlich eingeladen, zur Weiterentwicklung beizutragen.
- Signifikante Beiträge können namentlich erwähnt werden (in der Online-Hilfe, in Info-Dialogen und auf der Webseite).

Mitwirkung bei JCrypTool

Beispiel-Ideen für weitere Visualisierungen

- Visualisierung der Interoperabilität von S/MIME- und OpenPGP-Formaten
- Demo zur visuellen Kryptografie
- Protokoll-Validierer
- Kryptoanalyse weiterer Algorithmen
- Visualisierung verschiedener Verfahren der Post-Quantum-Kryptografie
- Visualisierung moderner Entwicklungen (bspw. indistinguishability obfuscation)

Weitere wünschenswerte Implementierungen

- Einheitliche Manipulation (Erstellung, Austausch, Tiefe) aller Häufigkeitstabellen und aller Permutationen
- Schlüsselspeicher
- Support f
 ür JavaFX

Beispiele offener Aufgaben finden sich auch auf den entsprechenden Entwickler-Seiten:

JCrypTool: <u>https://github.com/jcryptool/core/wiki/project-Ideas</u>

Mitwirkung bei JCrypTool

Weitere Informationen für Entwickler

- Wiki: <u>https://github.com/jcryptool/core/wiki</u>
- Style-Guide: <u>https://github.com/jcryptool/doc/raw/master/Guidelines/JCrypTool-GUI-Guidelines.pdf</u>
- Tutorial: <u>https://github.com/jcryptool/core/wiki/Getting-started-as-a-JCrypTool-Developer</u>
- Alles rund um die Plugin-Entwicklung steht in dem JCT-Wiki. Das Wiki im Internet enthält Verweise und Infos für die Core-Entwickler und für Krypto-Plugin-Entwickler.
- Plugin-Entwickler benötigen keine Projekte aus dem JCT-Repository, sondern richten JCT als Target-Plattform ein und entwickeln damit.

Prof. Bernhard Esslinger	Simon Leischnig	Thorben Groos
CT Gesamt-Projektleiter Universität Siegen	JCT-Projektleiter	JCT Co-Projektleiter
<u>bernhard.esslinger@uni-siegen.de</u> <u>bernhard.esslinger@gmail.com</u>	<u>simonjena@gmail.com</u>	<u>thorben.groos@web.de</u>

Dominik Schadow: früherer Projektleiter, <u>info@xml-sicherheit.de</u>

www.cryptool.org