
University of Mannheim
Faculty for Business Informatics & Business Mathematics

Theoretical Computer Science and IT Security Group

Bachelor’s Thesis

Visualization of the Avalanche

Effect in CT2

as part of the degree program Bachelor of Science Wirtschaftsinformatik

submitted by

Camilo Echeverri

cechever@mail.uni-mannheim.de

on October 31, 2016 (2nd revised public version, Apr 18, 2017)

Supervisors: Prof. Dr. Frederik Armknecht
Prof. Bernhard Esslinger

Visualization of the Avalanche Effect in CT2

Abstract

Cryptographic algorithms must fulfill certain properties concerning their security. This
thesis aims at providing insights into the importance of the avalanche effect property by
introducing a new plugin for the cryptography and cryptanalysis platform CrypTool 2.

The thesis addresses some of the desired properties, discusses the implementation of the
plugin for modern and classic ciphers, guides the reader on how to use it, applies the
proposed tool in order to test the avalanche effect of different cryptographic ciphers and
hash functions, and interprets the results obtained.

2

Contents

Abstract . 2

Contents . 3

List of Abbreviations . 5

List of Figures . 6

List of Tables . 7

1 Introduction . 8
1.1 CrypTool 2 . 8
1.2 Outline of the Thesis . 9

2 Properties of Secure Block Ciphers . 10
2.1 Avalanche Effect . 10
2.2 Completeness . 10

3 Related Work . 11

4 Plugin Design and Implementation . 12
4.1 General Description of the Plugin . 12
4.2 Prepared Methods . 14

4.2.1 AES and DES . 14
4.3 Unprepared Methods . 20

4.3.1 Classic Ciphers, Modern Ciphers, and Hash Functions 20
4.4 Architecture of the Code . 22
4.5 Limitations and Future Work . 24

5 Analysis Based on the Implemented Tool 25
5.1 Avalanche Tests for AES . 25

5.1.1 AES-128 (Modified Message, Constant Key) 25
5.1.2 AES-128 (Constant Message, Modified key) 27
5.1.3 AES-192 (Modified Message, Modified Key) 28
5.1.4 AES-256 (Modified Message, Constant Key) 29
5.1.5 Observations (AES Tests) . 30

5.2 Avalanche Tests for DES . 31
5.2.1 DES (Modified Message, Constant Key) 31
5.2.2 DES (Constant Message, Modified Key) 32
5.2.3 DES (Constant Message, Modified Key) 33
5.2.4 Observations (DES Tests) . 33

5.3 Avalanche Tests for Hash Functions . 35
5.3.1 SHA-1 . 35
5.3.2 MD5 . 35
5.3.3 Tiger . 35
5.3.4 Observations (Hash Functions’ Tests) 36

3

Visualization of the Avalanche Effect in CT2

5.4 Avalanche Tests for Classic Ciphers . 37
5.4.1 Caesar . 37
5.4.2 Hill . 37
5.4.3 Enigma . 37
5.4.4 Vigenère . 38
5.4.5 Spanish Strip Cipher (SSC) . 38
5.4.6 Observations (Classic Ciphers’ Tests) 40

6 Conclusion . 41

References . 43

4

CONTENTS

List of Abbreviations

AE avalanche effect . 8

SAC strict avalanche criterion . 8

CT1 CrypTool 1 . 11

CT2 CrypTool 2. .8

AV Avalanche Visualization . 11

SPN substitution-permutation network . 8

SSC Spanish Strip Cipher . 40

5

List of Figures

1 Substitution-permutation network [5] . 9
2 Home view of the Avalanche Visualization plugin within the CT2 environment 14
3 (a) Input view AES, (b) Input view DES 15
4 Flipping of one message bit for AES-128 . 16
5 DES input data in decimal values with highlighted changes 17
6 Components shown in the avalanche effect view of AES-128 18
7 General overview of AES-128 . 19
8 Input data provided by SHA . 20
9 Input data provided by RC4 . 21
10 Testing the avalanche effect of SHA . 21
11 Simplified architecture diagram of the Avalanche Visualization plugin [7] . . 22
12 Screenshots after (a) initial input, (b) first modified input, (c) last modified

input . 23
13 Using the Converter plugin to make both data types (byte[] and ICryptool-

Stream) compatible . 24
14 Comparison between initial and modified message of AES-128 26
15 Avalanche effect after 1st round of AES-128 26
16 Comparison between initial and modified key 27
17 Flipped bits from key and message for AES-192 28
18 Affected bytes (shown in red) after a single bit has been flipped for AES-128 30
19 Avalanche effect after 6th round of DES . 32
20 Bit difference only present on the left half after initial permutation (DES) . 34
21 Affected bits (in red) after a single bit has been complemented for DES . . 34
22 Comparison after 2nd modification between Spanish Strip Cipher and Caesar 39
23 Avalanche effect after every round (AES-128) [1] 42

6

List of Tables

1 Categories that can be selected with their respective parameters 13
2 Results after testing avalanche effect of AES-128 (modified message, con-

stant key) . 25
3 Results after testing avalanche effect of AES-128 (constant message, mod-

ified key) . 27
4 Results after testing avalanche effect of AES-192 (modified message, mod-

ified key) . 28
5 Results after testing avalanche effect of AES-256 (modified message, con-

stant key) . 29
6 Results after testing avalanche effect of DES (modified message, constant

key) . 31
7 Results after testing avalanche effect of DES (constant message, modified

key) . 32
8 Properties and results for various methods 42

7

Visualization of the Avalanche Effect in CT2

1 Introduction

Encryption of messages, born from the human need to protect information has been prac-
ticed since ancient times. Since the introduction of computing devices and its rapid de-
velopment new possibilities emerged in terms of coding techniques, allowing the creation
of more elaborated and efficient encryption algorithms. Progress in technology however
also facilitates the breaking of encrypted data. This is why a high quality of encryption
algorithms is continuously sought after.

In order to obtain the desired quality, ciphers (especially block ciphers) and hash functions
should exhibit certain properties, including the avalanche effect (AE), first introduced by
Feistel [4]. This property is measured as the reaction of the encrypted output caused by
a small change in the input message (plaintext), in the key, or in the initialization vector
(IV). Ciphers possess a strong AE when a single bit change in the plaintext results in
a significant change of bits in the ciphertext. Ciphers without a high degree of the AE
property are subject to cryptographic attacks which can make predictions about the input,
being given only the output (in particular, the algorithm is vulnerable to chosen-ciphertext
attacks). This may be sufficient to partially or completely break the algorithm (and if so,
it’s much more effective than brute-force attacks, a generic attack, in which the attacker
checks for all possible keys, decrypts the ciphertext and compares the results with the
plaintext).

Another property secure block ciphers should have is the completeness property [6], which
makes sure that a change in any plaintext bit affects all output bits. This means that
every plaintext bit must contribute to the final value of each output bit [15].

The combination of both avalanche effect and completeness gives rise to a new concept
known as the strict avalanche criterion (SAC), which is satisfied when in average half of
the ciphertext bits are changed whenever an input bit is switched [16].

Both properties can be achieved through a sequence consisting of several rounds of simple
operations like substitutions and permutations, also known as substitution-permutation
network (SPN) [4], whose basic concepts are applied in several modern cryptographic block
ciphers like AES or PRESENT. A depiction of an SPN can be seen in Figure 1.
Another construction several ciphers make use of (e. g., DES, Camellia) in order to attain
the desired criteria, is known as the Feistel Network, which uses a series of several rounds
and splits the input into two halves. It alternates performing the operations on only one
half while the other one remains unaltered [10].

The thesis at hand provides a visualization of the above mentioned avalanche effect as a
plugin implemented for the software CrypTool 2 (CT2), with the intention of facilitating
the understanding of this property and its importance for the design of secure crypto-
graphic algorithms.

1.1 CrypTool 2

CrypTool 2 (CT2) is an open-source e-learning platform that provides users with interac-
tive tools either to gain insights into the fields of cryptography and cryptanalysis for the

8

1. INTRODUCTION

Figure 1: Substitution-permutation network [5]

amateur or to deepen their understanding on the subject for the more experienced.

CT2 uses the programming language C#, and is based on the Microsoft framework .NET
with its Windows Presentation Foundation WPF for creating user interfaces and the de-
velopment environment Visual Studio. How to write plugins for CT2 is described in [12].

With CT2, individuals can drag and drop single plugins that implement different cryp-
tographic algorithms and cryptanalysis tools onto the program’s workspace and connect
them with other components. Each plugin is equipped with input and output docking
points that enable the interaction and data exchange among them.

1.2 Outline of the Thesis

After the introduction the thesis briefly addresses the different properties related to the
security of ciphers including the avalanche effect (AE). Subsequently it provides infor-
mation on how the implemented tool is structured and how it works. It also points out
related tools, as well as obstacles encountered during the implementation. Finally, it tests
the introduced properties (especially the AE) on several cryptographic algorithms, as well
as hash functions, and states some conclusions based on the outcome.

9

Visualization of the Avalanche Effect in CT2

2 Properties of Secure Block Ciphers

As already mentioned secure cryptographic algorithms must exhibit a strong avalanche
effect and a strong completeness property.

In addition, a good encryption process should also create complexity between its key, its
plaintext, and its ciphertext, this is known as confusion. It should also scatter the changes
made on the plaintext over the whole ciphertext, known as diffusion, both properties were
introduced by Shannon [14].

Confusion is achieved by using substitution operations (S-boxes) and diffusion is created
by using permutations with the purpose of creating a degree of randomness in the cipher in
such a way that no patterns can be recognized, thus making it difficult for cryptanalysts to
break the algorithm. The avalanche effect contributes to a good diffusion. Consequently
a good diffusion can be accomplished by means of a high avalanche effect.

The goal is to make every single bit of the input affect every single bit of the output
(completeness). Carefully selected and well thought-through layers combining S-boxes
and scrambling bits over a certain amount of rounds help building strong ciphers that are
less susceptible to statistical attacks. The final goal is not to disclose any connections or
patterns in the cipher which could reveal the actual key of the encryption. The cipher
should be unrecognizable, and it should appear as random as possible [15].

In this case flipping a single plaintext bit should result in a change of every single ciphertext
bit with a probability of 1

2 (SAC) [16]. Applying this property to modern block ciphers
normally each block is considered separately.

2.1 Avalanche Effect

The avalanche effect (AE) can be measured dividing the number of switched bits by the
number of total bits in the ciphertext [9] [11].1,2

Number of flipped bits in ciphertext

Number of total bits in ciphertext

2.2 Completeness

The completeness property is satisfied if each single output bit depends on every single
input bit. If this is the case one can conclude that if a cipher is complete it also fulfills
the SAC.

1In classical ciphers the objects are bytes instead of bits. So there we measure changed bytes instead
of flipped bits.

2Remark concerning the comparison of the AE of different algorithms: From a methodically aspect and
strictly speaking, we can only compare the effect onto 1 block for different block ciphers. If considering
more than 1 block we depend on the additional chaining mode. In stream ciphers or with classical ciphers
we have no defined block length. Hash algorithms by definition have a fixed length of the result and can
be considered closest to block ciphers regarding the comparability of this statistical value.

10

3. RELATED WORK

3 Related Work

There are several projects dealing with the topic of the avalanche effect.

• The Hash Demonstration tool included in the open-source program CrypTool 1
(CT1) shows the effect a document modification has on a hash value. It provides
statistical data based on the comparison between the initial and the modified input.
The user can select between different hash functions [3].

• With Knape’s web application AEStetic users can visualize – by clicking on a specific
byte – which other bytes it depends on during the entire AES encryption process (so
it looks back while the AE considers forward looking). Though it does not directly
compare changes, it does offer insights on how changes propagate throughout the
encryption process [8].

The here implemented Avalanche Visualization (AV) plugin is more generic: It provides
statistical data as well, illustrating the effect of changes not only on hash values, but
also on all different modern (symmetric) and classic cryptographic algorithms available
in CrypTool 2 (CT2). It also allows the user to walk through the encryption rounds,
testing the avalanche effect on each stage of the encryption process (in the case of AES
and DES). The functioning of the plugin will be described in more detail in the next
section.

11

Visualization of the Avalanche Effect in CT2

4 Plugin Design and Implementation

For the implementation of the plugin the IDE Visual Studio Community 2015 by Microsoft
was used. The plugin was developed in the programming language C#.

The visualization is built upon the plugin architecture provided by CrypTool 2 (CT2). Ev-
erybody can download the sources of the software CT2, and any developer can contribute
to the expansion of the software.

The main purpose of the AV plugin is to facilitate the understanding of the requirement
of the avalanche property for (modern) ciphers in an illustrative way.

4.1 General Description of the Plugin

The AV plugin was designed first to show the effect in detail for ciphers (methods) pre-
pared for this purpose, and secondly to show the avalanche effect regarding the final result
of any cipher and hash method (where no extra preparation has to be undertaken in ad-
vance). Therefore, the AV plugin deals with two categories of methods: prepared methods
and unprepared methods.

The plugin has two input docking points of type ICrypttoolStream, one for the key and one
for the message. Whenever the prepared methods option is selected, both input docking
points must be used. For the unprepared option only the second input docking point
(message) is used.

• For prepared methods the Avalanche Visualization (AV) plugin knows the method
in detail. So it does not only show the statistics of the two results to be compared
but also the statistics of all intermediate steps (like single rounds).

This is currently implemented for AES and DES, but could also be done for hash
functions. In this sense the AV plugin is expandable. For ciphers this category needs
two inputs: not only the ciphertext, but also the key. This category also requires
the user to choose the “Selection” parameter (DES or AES).

• For unprepared methods only two consecutive input messages are compared (no key
can be handed over to the AV plugin. The messages come from the input chain – a
method component (either a cipher plugin or a hash plugin) and its respective input
components (plaintext and key).

The 1st message is what the AV plugin gets from the input chain after pressing
the “Play” button (located at the top of the CT2 window); the 2nd message is
what the AV plugin gets after the user changes the input (e. g. the plaintext) of
the connected method plugin. Afterwards, the AV plugin just shows in one screen
statistics derived from the differences between the two messages.

The current default is: If both input entries (message and key) are delivered, the Avalanche
Visualization plugin assumes the prepared method AES-128. If only the message entry gets
input, then the plugin selects “Hash functions” from the unprepared methods category.

12

4. PLUGIN DESIGN AND IMPLEMENTATION

Category Use of Docking Point Selection Compared Object

Prepared
Methods Message and Key

AES
Bits

DES

Unprepared
Methods Message only

Classic
Ciphers

Bytes

Modern
Ciphers Bits

Hash
Functions

Table 1: Categories that can be selected with their respective parameters

Table 1 exemplifies both categories and their respective parameters according to the
user’s choice.

13

Visualization of the Avalanche Effect in CT2

4.2 Prepared Methods

The prepared methods option comprises both the Advanced Encryption Standard (AES)
and the Data Encryption Standard (DES).

4.2.1 AES and DES

AES uses a default key length of 128 bits, but it can also be changed to 192 or 256. DES
uses a 64-bit key. The whole component can be divided in five main views that emerge
while running through the plugin.

1. Home View

It displays the main title with a brief description of what the avalanche effect is.
It also indicates the possibility of adjusting the settings depending on what will be
done next. The home view with two inputs (key and message for AES) is depicted
in Figure 2 .

Figure 2: Home view of the Avalanche Visualization plugin within the CT2 environment

The three views (data input, comparison and general overview) are only available for
prepared methods (so currently only when testing the avalanche effect of AES or DES).
The views (home and avalanche effect) are also available for unprepared methods.

2. Data Input View

Upon clicking the “Play” button located at the top of the CT2 window the home
view disappears and the input data (key and message) are shown. The depiction
of the AES input slightly differs from the DES representation. This can be seen
in Figure 3.

14

4. PLUGIN DESIGN AND IMPLEMENTATION

(a)

(b)

Figure 3: (a) Input view AES, (b) Input view DES

15

Visualization of the Avalanche Effect in CT2

Figure 4: Flipping of one message bit for AES-128

A short text explaining the next step is present in both cases. In order to proceed
there are two possibilities:

• Changes can be made by directly modifying the two external input plugins
containing the key and the message to be encrypted.

• Single bit changes can be made by clicking on a specific bit after enabling this
feature.

The single-bit-change feature is enabled by checking the check box Enable to change
single bits, located on the lower left hand side corner. Subsequently the user can
click on single bits representing the key or the message in order to flip them. They
turn red. Figure 4 depicts this action for AES.

16

4. PLUGIN DESIGN AND IMPLEMENTATION

Figure 5: DES input data in decimal values with highlighted changes

3. Comparison View

Upon changing the initial message and/or key a new view emerges, depicting the
original and modified message and key with the respective changes highlighted in
color.

Up to this point the information can also be displayed in binary, decimal, or hex-
adecimal format in the case of DES, and in decimal and hexadecimal format in the
case of AES. This can be seen in Figure 14. The binary representation for AES
in this view is not available, since it would take a big part of the screen, becoming
rapidly unclear and difficult to see at a glance.

The user can now check the strength of the avalanche effect after each single round
by clicking on any of the numerated buttons located on the lower part of the window.
See Figure 5.

The number of rounds displayed on the buttons panel varies according to the selected
encryption standard and key length.

The Input Data button leads right back to the Data Input view where single bits
can be flipped.

Upon clicking the General Overview button, a general overview of the encryption
process is displayed on the window. It is described in more detail later on. The
buttons panel with all rounds as well as the Input Data and the General Overview
buttons are illustrated in Figure 5.

17

Visualization of the Avalanche Effect in CT2

Figure 6: Components shown in the avalanche effect view of AES-128

4. Avalanche Effect View

The view after each round comprises the following 4 components:

(a) The current state of the cipher for the initial and the modified input, shown in
two different rows respectively (binary format).
Remark: In the case of AES the current states are also shown in a 4x4 matrix
in hex format.

(b) A third row contains a letter x whenever there is a bit difference between the
original and the modified message, as to allow the user to visualize which bits
have been flipped.

(c) Statistical data: number of switched bits after completion of current round,
value of the avalanche effect for the current round, length of the longest identical
bit sequence (unchanged bit sequence) with its offset, length of the longest
flipped bit sequence (changed bit sequence) with its offset, and the average
number of differing bits per byte.

(d) Pie chart depicting the ratio between changed and unchanged bits. After plac-
ing the mouse on each colored area a tooltip emerges showing the corresponding
percentages.

Figure 6 shows all components described above.

18

4. PLUGIN DESIGN AND IMPLEMENTATION

Figure 7: General overview of AES-128

5. General Overview

In the case of DES, it depicts all binary values after each round. In the case of AES, it
shows all bytes (hex values) after each round. The bits/bytes (that are changed after
the input has been modified) are highlighted in red. This is depicted in Figure 7.

19

Visualization of the Avalanche Effect in CT2

Figure 8: Input data provided by SHA

4.3 Unprepared Methods

As seen in Table 1 the unprepared methods category comprises classic ciphers, modern
ciphers, and hash functions.

4.3.1 Classic Ciphers, Modern Ciphers, and Hash Functions

By selecting any of the three options Classic Ciphers, Modern Ciphers, or Hash Functions
the Avalanche Visualization plugin processes data produced by any external component
belonging to any of those options. The input is provided using only one input docking
point (the one for message/ hash value, as there is no key input used by the Avalanche
Visualization plugin under this category option – see Table 1 on page 13).

As seen in Figure 8 the SHA plugin receives the plaintext and subsequently delivers the
hash value to the Avalanche Visualization plugin by using only the upper input docking
point (message/ Hash value). In Figure 9 the Avalanche Visualization plugin gets the
encrypted message from the RC4 plugin after RC4 has received all input necessary to
carry out the encryption.

After the external input feed is modified there is only one single view (except for the home
view) on the presentation containing the following elements:

• Initial and modified value of hash function or encrypted message.

• Binary representation of these values. Here, a bit-by-bit comparison takes place in
order to signalize which bits have been flipped.

• Statistical data and pie chart (as seen in the previous section).

The user can make changes on the input by directly modifying the external plugin contain-
ing the initial message to be encrypted or hashed. Subsequently the modified message or
modified hash function is displayed on the presentation and the flipped bits are signalized
by the red letters x.

20

4. PLUGIN DESIGN AND IMPLEMENTATION

Figure 9: Input data provided by RC4

For modern ciphers and hash functions the input is initially shown in hex format whereas
for classic ciphers the input is displayed as text. Afterwards the format can be changed
via radio button. Information concerning the strength of avalanche effect is also de-
picted. Figure 10 illustrates the view with all its elements and the input provided by
the SHA plugin.

Figure 10: Testing the avalanche effect of SHA

21

Visualization of the Avalanche Effect in CT2

Figure 11: Simplified architecture diagram of the Avalanche Visualization plugin [7]

4.4 Architecture of the Code

A big part of the program’s logic takes place in the AvalancheVisualization class, which
acts as a mediator between the presentation and the AES and DES classes in order to
display the desired data on the UI, according to the selected category. The PieChart class
is used for the creation of the pie chart mentioned before, which is used directly by the
presentation as a UI control. A simplified depiction of the interaction between classes can
be seen in Figure 11.

The code of the prepared methods AES and DES was already available in CT2 – it is
the same that is used in the two plugins AES Visualization and DES Visualization in
regards to their core functionality. This initially posed some trouble with respect to the
necessary functions calls for AES, since a big part of the implementation was only specific
to the AES Visualization plugin. This was quickly overcome and all code blocks dealing
with operations different from the calculation of the cipher were not taken into account.
So the code exists only once there, and here the respective function calls are used.

The Avalanche Visualization plugin uses from each of its input docking points the very
first (right after the template has been started) and the very last input (after the user
modifies the input feed). Obtaining a new input after a user makes changes somewhere
in the input chain is a feature of the CT2 workspace the plugin developer gets for free.
So you easily can handle consecutive inputs via the same docking point. The workflow of
this occurrence is depicted in Figure 12 with the initial key (very first one) signalized
with a red arrow in 12a together with the Data Input view. In 12b the last hex number
of the key is modified and the changes are shown in the Comparison view. Subsequently
the second hex number of the key is modified and the current changes can be seen as well
(12c). These modifications could also be made with the input message.

22

4. PLUGIN DESIGN AND IMPLEMENTATION

(a)

(b)

(c)

Figure 12: Screenshots after (a) initial input, (b) first modified input, (c) last modified
input

23

Visualization of the Avalanche Effect in CT2

Figure 13: Using the Converter plugin to make both data types (byte[] and ICryptool-
Stream) compatible

4.5 Limitations and Future Work

Interaction with Keccak plugin
The only plugin which caused a problem when used as input was the Keccak plugin. Here
the interaction between the Avalanche Visualization and the Keccak plugin didn’t work:
As soon as the “Play” button is pressed the progress bar on top of the CT2 workspace
partially fills and after a while the whole CT2 environment freezes. The CT2 team was
notified about that: As it is not caused by the Avalanche Visualization plugin, the CT2
team accepted to fix this.

External plugins with output of type byte[]
The two ICryptoolStream input docking points allow the Avalanche Visualization plugin
to receive data directly from any plugin besides from those plugins whose output has the
type byte[]. This incompatibility was easily circumvented by using the Converter plugin
in between to convert the output to ICryptoolStream. For example: The Converter is
used to provide the output from the BLAKE hash function to the Avalanche Visualiza-
tion plugin (see Figure 13).
As a future work this could also be handled within the Avalanche Visualization plugin
by changing its input docking points type from ICryptoolStream to Object. A quick try
wasn’t successful.

Enhancements requested in the submitted thesis, which have been resolved in
the meantime:

• Provide an output stream of the generated statistical data.

• The second limitation mentioned above could be fixed by providing an ICryptool-
Stream output to each of those plugins in question, by changing the input docking
points from the Avalanche Visualization plugin from type ICryptoolStream to Object
as already mentioned, or by simply letting it as it is and using the Converter.

24

5. ANALYSIS BASED ON THE IMPLEMENTED TOOL

5 Analysis Based on the Implemented Tool

In this section different tests are carried out regarding the avalanche effect of different
cryptographic algorithms as well as hash functions.

5.1 Avalanche Tests for AES

5.1.1 AES-128 (Modified Message, Constant Key)

For this test, a single message bit is flipped within the Avalanche Visualization plugin.

128-bit key (in hex): FD E8 F7 A9 B8 6C 3B FF 07 C0 D3 9D 04 60 5E DD.
Initial input message (in text): “Hello everybody!”
Input message (in hex): 48 65 6C 6C 6F 20 65 76 65 72 79 62 6F 64 79 21.

After the input message is shown in its corresponding hex and binary values the last bit
of 48 (01001000) is flipped withing the presentation, resulting in the slightly modified
message 49 65 6C 6C 6F 20 65 76 65 72 79 62 6F 64 79 21. Upon clicking on the Done
button the changes are visible and highlighted in form of a 4x4 matrix. This is depicted
in Figure 14. Since 49 is the hex value of the letter I, the same effect could also have
been achieved by directly changing the letter H (48) into the letter I (49) in the external
message input.

The avalanche effect of the cipher after applying the first AES round can be seen in Fig-
ure 15, where 13 bits are changed in total. This means the avalanche effect accounts for
10.2%.

After the second round 67 bits are complemented. Delivering an avalanche effect of 52.3%.
After applying all remaining rounds the avalanche effect on each of them reaches values
of nearly 50% or more. The longest out of all longest identical sequences (LIS) measured
from all rounds consists of 29 bits. It can be seen after the first round. The second longest
LIS have each a maximum of 7 bits after rounds 2, 6, and 8. (see Table 2).

Round 1 2 3 4 5 6 7 8 9 10

Flipped

Bits

13 67 68 72 69 61 75 53 68 66

Aval.

Effect

10.2% 52.3% 53.1% 56.3% 53.9% 47.7% 58.6% 41.4% 53.1% 51.6%

LIS 29 7 4 4 4 7 6 7 4 5

Table 2: Results after testing avalanche effect of AES-128 (modified message, constant
key)

25

Visualization of the Avalanche Effect in CT2

Figure 14: Comparison between initial and modified message of AES-128

Figure 15: Avalanche effect after 1st round of AES-128

26

5. ANALYSIS BASED ON THE IMPLEMENTED TOOL

5.1.2 AES-128 (Constant Message, Modified key)

For this test, changes are made on the external input plugin delivering the key.

Initial 128-bit key (in hex): FD E8 F7 A9 B8 6C 3B FF 07 C0 D3 9D 04 60 5E DD.
Input message (in text): “Hello everybody!”
Modified key: FD E8 F7 A9 B8 6C 3B FF 07 C0 D3 9D 04 60 5E AB.

Figure 16 illustrates the changes made on the key.

Figure 16: Comparison between initial and modified key

After running through all rounds the avalanche effect values can be seen in Table 3.

Round 1 2 3 4 5 6 7 8 9 10

Flipped

Bits

36 63 66 68 70 54 62 70 53 64

Aval.

Effect

28.1% 49.2% 51.6% 53.1% 54.7% 42.2% 48.4% 54.7% 41.4% 50.0%

Table 3: Results after testing avalanche effect of AES-128 (constant message, modified
key)

27

Visualization of the Avalanche Effect in CT2

5.1.3 AES-192 (Modified Message, Modified Key)

For this test, single bits from both (message and key) are flipped.

Initial 192-bit key (in hex):
FD E8 F7 A9 B8 6C 3B FF 07 C0 D3 9D 04 60 5E DD 13 34 57 79 9B BC DF F1.
Initial input message (in text): “Hello everybody!”
Input message (in hex): 48 65 6C 6C 6F 20 65 76 65 72 79 62 6F 64 79 21.

The very first bit of the key and the very last bit of the message are flipped within
the Avalanche Visualization plugin as seen in Figure 17. This change yields:

Modified key:
7D E8 F7 A9 B8 6C 3B FF 07 C0 D3 9D 04 60 5E DD 13 34 57 79 9B BC DF F1.
Modified message (in hex):
48 65 6C 6C 6F 20 65 76 65 72 79 62 6F 64 79 20.

The test delivers the values depicted in Table 4.

Round 1 2 3 4 5 6 7 8 9 10 11 12

Flipped

Bits

17 68 63 65 60 73 66 68 62 66 65 58

Average

Effect

13.3% 53.1% 49.2% 50.8% 46.9% 57.0% 51.6% 53.1% 48.4% 51.6% 50.8% 45.3%

LIS 29 7 5 5 5 7 6 7 7 6 8 6

Table 4: Results after testing avalanche effect of AES-192 (modified message, modified
key)

Figure 17: Flipped bits from key and message for AES-192

28

5. ANALYSIS BASED ON THE IMPLEMENTED TOOL

5.1.4 AES-256 (Modified Message, Constant Key)

For this test, changes are made on the external input plugin delivering the message.

256-bit key (in hex):
FD E8 F7 A9 B8 6C 3B FF 07 C0 D3 9D 04 60 5E DD 13 34 57 79 9B BC DF F1 2D 20
1E 7A 04 F2 11 C9.
Initial input message (in text): “Hello everybody!”
Input message (in hex): 48 65 6C 6C 6F 20 65 76 65 72 79 62 6F 64 79 21.

Modified message (in text): “Hello Everybody!”
Modified message (in hex): 48 65 6C 6C 6F 20 45 76 65 72 79 62 6F 64 79 21.

The results of the test can be seen in Table 5.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Flipped

Bits

19 65 68 60 68 57 67 72 56 71 52 63 63 69

Average

Effect

14.8% 50.8% 53.1% 46.9% 53.1% 44.5% 52.3% 56.3% 43.8% 55.5% 40.6% 49.2% 49.2% 53.9%

LIS 26 5 6 6 6 11 7 5 6 5 8 6 7 6

Table 5: Results after testing avalanche effect of AES-256 (modified message, constant
key)

29

Visualization of the Avalanche Effect in CT2

5.1.5 Observations (AES Tests)

A single bit change of either the message or the key triggers a whole chain of changes
throughout the encryption process. Right after applying round 0 (AddKey operation)
there are very few bytes that are affected by the modification, in all of the test cases.
After applying the first round of AES operations (SubBytes, ShiftRows, MixColumns,
and AddKey) the number of bytes that are affected already increases. After the second
round every single byte of the cipher is already affected by the initial bit/byte changes.
This can be seen in a global overview in Figure 18

These small changes in key and/or message propagate rapidly throughout the encryp-
tion rounds, eventually affecting all of the AES bytes. Therefore, the cipher exhibits
the completeness property introduced before. Consequently, it also reaches high values
of avalanche effect in almost every round, starting at an early stage of the encryption
process.

Figure 18: Affected bytes (shown in red) after a single bit has been flipped for AES-128

30

5. ANALYSIS BASED ON THE IMPLEMENTED TOOL

5.2 Avalanche Tests for DES

5.2.1 DES (Modified Message, Constant Key)

For this test, a single message bit is flipped within the Avalanche Visualization plugin.

64-bit key (in hex): 13 34 57 79 9B BC DF F1.
Initial input Message (in text): “Let’s go”
Input message (in hex): 4C 65 74 27 73 20 67 6F.

The very last bit of the message is complemented, yielding:
Modified message: 4C 65 74 27 73 20 67 6E.

After the first DES round, there is only one complemented bit out of 64 bits (avalanche
effect of 1.6%). After the second round, there are already 6 bits flipped (avalanche of
9.4%). After the sixteenth round, 25 bits are flipped (avalanche of 39.1%).

The values gained after checking all rounds of DES are illustrated in Table 6.

Round 1 2 3 4 5 6 7 8

Flipped

Bits

1 6 25 34 33 36 33 30

Average

Effect

1.6% 9.4% 39.1% 53.1% 51.6% 56.3% 51.6% 46.9%

LIS 56 24 7 6 5 5 5 6

Round 9 10 11 12 13 14 15 16

Flipped

Bits

28 29 30 31 30 29 28 25

Average

Effect

43.8% 45.3% 46.9% 48.4% 46.9% 45.3% 43.8% 39.1%

LIS 6 6 6 5 5 5 8 8

Table 6: Results after testing avalanche effect of DES (modified message, constant key)

Figure 19 depicts the flipped bits after the sixth round.

31

Visualization of the Avalanche Effect in CT2

Figure 19: Avalanche effect after 6th round of DES

5.2.2 DES (Constant Message, Modified Key)

For this test, changes are made on the external input plugin delivering the key.

Initial 64-bit key (in hex): 13 34 57 79 9B BC DF F1.
Input Message (in text): “Let’s go”

Modified key: 13 34 57 B4 9B BC DF F1.

After the first round there are 6 bits flipped. The results of all rounds are seen in Table 7.

Round 1 2 3 4 5 6 7 8

Flipped

Bits

6 20 27 28 30 32 39 40

Average

Effect

9.4% 31.3% 42.2% 43.8% 46.9% 50.0% 60.9% 62.5%

LIS 37 9 6 4 3 4 4 4

Round 9 10 11 12 13 14 15 16

Flipped

Bits

30 28 34 37 35 30 37 42

Average

Effect

46.9% 43.8% 53.1% 57.8% 54.7% 46.9% 57.8% 65.6%

LIS 8 8 8 4 6 6 4 3

Table 7: Results after testing avalanche effect of DES (constant message, modified key)

32

5. ANALYSIS BASED ON THE IMPLEMENTED TOOL

5.2.3 DES (Constant Message, Modified Key)

For this test, a single key bit is flipped within the Avalanche Visualization plugin.

Initial 64-bit key (in hex): 13 34 57 79 9B BC DF F1.
Input Message (in text): “Have fun”

The eighth bit of the key is complemented, yielding:
Modified key: 12 34 57 79 9B BC DF F1.

The following statistical data applies to all sixteen rounds.
No. of flipped bits: 0.

Consequently
Avalanche effect: 0.0 %
Longest identical sequence: 64 bits.

5.2.4 Observations (DES Tests)

During the first two DES tests, bit differences initially happen on only one half the 64-bit
cipher, depending on the position of the bits flipped, that later on, land on a different
position after round 0 (initial permutation) is carried out. Figure 20 illustrates this
occurrence during the first DES test. If more changes, scattered all over the message
are made, the probability of getting bit differences on both halves, right after round 0
increases.

The number of complemented bits from each right half corresponds to the number of
different bits from the left half of the previous round. This is attributed to the alternating
nature of the Feistel structure introduced before.

In both first tests, starting from the third round on, the number of different bits gets
close to 32, thus, showing an avalanche effect of nearly 50 %, and this in turn, satisfies
the strict avalanche criterion (SAC). An overview of all the affected bits during the
entire DES encryption process is portrayed in Figure 21.

Complementing only the 8th key bit, the third DES test yields a value of 0 for the avalanche
effect and a longest identical sequence (LIS) of 64 bits for all encryption rounds. This is
due to the fact that every 8th key bit is discarded; hence, it has no effect on the encryption
process.

33

Visualization of the Avalanche Effect in CT2

Figure 20: Bit difference only present on the left half after initial permutation (DES)

Figure 21: Affected bits (in red) after a single bit has been complemented for DES

34

5. ANALYSIS BASED ON THE IMPLEMENTED TOOL

5.3 Avalanche Tests for Hash Functions

5.3.1 SHA-1

Initial input message (in text): “Hello world!”

After pressing the “Play” button, the SHA plugin delivers the following hash value:
D3 48 6A E9 13 6E 78 56 BC 42 21 23 85 EA 79 70 94 47 58 02.

The initial input is changed by one letter, as follows:

Modified input message (in text): “Hello World!”
resulting in 2E F7 BD E6 08 CE 54 04 E9 7D 5F 04 2F 95 F8 9F 1C 23 28 71 as the new
hash function. So, the test yields:

No. of flipped bits: 89 (out of 160).
Avalanche effect: 55.6 %.
Longest identical sequence: 7 bits.

5.3.2 MD5

Initial input message (in text): “Hello world!”
Modified input message (in text): “Hello world?”

Initial hash value: 86 FB 26 9D 19 0D 2C 85 F6 E0 46 8C EC A4 2A 20.
Modified hash value: 48 60 47 54 B9 FE D8 4B 3F EE B8 4C 5D C1 38 C0.

No. of flipped bits: 64 (out of 128).
Avalanche effect: 55.0 %.
Longest identical sequence: 6 bits.

5.3.3 Tiger

Initial input message (in text): “Vamos a la playa!”
Modified input message (in text): “Vamos$a la playa!”

Initial hash value:
3D 87 B9 50 65 B9 F8 5C F9 5D E1 8E 64 FA 24 2B 62 A2 CE B5 1F C2 7E EC.
Modified hash value:
F0 38 7D 93 0A F1 C9 0E 9C 43 9E C0 27 C6 2A 98 AD 45 5E 0E F3 C3 66 C2.

No. of flipped bits: 99 (out of 192).
Avalanche effect: 51.6 %.
Longest identical sequence: 9 bits.

35

Visualization of the Avalanche Effect in CT2

5.3.4 Observations (Hash Functions’ Tests)

The completeness property is satisfied, owing to the fact that despite minimal changes, all
of the tested hash functions map the modified message to a complete different hash value.
As a result they all exhibit a high degree of avalanche effect (over 50 %), thus, fulfilling
the strict avalanche criterion (SAC).

36

5. ANALYSIS BASED ON THE IMPLEMENTED TOOL

5.4 Avalanche Tests for Classic Ciphers

5.4.1 Caesar

Initial input message (in text): “This is a test message”
Modified input message (in text): “This is a test massage”
Key used: 5.

Initial encrypted message: “Ymnx nx f yjxy rjxxflj”
Modified encrypted message: “Ymnx nx f yjxy rfxxflj”

No. of changed bytes: 1 (out of 22).
Avalanche effect: 4.54 %.
Longest identical sequence: 16 bytes.

5.4.2 Hill

Initial input message (in text): “THISISATESTMESSAGE”
Modified input message (in text): “THISISATESTMASSAGE”
Key Matrix:

02 15 22 03
01 09 01 12
16 07 13 11
08 05 09 06

Initial encrypted message: “VXRELZQNMDLTSGYARGHW”
Modified encrypted message: “VXRELZQNMDLTWICARGHW”

No. of changed bytes: 3 (out of 20).
Avalanche effect: 15.0 %.
Longest identical sequence: 12 bytes.

5.4.3 Enigma

This test uses the default settings of the Enigma plugin.

Initial input message (in text): “Hello there”
Modified input message (in text): “Hallo there”

Initial encrypted message: “Lzfbd ptlnb”
Modified encrypted message: “Lqfbd ptlnb”

No. of changed bytes: 1 (out of 11).
Avalanche effect: 9.1 %.
Longest identical sequence: 9 bytes.

37

Visualization of the Avalanche Effect in CT2

5.4.4 Vigenère

Initial input message (in text): “Hello there”
Modified input message (in text): “Hello thxre”
Key used (in text): “KEYWORD”

Initial encrypted message: “Rijhc kkovc”
Modified encrypted message: “Rijhc kkhvc”

No. of changed bytes: 1 (out of 11).
Avalanche effect: 9.1 %.
Longest identical sequence: 8 bytes.

5.4.5 Spanish Strip Cipher (SSC)

The first variant of the test uses a random method for the selection of the homophones.

Initial input message (in text): “Hello there”
Modified input message (in text): “Hallo there”

Initial encrypted message: “84969029516434175639”
Modified encrypted message: “34522950153342171239”

No. of changed bytes: 15 (out of 20).
Avalanche effect: 75%.
Longest identical sequence: 2 bytes.

The Avalanche Visualization plugin is also used to compare the Spanish Strip Cipher
to Caesar, by performing two changes in the initial input message. This time – as a 2nd
variant – a deterministic method (Round Robin) is used to select the homophones.

Initial input message (in text): “Classic ciphers”
First modification of input message (in text): “Classic cipherT”
Second modification of input message (in text): “Classic cipherZ”

After first modification:
No. of changed bytes Caesar: 1 (out of 15).
Avalanche effect Caesar: 6.7%.
No. of changed bytes SSC: 2 (out of 28).
Avalanche effect: 7.1%.

After second modification:
No. of changed bytes Caesar: 1 (out of 15).
Avalanche effect Caesar: 6.7%.
No. of changed bytes SSC: 2 (out of 28).
Avalanche effect: 7.1%.

The second modification is depicted in Figure 22.

38

5. ANALYSIS BASED ON THE IMPLEMENTED TOOL

Figure 22: Comparison after 2nd modification between Spanish Strip Cipher and Caesar

39

Visualization of the Avalanche Effect in CT2

5.4.6 Observations (Classic Ciphers’ Tests)

Some of the tested classic substitution ciphers map the same plaintext letter to a different
ciphertext letter (this can be seen e. g. if a word contains the same letter twice). This is the
case for the Enigma machine and the Vigenère cipher. They are so called polyalphabetic
ciphers. To say it in another way, they make use of different substitution alphabets [2].

For instance the two letters l from the word “Hello” map to “fb” and “jh” during the tests
for the Enigma and the Vigenère ciphers respectively. Despite of having this characteristic,
the ciphers do not exhibit a high avalanche effect, since the modification of one letter, only
maps to one ciphertext symbol as well. For this reason they do not fulfill the completeness
property either.

Hill cipher and Spanish Strip Cipher map a change of one plaintext symbol to more than
one changed ciphertext symbol. In the example of the Hill cipher with a 4∗4 key matrix, a
one-byte change mapped to three changed ciphertext bytes, thus achieving a certain level
of diffusion. However, it does neither change around 50 % of the ciphertext bytes nor are
the changed ciphertext bytes chosen randomly, hence, it does not show a high avalanche
effect.

When using a random3 selection of homophones with the Spanish Strip Cipher each sym-
bol is mapped to a different one each time the algorithm runs, even if no modifications
in the plaintext have been made. The results obtained are distorted. This is why the
first test carried out with the Spanish Strip Cipher (SSC) is not suitable for determining
the avalanche effect. A deterministic selection (Round Robin) must be used in order to
determine this property in the case of comparing changes in the plaintext.

All of the tested classic ciphers exhibit a low degree of avalanche effect.

3Nonetheless, the cipher can be broken by using combinatorial and statistical methods [13].

40

6. CONCLUSION

6 Conclusion

The purpose of this work is to provide help in understanding the importance of the
avalanche effect (AE) property by means of a visualization tool. The plugin allows the
user to test this property on different ciphers and hash functions available in the CT2
environment.

The plugin deals with prepared and unprepared methods.

The test results show for the prepared methods (AES and DES) that both of these en-
cryption standards possess a very strong avalanche effect. This occurrence was observed
during all AES and DES test scenarios carried out. After a certain number of encryption
rounds, the values of the avalanche effect remain relatively steady, reaching percentages
close to 50 % until the end of the encryption (see Figure 23). This is also true for the
the Longest Identical Bit Sequence (LIS) that reach values no bigger than 11 bits, after a
certain number of rounds. This is an indicative, that a single change made in the input,
rapidly spreads throughout the entire cipher, thus, contributing to the fulfillment of the
completeness property.

For the unprepared methods there are very different outcomes, depending on the selection
made. As minor changes to all hash functions produced completely different hash values,
it is evident that they satisfy the completeness property, which in turn satisfies the strict
avalanche criterion (SAC).

On the other hand, the classic ciphers do not exhibit the introduced properties. This
is due to the fact, that most of them map a plaintext change to one ciphertext symbol,
making the cipher vulnerable and easier to break.

Table 8 summarizes the test results for the ciphers AES, DES, and Vigenère, as well as for
the hash function SHA-1 regarding the five introduced properties: avalanche effect, com-
pleteness, strict avalanche criterion (SAC), diffusion, and confusion.

Summing up, the generic nature of the plugin lets the user analyze many different cryp-
tographic ciphers and hash functions. In the future some other complex algorithms could
also become part of the prepared methods, as to allow a deeper insight into their strength
in regard to the avalanche effect.

41

Visualization of the Avalanche Effect in CT2

Figure 23: Avalanche effect after every round (AES-128) [1]

Property
Method

AES DES SHA-1 Vigenère

Avalanche Effect strong
(after
round 2)

strong
(after
round 3)

strong poor

Completeness strong
(after
round 2)

strong
(after
round 4)

strong poor

SAC strong
(after
round 2)

strong
(after
round 4)

strong poor

Diffusion strong strong strong poor

Confusion strong strong strong poor

Table 8: Properties and results for various methods

42

REFERENCES

References

[1] Generated with Graphing/Charting tool - MetaChart. Available on:
https://www.meta-chart.com/.

[2] R. F. Churchhouse. Codes and ciphers: Julius Caesar, the Enigma, and the
Internet. Cambridge University Press, 2002.

[3] CrypTool team. Hash Demonstration - CrypTool 1. Available on:
https://www.cryptool.org/en/ct1-downloads.

[4] H. Feistel. Cryptography and computer privacy. Scientific American, 228:15–23,
1973.

[5] GaborPete. Substitution permutation network - own work.
https://commons.wikimedia.org/w/index.php?curid=6420152, 2009.

[6] H. M. Heys and S. E. Tavares. On the design of secure block ciphers. In Proceedings
of Queen’s 17th Biennial Symposium on Communications, Kingston, Ontario, 1994.

[7] JGraph Ltd. Generated with draw.io - online diagram software. Available on:
https://www.draw.io/.

[8] T. Knappe. AEStetic web application. Available on:
http://www.kna-st.de/aestetic/.

[9] A. K. Mandal and A. Tiwari. Analysis of avalanche effect in plaintext of des using
binary codes. International Journal of Emerging Trends and Technology in
Computer Science (IJETTCS), 1(3):166–177, 2012.

[10] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC press, 1996.

[11] S. Ramanujam and M. Karuppiah. Designing an algorithm with high avalanche
effect. IJCSNS International Journal of Computer Science and Network Security,
11(1):106–111, 2011.

[12] S. Przybylski, A. Wacker, M. Wander, F. Enkler, P. Vacek, and A. Krauß. Plugin
Developer Manual, How to build your own plugins for CrypTool 2, 2016.
https://www.cryptool.org/trac/CrypTool2/browser/trunk/Documentation/

PluginHowTo/HowToDeveloper.pdf.

[13] L. A. B. Sanguino, G. Leander, C. Paar, B. Esslinger, and I. Niebel. Analyzing the
spanish strip cipher by combining combinatorial and statistical methods.
Cryptologia, 40(3):261–284, 2016.

[14] C. E. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, 28(4):656–715, 1949.

[15] P. Stavroulakis and M. Stamp. Handbook of information and communication
security. Springer Science & Business Media, 2010.

43

https://www.meta-chart.com/
https://www.cryptool.org/en/ct1-downloads
https://commons.wikimedia.org/w/index.php?curid=6420152
https://www.draw.io/
http://www.kna-st.de/aestetic/
https://www.cryptool.org/trac/CrypTool2/browser/trunk/Documentation/PluginHowTo/HowToDeveloper.pdf
https://www.cryptool.org/trac/CrypTool2/browser/trunk/Documentation/PluginHowTo/HowToDeveloper.pdf

Visualization of the Avalanche Effect in CT2

[16] A. Webster and S. E. Tavares. On the design of S-boxes. In Conference on the
Theory and Application of Cryptographic Techniques, pages 523–534. Springer, 1985.

44

	Abstract
	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	CrypTool 2
	Outline of the Thesis

	Properties of Secure Block Ciphers
	Avalanche Effect
	Completeness

	Related Work
	Plugin Design and Implementation
	General Description of the Plugin
	Prepared Methods
	AES and DES

	Unprepared Methods
	Classic Ciphers, Modern Ciphers, and Hash Functions

	Architecture of the Code
	Limitations and Future Work

	Analysis Based on the Implemented Tool
	Avalanche Tests for AES
	AES-128 (Modified Message, Constant Key)
	AES-128 (Constant Message, Modified key)
	AES-192 (Modified Message, Modified Key)
	AES-256 (Modified Message, Constant Key)
	Observations (AES Tests)

	Avalanche Tests for DES
	DES (Modified Message, Constant Key)
	DES (Constant Message, Modified Key)
	DES (Constant Message, Modified Key)
	Observations (DES Tests)

	Avalanche Tests for Hash Functions
	SHA-1
	MD5
	Tiger
	Observations (Hash Functions' Tests)

	Avalanche Tests for Classic Ciphers
	Caesar
	Hill
	Enigma
	Vigenère
	Spanish Strip Cipher (SSC)
	Observations (Classic Ciphers' Tests)

	Conclusion
	References

