
Bachelor’s Thesis
for acquiring the academic degree of Bachelor of Science Computer Science

The State of Homomorphic Encryption

Coach Prof. Bernhard Esslinger
Dr. Doris Behrendt

First examiner Prof. Bernhard Esslinger
Second examiner Prof. Dr. Roland Wismüller

Author Michael Heep
Submitted 15.06.2023
Update 05.02.2024

Kurzzusammenfassung

Kurzzusammenfassung

Das Ziel dieser Bachelorarbeit ist es, den aktuellen Stand homomorpher Verschlüsse-
lung aufzuzeigen. Dazuwird erklärt, was homomorphe Verschlüsselung ist undwelche
Rolle die sogenannte volle homomorphe Verschlüsselung heutzutage spielt. Dabei wird
auch auf die Herausforderungen bezüglich der Benutzung solcher Verschlüsselungs-
verfahren hingewiesen, sowie auf die Schwiergkeit die Theorie hinter denselben zu
erklären.

Eswird einAnwendungsfall vorgestellt, in demmit Hilfe von homomorpher Verschlüs-
selung eine geheime Umfrage ermöglicht wird. Anhand der Implementierung dieses
Anwendungsfalles wird gezeigt, wie das Rechnen auf verschlüsselten Daten in der Pra-
xis aussieht.

Homomorphe Verschlüsselung macht sowohl in der Theorie als auch in der Praxis ra-
sche Fortschritte, wie die kontinuierliche Entwicklung neuer Verfahren und ihre Imple-
mentierung in gängigen Bibliotheken zeigt. Allerdings schränken Herausforderungen
wie die Notwendigkeit umfangreicher theoretischer Kenntnisse und die hohen Rechen-
anforderungen die praktische Relevanz der vollständig homomorphenVerschlüsselung
immer noch stark ein.

2

Abstract

Abstract

The goal of this bachelor’s thesis is to show the current state of homomorphic encryp-
tion (HE). Themeaning of homomorphic encryption and the role of fully homomorphic
encryption (FHE) are explained. The challenges related to the use of such encryption
schemes are also addressed, as well as the difficulty of explaining the theory behind
them.

A use case is presented in which homomorphic encryption is used to enable a secret
poll. By implementing this use case, it is demonstrated how computation on encrypted
data looks in practice.

Homomorphic encryption is advancing rapidly in both theory and practice, as in-
dicated by the continuous development of new schemes and their implementation
in popular libraries. However, challenges such as the need for extensive theoretical
knowledge and the high computational requirements still severely limit the practical
relevance of fully homomorphic encryption.

3

Contents

Contents

Kurzzusammenfassung 2

Abstract 3

Contents 4

1 Introduction 6

2 Theory 8
2.1 Homomorphic encryption . 8

2.1.1 Example: RSA . 9
2.1.2 Other partially homomorphic cryptosystems 12
2.1.3 Summary . 13

2.2 Fully homomorphic encryption . 14
2.2.1 Gentry’s blueprint . 15
2.2.2 Gentry’s FHE scheme and its practical drawbacks 16
2.2.3 What computations are possible with FHE 16

2.3 Generations and variants . 18
2.4 Parameters . 21

2.4.1 The high-level point of view . 22
2.4.2 The low-level point of view . 24
2.4.3 Tools to set the right parameters 26

2.5 Primitives from the homomorphic encryption standard 29
2.5.1 Public-key encryption algorithms 29
2.5.2 Homomorphic encryption algorithms 31

2.6 The RNS BFV scheme . 36
2.7 Security of FHE . 37

3 Implementation 38
3.1 Application selection . 38
3.2 Choosing the appropriate library . 44
3.3 From Lattigo to node-seal . 46
3.4 Screenshots of our application . 49
3.5 Contribution to CrypTool-Online . 54

4 Evaluation and conclusion 56

Bibliography 59

4

Contents

List of Abbreviations 66

List of Tables 67

List of Figures 68

Eidesstattliche Erklärung 69

Content of the CD 69

5

1 Introduction

1 Introduction

This thesis is about the current state of homomorphic encryption (HE). HE is a spe-
cial variant of public-key cryptography that allows certain computations on encrypted
data. A recent development regarding HE is the advent of applicable fully homomor-
phic encryption (FHE). [23, 14, 11, 19, 20, 28, 29, 31, 15, 8] In contrast to homomorphic
encryption (HE), fully homomorphic encryption (FHE) enables almost unlimited com-
putations on encrypted data.

The relevance of HE in cryptography is confirmed by numerous presentations at major
conferences all around the world in recent years. For example, HE is a topic at nearly
every one of the IACR’s1 annual events: Eurocrypt [42, 25, 45, 37, 41, 33], Crypto [43,
2, 59], Asiacrypt [46, 10, 16], Public Key Cryptography (PKC) [7, 40], Cryptographic
Hardware and Embedded Systems (CHES) [36], Theory of Cryptography Conference
(TCC). [3] After Craig Gentry’s breakthrough paper in 2009 showed that FHE is theo-
retically possible [26], there have been more and more publications on HE every year.
To illustrate the number of publications over the years, see Fig. 1.2

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0

100

200

300

Year

N
um

be
r
of

pu
bl
ic
at
io
ns

Figure 1: Number of publications on homomorphic encryption per year

Some applications have already been successfully implemented using current FHE
schemes. The implementation of a „multinomial logistic regression“ is an example
of a secure service that works with encrypted sensitive client data. This provides a
solution to the problem of „secure genotype imputation“. [51, p. 5] Regarding multi-

1International Association for Cryptologic Research: https://iacr.org
2https://dblp.org/search?q=homomorphic%20encryption (May 27, 2023).

6

https://iacr.org
https://dblp.org/search?q=homomorphic%20encryption

1 Introduction

party communication (MPC), a passively-secure oblivious linear function evaluation
(OLE) protocol was implemented with FHE. „This protocol generalizes oblivious trans-
fer to linear functions, and its [...] implementation [...] is able to evaluate more than 1
million OLEs per second over the ring ℤ𝑚, for a 120-bit 𝑚 on standard hardware.“ [51,
p. 5]

Another very interesting use case is the training and evaluation of different machine
learning methods. Examples are generalized linear models on distributed datasets [24]
or feed-forward neural networks. [61]

Circumstances that currently limit the practical use of FHE are: 1. The very large
size of ciphertexts leads to extensive memory load. [52, p. 32] 2. The runtime of
computations on encrypted data is several orders of magnitude slower than the same
computations on unencrypted data, depending on the use case.3 3. Setting reasonable
starting parameters for an FHE scheme is extremely complicated, but necessary to
efficiently perform desired calculations at a required level of security. This represents
a very high entry point for beginners and non experts.

Outline Chapter 2 describes the basic theory of homomorphic encryption (HE) and
fully homomorphic encryption (FHE) (Sections 2.1 to 2.2) and mentions their differ-
ent variants and generations (Section 2.3). It also covers in Section 2.4 the difficul-
ties in handling FHE schemes, e.g., setting proper parameters. In Section 2.5 general
algorithms belonging to FHE schemes are given. Section 2.6 presents a special im-
provement of some FHE schemes called RNS. In Section 2.7 security aspects are men-
tioned.

Chapter 3 presents an implementation of a web app using HE. The process of selecting
a use case (Section 3.1 on page 38) and a library (Section 3.2 on page 44) is explained.
Implementation details are given in Section 3.3 on page 46. In Section 3.4 on page 49
screenshots of the application are presented. Finally, in Section 3.5 on page 54 the
integration into CrypTool-Online (CTO) is described.

Chapter 4 presents the findings of this thesis and comes to a conclusion about the state
of the FHE.

3„On a modification of the MNIST benchmark dataset for handwritten number recognition (consisting
of 60 000 training datasets and 10 000 test datasets, each 28 × 28 grayscale images), the HELib library
had a runtime that was a factor of 106 slower than running directly on unencrypted data, despite
optimizations. [53] The achieved security was 80 bits.“ [52, p. 54][18]

7

2 Theory

2 Theory

This chapter describes the basics of homomorphic encryption (HE) in Section 2.1.
In Section 2.2 on page 14, the construction of fully homomorphic encryption (FHE)
schemes is explained. Section 2.3 on page 18 shows the generations and variants of
FHE schemes that have emerged in recent years. The difficulties associated with the
use of FHE schemes are discussed in Section 2.4 on page 21. In particular, these difficul-
ties are mainly found in the parameter selection, which is very complex and handled
very inconsistently in the literature. Afterwards, in Section 2.5 on page 29, the generic
algorithms are mentioned, which make up all FHE schemes according to the homo-
morphic encryption standard. [4] Finally, we briefly address the security of FHE in
Section 2.7 on page 37.

2.1 Homomorphic encryption

HE enables the evaluation of functions on encrypted data. This is made possible by
the idea that the decryption function of a public-key encryption (PKE) scheme4 has to
be a homomorphism. [22, p. 398]

The concept of a homomorphic decryption function is illustrated below in Section 2.1.1
on the following page using the well-known Rivest-Shamir-Adleman (RSA) cryptosys-
tem. [58] Textbook (i.e., unpadded5) RSA is homomorphic in the sense that the multi-
plication of ciphertexts is connected with the plaintexts. More precisely, the product of
two RSA ciphertexts is an encryption of the product of the original plaintexts. While
this is always the case for multiplication, for addition this is not true in general. A
counter-example is given below.

A formal definition of homomorphic encryption can be found in [26]. For our needs,
we now formulate a somewhat reduced version that does not need the whole mathe-
matical apparatus. So, first we have an operation „op“ on some plaintext set {𝑚1, 𝑚2, … }
and some corresponding operation õp on the ciphertext set {𝑐1, 𝑐2, … }. Furthermore, let
𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑘} be an index set such that 𝑚𝑖1 , 𝑚𝑖2 , …𝑚𝑖𝑘 are contained in the plaintext
space, then homomorphic encryption means:

4HE schemes based on symmetric encryption schemes are also possible. [27, p. 98] For example [19,
pp. 1-2] and [44].

5What padding is, can be found e.g. in [63]

8

2 Theory

op(𝑚𝑖1 , … , 𝑚𝑖𝑘) = dec(õp(enc(𝑚𝑖1 , … , 𝑚𝑖𝑘))) (1)

or
enc(op(𝑚𝑖)) = õp(enc(𝑚𝑖)) (2)

Note that usually the operation is carried out only on two plaintexts but in the general
case depending on the specific operation more than two operands are possible. Also
one can think of op being a polynomial or some other function.

There are two special cases, namely addition and multiplication. In the first case the
encryption function enc is called additively homomorphic, in the second case the func-
tion is called multiplicatively homomorphic. Also, for both special cases, the operation
in the ciphertext space and the plaintext space is the same, which does not have to be
the case in general, see Table 1 on page 14.

additively homomorphic:
enc(𝑚1 + 𝑚2) = enc(𝑚1) + enc(𝑚2) op = õp = addition

multiplicatively homomorphic:
enc(𝑚1 ⋅ 𝑚2) = enc(𝑚1) ⋅ enc(𝑚2) op = õp = multiplication

Now we look at RSA, an example of the second special case where „op“ is the multi-
plication mod 𝑛 and the operations are identical 𝑜𝑝 = 𝑜𝑝.

2.1.1 Example: RSA

The following is an informal description of the textbook RSA cryptosystem. [12, pp.
169-172] The public key (encryption key) consists of two positive integers (𝑒, 𝑛), where-
as the private key (decryption key, secret key) consists of the two positive integers
(𝑑, 𝑛). The keys are obtained as follows:

Pick two different odd very large prime numbers 𝑝, 𝑞 at random and multiply them to
have 𝑛 = 𝑝 ⋅ 𝑞. Now calculate the totient of 𝑛 (i.e., Euler’s totient function or Euler’s
phi function), which, in the case of the product of two primes, is 𝜙(𝑛) = (𝑝 −1) ⋅ (𝑞 −1).
Now, as part of the secret key, choose a large random integer6 𝑑 that is coprime to

6Today, the public key is usually set to 𝑒 = 216 + 1 = 65537, and the secret key 𝑑 is calculated from it.
[12, p. 176]

9

2 Theory

𝜙(𝑛), i.e., gcd(𝑑, 𝜙(𝑛)) = 1. Here gcd stands for greatest common divisor. The next step
is to calculate the first integer of the public key, which is the multiplicative inverse of
𝑑 modulo 𝜙(𝑛). This can efficiently be done using the extended Euclidean algorithm.
The result is summarized in the following equation:

𝑒 ⋅ 𝑑 ≡ 1 mod 𝜙(𝑛)

This construction allows for creation of an encryption function 𝑒𝑛𝑐 and a decryption
function 𝑑𝑒𝑐. The following applies to these functions:

∀𝑚 ∈ ℤ/𝑛ℤ ∶ 𝑑𝑒𝑐(𝑒𝑛𝑐(𝑚)) = 𝑚 and 𝑒𝑛𝑐(𝑑𝑒𝑐(𝑚)) = 𝑚.

To encrypt a message 𝑚, calculate

𝑐 ≡ 𝑒𝑛𝑐(𝑚) ≡ 𝑚𝑒 mod 𝑛,

and to decrypt a ciphertext 𝑐, calculate

𝑚 ≡ 𝑑𝑒𝑐(𝑐) ≡ 𝑐𝑑 mod 𝑛.

RSA is always multiplicatively homomorphic

Let (𝑒, 𝑛) be the public key of an RSA cryptosystem and let 𝑚1, 𝑚2 ∈ ℤ/𝑛ℤ be two
messages. Then

𝑒𝑛𝑐(𝑚1) ⋅ 𝑒𝑛𝑐(𝑚2) ≡ (𝑚𝑒
1 mod 𝑛) ⋅ (𝑚𝑒

2 mod 𝑛)
≡ 𝑚𝑒

1 ⋅ 𝑚𝑒
2 mod 𝑛

≡ (𝑚1 ⋅ 𝑚2)𝑒 mod 𝑛
≡ 𝑒𝑛𝑐(𝑚1 ⋅ 𝑚2).

This shows that the product of two plaintexts can be built before or after encryption.

RSA is not always additively homomorphic

The following example shows, that under RSA encryption the addition of ciphertexts
can lead to an encryption of the sum of the plaintexts, but in general this is not the
case.

10

2 Theory

Let the public key be (𝑒, 𝑛) = (5, 35). These are valid parameters, because

𝜙(𝑛) = 𝜙(35) = 𝜙(5 ⋅ 7) = 𝜙(5) ⋅ 𝜙(7) = 4 ⋅ 6 = 24

and
gcd(𝑒, 𝜙(𝑛)) = gcd(5, 24) = 1.

Now, let 𝑚1 = 5, 𝑚2 = 10 be two messages. The addition of the ciphertexts of these
messages yields

𝑒𝑛𝑐(𝑚1) + 𝑒𝑛𝑐(𝑚2) ≡ 𝑒𝑛𝑐(5) + 𝑒𝑛𝑐(10)
≡ (55 mod 35) + (105 mod 35)
≡ (10 mod 35) + (5 mod 35)
≡ 15 mod 35

and

𝑒𝑛𝑐(𝑚1 + 𝑚2) ≡ 𝑒𝑛𝑐(5 + 10)
≡ 𝑒𝑛𝑐(15)
≡ 155 mod 35
≡ 15 mod 35.

Clearly, in this case 𝑒𝑛𝑐(𝑚1) + 𝑒𝑛𝑐(𝑚2) = 𝑒𝑛𝑐(𝑚1 + 𝑚2). Now, we look at the same
computation but with other summands:

𝑒𝑛𝑐(𝑚1) + 𝑒𝑛𝑐(𝑚2) ≡ 𝑒𝑛𝑐(4) + 𝑒𝑛𝑐(12)
≡ (45 mod 35) + (125 mod 35)
≡ (9 mod 35) + (17 mod 35)
≡ 26 mod 35

and

𝑒𝑛𝑐(𝑚1 + 𝑚2) ≡ 𝑒𝑛𝑐(4 + 12)
≡ 𝑒𝑛𝑐(16)
≡ 165 mod 35
≡ 11 mod 35.

Obviously, now 𝑒𝑛𝑐(𝑚1) + 𝑒𝑛𝑐(𝑚2) ≠ 𝑒𝑛𝑐(𝑚1 + 𝑚2).

11

2 Theory

Conclusion This example has shown that RSA has homomorphic properties. How-
ever, this is only true for textbook, i.e., unpadded RSA and it is onlymultiplicatively ho-
momorphic. In contrast, RSA is not additively homomorphic in general. Such schemes,
which have only one homomorphic property are also called partially homomorphic
encryption (PHE) schemes. [52, p. 65]

2.1.2 Other partially homomorphic cryptosystems

There are other public-key cryptosystems that are also homomorphic in one operation.
An example where this operation is the addition is the Paillier cryptosystem. [54] It
is a probabilistic cryptosystem which is based on the so-called composite residuosity
class problem. The theory behind this cryptosystem is out of scope of this thesis and
thus left out. However, the homomorphic properties of the Paillier cryptosystem are
shown below. [22, pp. 398-399]

The Paillier cryptosystem

The key generation in the Paillier cryptosystem works as follows: The public key 𝑛 is
a valid RSA modulus 𝑛 = 𝑝 ⋅ 𝑞 with two different odd very large prime numbers 𝑝 and
𝑞. The private key consists of 𝜆 = lcm(𝑝 − 1, 𝑞 − 1). Here, lcm stands for least common
multiple.

For each message 𝑚 ∈ ℤ/𝑛ℤ that is to be encrypted, randomly choose an 𝑟 ∈ ℤ/𝑛ℤ.
To encrypt 𝑚 with the public key 𝑛, calculate

𝑐 = 𝑒𝑛𝑐(𝑚, 𝑟) = (𝑛 + 1)𝑚 ⋅ 𝑟𝑛 mod 𝑛2.

To decrypt a message 𝑐 ∈ ℤ∗
𝑛2 , first calculate

𝑆 = 𝑐𝜆 mod 𝑛2

and
𝑇 = 𝜙(𝑛)−1 mod 𝑛2.

The actual decryption then is

𝑚 = 𝑑𝑒𝑐(𝑐) = (𝑆 − 1)/𝑛 ⋅ 𝑇 mod 𝑛.

12

2 Theory

To see the homomorphic property of this cryptosystem, consider the encryption func-
tion 𝐸 and the decryption function 𝐷. Let 𝑛 be the public key and let 𝑚1, 𝑚2 ∈ ℤ/𝑛ℤ
be two messages. Also, let 𝑔 ∶= 𝑛 + 1 for simplicity. The corresponding ciphertexts
then are

𝑐1 = 𝑔𝑚1 ⋅ 𝑟𝑛1 mod 𝑛2

and
𝑐2 = 𝑔𝑚2 ⋅ 𝑟𝑛2 mod 𝑛2.

Now the homomorphic property can be shown as follows:

𝑒𝑛𝑐(𝑚1, 𝑟1) ⋅ 𝑒𝑛𝑐(𝑚2, 𝑟2) ≡ (𝑔𝑚1 ⋅ 𝑟𝑛1 mod 𝑛2) ⋅ (𝑔𝑚2 ⋅ 𝑟𝑛2 mod 𝑛2)
≡ 𝑔𝑚1+𝑚2 ⋅ (𝑟1 ⋅ 𝑟2)𝑛 mod 𝑛2

≡ 𝑒𝑛𝑐(𝑚1 + 𝑚2, 𝑟1 ⋅ 𝑟2).

As you can see, that the operation applied to the ciphertext is not always the same
operation carried to the plaintext. While the operation remained the same in RSA,
where the product of ciphertexts yields the encrypted product of the plaintexts, in the
Paillier cryptosystem a multiplication of ciphertexts yields the encrypted sum of the
plaintexts.

2.1.3 Summary

This section has shown that there are already cryptosystems that have homomorphic
properties. However, the possible calculations are limited to one type of operation,
making them PHE schemes.. For cryptosystems such as RSA and Paillier, the number
of calculations that can be performed sequentially is always unbounded. This means,
that arbitrarily many of these operations can be performed without loosing any infor-
mation.

There are other cryptosystems that are partially homomorphic. Some of them are
briefly presented in Table 1 on the following page. In these examples, let 𝑐1 and 𝑐2 be
the encryption of𝑚1 and𝑚2, respectively, under the corresponding cryptosystem. The
column Ciphertext operation shows what operation is made on the two ciphertexts, and
the column Result on the plaintext shows the resulting effect this has on the underlying
plaintexts. Often, the plaintext operations are modular additions or modular multipli-
cations. See the cryptosystem citations and [52, pp. 17, 65] for details. An example of
how to read a row in Table 1 on the next page is: In the Goldwasser-Micali cryptosys-

13

2 Theory

tem, if you have two ciphertexts 𝑐1 = 𝑒𝑛𝑐(𝑚1) and 𝑐2 = 𝑒𝑛𝑐(𝑚2)7, then the product of
these ciphertexts is an encryption of the exclusive or (XOR) of the plaintexts 𝑚1 and
𝑚2.

Cryptosystem Ciphertext operation Result on the plaintext

RSA [58] 𝑐1 ⋅ 𝑐2 𝑚1 ⋅ 𝑚2
Paillier [54] 𝑐1 ⋅ 𝑐2 𝑚1 + 𝑚2
Regev [56] 𝑐1 + 𝑐2 𝑚1 + 𝑚2
Benaloh [9] 𝑐1 ⋅ 𝑐2 𝑚1 + 𝑚2
ElGamal [21] 𝑐1 ⋅ 𝑐2 𝑚1 ⋅ 𝑚2
Goldwasser-Micali [32] 𝑐1 ⋅ 𝑐2 𝑚1 ⊕ 𝑚2(XOR)

Table 1: Homomorphic properties of some partially homomorphic encryption schemes

2.2 Fully homomorphic encryption

The question that naturally arises from the existence of PHE schemes is: Can there be
a cryptosystem that is homomorphic in more than one operation? This problem was
proposed as early as 1978 in the paper On Data Banks and Privacy Homomorphisms by
Rivest et al. [57] The paper is from the same authors who presented the RSA cryptosys-
tem in the same year. But it took about 40 years to find the first answer to this question.
In 2009, Craig Gentry showed in [26], that it is possible to construct a so-called fully
homomorphic encryption (FHE) scheme.

According to Gentry, fully homomorphic is defined as follows: „Given ciphertexts that
encrypt 𝜋1, … , 𝜋𝑡, fully homomorphic encryption should allow [...] to put out a cipher-
text that encrypts 𝑓 (𝜋1, … , 𝜋𝑡) for any desired function 𝑓, as long as that function can
be efficiently computed. No information about 𝜋1, … , 𝜋𝑡 or 𝑓 (𝜋1, … , 𝜋𝑡), or any inter-
mediate plaintext values, should leak; the inputs, output and intermediate values are
always encrypted.“ [26, p. 5]

The solution found by Gentry contains on the one hand a blueprint to design FHE
schemes and on the other hand a concrete example of such a scheme. This scheme
is based on ideal lattices and a variant of the closest vector problem (CVP). The the-
ory behind this cryptosystem is by far too complex to be explained in detail in this
bachelor’s thesis. Therefore, only the superficial blueprint of how to construct an FHE
scheme is presented below.

7Plaintexts in the Goldwasser-Micali cryptosystem are single bits (𝑚1, 𝑚2 ∈ {0, 1}).

14

2 Theory

After explaining the blueprint of how to construct an FHE scheme, the question is
discussed which functions are homomorphically computable with it.

2.2.1 Gentry’s blueprint

The approach consists of three steps, which are described below. [26, 23, 8] Based
on Gentry’s work, terms such as squashing a circuit and bootstrapping an encryption
scheme have been established.

1. Construct a somewhat homomorphic encryption scheme

The first step is to construct a so-called somewhat homomorphic encryption (SHE)
scheme. These type of schemes allow to perform a limited number of computations
on the ciphertexts in the form of addition and multiplication. The reason for this limi-
tation is that each ciphertext contains an inherent noise parameter, which grows with
every homomorphic operation. Especially homomorphic multiplications let the noise
grow fast in comparison to homomorphic additions. After too many operations8, the
noise will eventually become too large and the ciphertext can no longer be decrypted
successfully.

In Gentry’s work, an SHE scheme based on ideal lattices is presented. The security of
the scheme is based on a decisional version of the bounded distance decoding problem
(BDDP) which is a variant of the CVP. [26, pp. 18, 65]

2. Squashing: Simplify the decryption circuit

The next step is to simplify the decryption algorithm of the SHE scheme, which Gentry
called squashing the decryption circuit.9 Specifically, this means lowering the multi-
plicative depth10 of it as much as possible. The goal is that the decryption circuit has
less depth than the scheme can handle. Only then the next step of the blueprint is
possible.

Gentry’s idea to squash the decryption circuit of his SHE scheme was to „place a hint
about the secret key inside the public key. This hint is not enough to decrypt a cipher-

8This limit depends on the scheme that is used and on certain parameters that were selected.
9A circuit is a representation of an algorithm that uses (in our case) AND, OR, and NOT gates.

10The multiplicative depth of an algorithm, a function or a circuit is the number of sequential mul-
tiplications (resp. AND gates) in it. For example: The multiplicative depth of 𝑥1𝑥2𝑥3𝑥4 is 4 and the
multiplicative depth of 𝑥1𝑥2 + 𝑥3𝑥4 is 2.

15

2 Theory

text output by the original scheme, but it can be used to ‚process‘ the ciphertext – i.e.,
construct a new ciphertext (that encrypts the same thing11) that can be decrypted by a
very shallow circuit.“ [26, p. 3] The security of this concept is based on the (decision)
sparse subset sum problem (SSSP). For details, see [26, pp. 98, 104].

3. Bootstrapping: Evaluate the decryption circuit homomorphically

The last step is the core of Gentry’s construction: The homomorphic evaluation of
the simplified decryption function. Gentry has shown that this technique, which he
calls bootstrapping, reduces the noise of a ciphertext. In particular, one could apply the
bootstrapping procedure before each homomorphic operation to guarantee that the
result has a low enough noise level to allow correct decryption. In this way, it is the-
oretically possible to perform an unbounded number of additions and multiplications
on encrypted data, giving fully homomorphic encryption (FHE).

2.2.2 Gentry’s FHE scheme and its practical drawbacks

The problem with Gentry’s initial construction was its performance. The ciphertexts
only encrypt a single bit and the homomorphic evaluations took a lot of time. „If one
wants 2𝜆 security [...] the required computation per gate is quasi-linear in 𝜆6.“ [26,
p. 20] There have been many attempts at implementing schemes, „but none of them
comes even close to being practical.“ [23, p. 2] In [30], C. Gentry and S. Halevi manage
„to execute one Advanced Encryption Standard (AES) encryption homomorphically in
eight days using a massive amount (tens of GBs) of RAM.“ [23, p. 2]

2.2.3 What computations are possible with FHE

While the desire is to be able to compute every function on encrypted data, even Gen-
try’s breakthrough did not really make this possible. But this is only because the the-
oretical limits are the same as those of a „normal computer“. For example, neither a
computer nor any FHE scheme is capable of performing an infinite number of calcula-
tions. But that would be necessary to be able to calculate all functions. As an example,
the exponential function exp(𝑥) is defined by the infinite power series

exp(𝑥) ∶=
∞
∑
𝑘=0

𝑥𝑘

𝑘!
.

11I.e., a new encryption of the same underlying plaintext.

16

2 Theory

This type of function can only be calculated by computers using approximation func-
tions that use polynomials with a finite number of terms. Approximate functions only
return a result to a certain accuracy.

One of Gentry’s ideas was, to reduce the complexity of the functions to be calculated:
„How do we measure the complexity of 𝑓? Perhaps the most obvious measure is the
running time 𝑇𝑓 of a Turing machine that computes 𝑓. We use a related measure, the
size 𝑆𝑓 of a Boolean circuit (i.e., the number of AND, OR, and NOT gates) that computes 𝑓.
Any function that can be computed in 𝑇𝑓 steps on a Turing machine can be expressed
as a circuit with about 𝑇𝑓 gates. More precisely, 𝑆𝑓 < 𝑘 ⋅ 𝑇𝑓 ⋅ log 𝑇𝑓 for some small
constant 𝑘.“ [27, p. 99]

The following proof shows that only addition and multiplication suffices to compute
the above mentioned gates AND, OR, and NOT. Let 𝑥, 𝑦 ∈ {0, 1} be the inputs to the gates.
The following holds [27, p. 99]:

AND(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 , (3)
OR(𝑥, 𝑦) = 1 − (1 − 𝑥) ⋅ (1 − 𝑦), (4)
NOT(𝑥) = 1 − 𝑥 (5)

While Eq. (3) and Eq. (5) are easy to understand, Eq. (4) regarding the OR gate is better
illustrated by the truth Table 2.

𝑥 𝑦 OR(𝑥, 𝑦) (1 − 𝑥) (1 − 𝑦) (1 − 𝑥) ⋅ (1 − 𝑦) 1 − (1 − 𝑥) ⋅ (1 − 𝑦)

0 0 0 1 1 1 0
0 1 1 1 0 0 1
1 0 1 0 1 0 1
1 1 1 0 0 0 1

Table 2: The formula 1 − (1 − 𝑥) ⋅ (1 − 𝑦) decomposed into smaller parts, to better
comprehend the correlation with the logic gate OR

Therefore, the basic idea to achieve FHE is to have a cryptosystem that is additively
and multiplicatively homomorphic and can perform an indefinite amount of these op-
erations in sequence. With these two operations, every (finite) Boolean circuit can be
expressed. Especially, any finite polynomial function can be represented as a sequence
of additions and multiplications.

17

2 Theory

2.3 Generations and variants

Over the years since Gentry’s breakthrough, many variants of FHE and SHE schemes
have been proposed. Retrospectively, these variants can be categorized in three gener-
ations, with each generation representing a conceptual simplification of the schemes.
[65, 52] An overview of these schemes is presented on a timeline in Fig. 2 on page 20
and in Table 3 on the next page.

Apart from the below mentioned differences, all FHE schemes of all generations are
based on Gentry’s blueprint. The differences are to be found, for example, in the un-
derlying problems on which the security of each scheme is based on and the different
computational models12, i.e., on which domain13 computations are possible.

Most schemes are named after the authors of the papers describing it. Schemes that
are used in today’s libraries are often abbreviated by the initials of their authors.

Again (like with Gentry’s ideal lattice in Section 2.2 on page 14), details of the imple-
mentation of each single scheme are omitted. On the one hand, it simply would be too
much. On the other hand, it would require an extensive theoretical background that
cannot be fathomed in this thesis.

1st Generation

The first generation begins with Gentry’s initial construction of 2009. [26] Its security
is based on the BDDP and the SSSP. An example of a first generation scheme whose
security is based on a different assumption is the Dijk-Gentry-Halevi-Vaikuntanathan
(DGHV) scheme (approximate gcd (AGCD), SSSP). [19] The DGHV scheme is also not
based on ideal lattices but on simple integer arithmetic. Both schemes encrypt only
single Boolean values in their ciphertexts.

2nd Generation

Two of the main schemes of the second generation, that are also offered in today’s li-
braries, are the Brakerski-Gentry-Vaikuntanathan (BGV) scheme [11] and the Brakers-
12Computational models can be, for example, modular arithmetic, Boolean arithmetic or floating-point

arithmetic
13Domains can be, for example, bits, integers, or real numbers.

18

2 Theory

Gen. Authors Underlying
problems

Computational model Year Ref.

1st

Gentry BDDP, SSSP Boolean arithmetic 2009 [26]

Gentry, Halevi BDDP, SSSP Boolean arithmetic 2010 [29]

DGHV AGCD, SSSP Boolean arithmetic 2010 [19]

2nd

BGV

LWE/RLWE

modular arithmetic 2011 [26]

BFV modular arithmetic 2012 [29]

CKKS floating-point arithmetic 2017 [14]

3rd

GSW

LWE/RLWE

Boolean arithmetic 2013 [31]

FHEW Boolean arithmetic 2014 [20]

TFHE Boolean arithmetic 2016 [15]

Table 3: Overview of some FHE schemes grouped in three generations [65, 52]

ki/Fan-Vercauteren (BFV) scheme. [23] From the second generation onwards, every
FHE scheme relies either on the learning with errors (LWE) or the ring learning with
errors (RLWE) assumption. The BGV and BFV schemes provide modular arithmetic
over the integers.

Another scheme in this generation is the Cheon-Kim-Kim-Song (CKKS) scheme. [14]
Its major difference compared to all other schemes is that it operates on floating-point
numbers. While other schemes only encrypt single bits or integers, CKKS can handle
other tasks like machine learning to be implemented homomorphically.

In general, second generation schemes are much more efficient than first generation
schemes. The efficiency of an FHE scheme can be determined, for example, by the so-
called per-gate computation overhead. This value is „defined as the ratio between the
time it takes to compute a circuit homomorphically to the time it takes to compute it in
the clear.“ [11, p. 1] Given the security parameter 𝜆, the overhead for first generation
schemes is in Ω̃(𝜆4).14 The two variants of the BGV scheme (second generation) have
per-gate computation overhead in Ω̃(𝜆 ⋅ 𝐿3)15 and Ω̃(𝜆2), respectively. [11, p. 2].

14Ω̃ means Ω with logarithmic factors ignored. For details, see [64, pp. 48, 63].
15Here, 𝐿 denotes the depth of circuits that can be evaluated by the scheme without bootstrapping. This

is referred to as leveled fully homomorphic encryption. [11, p. 5]

19

2 Theory

3rd Generation

Examples of third generation schemes are the FHEW scheme [20] and the Fully Homo-
morphic Encryption over the Torus (TFHE) scheme. [15] They are conceptually sim-
ilar to second generation schemes, but the implementations are more sophisticated,
so that they accomplish slower noise growth during homomorphic evaluations com-
pared to previous schemes. Both schemes build on techniques of the Gentry-Sahai-
Waters (GSW) scheme [31], which is also a third generation scheme. These schemes
have their strength in computing Boolean gates on encrypted data.

Figure 2: First, second, and third generation FHE schemes. Please refer to [52, p. 27]
for the references

Conclusion Each generation and each scheme has its own advantages and disad-
vantages. The first generation was more of a theoretical experiment, but the following
ones have candidates that have already been proven to work in real applications, for
example:

20

2 Theory

• The password manager of Microsoft’s web browser Edge uses HE to find out if a
password stored by the user can be found in a database of breached passwords.16

• Using the lattigo library [51, p. 5]:

– Multinomial logistic regression for secure genotype imputation

– Machine learning models:

∗ Generalized linear models on distributed datasets [24]

∗ Feed-forward neural networks [61]

2.4 Parameters

Before you can use an FHE scheme you have to set several parameters. For each appli-
cation these parameters can be different, because they influence not only the security
and performance of the resulting application, but also its potential functionality. On
an abstract level, like the interface of a library, it is enough to set a handful of param-
eters. On the theoretical level, however, there are dozens of parameters that must be
taken into account.

Choosing the right parameters is an extremely complex procedure that requires a deep
understanding of the implementation and underlying theory of the scheme used (see
for example Table 5 on page 28, Eq. (7) on page 25, Eq. (8) on page 26). Users without
a broad understanding not only of cryptography, but of homomorphic encryption in
particular, have no chance of choosing proper parameters. Although there are pre-
defined default parameters, they only cover simple scenarios. Sophisticated use of
FHE schemes demands carefully selected parameters – otherwise the homomorphic
evaluations or the subsequent decryption may not work. In addition, due to a lack of
standardization, many publications name the parameters differently.

This chapter captures two points of view: On the one hand a high-level parameter
selection using available application programming interfaces (APIs), shown in Sec-
tion 2.4.1 on the following page. On the other hand a low-level parameter selection,
describing the implementation details of FHE schemes in Section 2.4.2 on page 24. The

16https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords

-in-microsoft-edge/

21

https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/

2 Theory

former only includes setting very few parameters, compared to the actual implementa-
tion that needs dozens of values to be set. This is possible by carefully selecting default
values for some parameters that cannot be changed through the API afterwards.

These difficulties are demonstrated using the BFV scheme, of which a high-level API is
offered byMicrosoft’s Simple Encrypted Arithmetic Library (SEAL). This already skips
the difficult step of choosing an adequate scheme that is capable of the desired func-
tionality. The previous Section 2.3 on page 18 described the differences between the
schemes, concerning the computational models, like modular or floating-point arith-
metic.

The BFV scheme is capable of modulo integer arithmetic, and also so-called packing
of plaintexts. This means that many plaintexts, each consisting of an integer, can be
packed into one large plaintext array, which is then encrypted into a ciphertext. This
data structure allows for computations in a single instruction, multiple data (SIMD)
fashion.

2.4.1 The high-level point of view

From a high-level point of view, when choosing parameters, a trade-off must always
be made between the following three points: security, performance and functionality.
The relationship between them is as follows:

1. Security: Higher security levels result in, e.g., larger key and ciphertext sizes.
This directly impacts the performance in a negative way, i.e., homomorphic op-
erations take more time.

2. Performance: Higher performance needs consequently require lower security
levels or less functionality.

3. Functionality: Higher functionality needs, i.e., the desired complexity of homo-
morphic functions to be evaluated, result in poorer performance (if the security
level stays the same), or in a poorer security level (if the performance level stays
the same). Different functionalities are for example multiplication, potentiation,
branching and looping. Multiplicative depth is also relevant.

Note on the functionality trade-off Of course, there is no functionality trade-off
when using FHE, because any function can be computed inherently by the scheme

22

2 Theory

(this is what it is all about). But especially second generation schemes are often used
in a different way: Instead of bootstrapping the ciphertexts regularly, which is a very
time- and performance-consuming procedure, the scheme is „simply“ set up in such
a way, that it is capable of computing the desired functions without bootstrapping,
i.e., in a SHE manner. This is possible due to the advancements made in contrast to
first generation schemes in terms of performance and functional capability even with
small parameters. In practice, this is done by controlling the so called noise budget via
the parameter selection, which is explained below. The larger the noise budget is at
the beginning of encryption, the more computations can be made on the ciphertexts
without bootstrapping.

In SEAL there are four parameters to be set by the user, when using the BFV scheme.
These parameters are listed in Table 4 on the next page, including example values.
Changing them influences the above mentioned high-level parameters security, per-
formance and functionality. What follows is a superficial description of these param-
eters, taken from the documentation of an example from SEAL. [49] More details on
these and other parameters are given in Table 5 on page 28.

Here are the four parameters in SEAL which are expected to be set by the user:

1. security_level: This parameter controls the security of the scheme (how ex-
actly is explained in the low-level description of the parameters below). Its ex-
plicit assignment can be omitted and is then set to a default value of 128. It
affects the performance of the scheme, as other parameters are limited by this
value.

2. poly_modulus_degree: This parameter must be an integer and a positive power
of 2. „Larger poly_modulus_degree makes ciphertext sizes larger and all oper-
ations slower, but enables more complicated encrypted computations“. [49] (ll.
50-53)

3. coeff_modulus: „This parameter is a large integer, which is a product of dis-
tinct prime numbers, each up to 60 bits in size. [...] A larger coeff_modulus

implies a larger noise budget, hence more encrypted computation capabilities.
However, an upper bound for the total bit length of the coeff_modulus is de-
termined by the poly_modulus_degree.“ [49] (ll. 69-71) This parameter can be
automatically set with a helper function, which depends on security_level and
poly_modulus_degree.

23

2 Theory

4. plain_modulus: This parameter „determines the size of the plaintext data type
and the consumption of noise budget in multiplications. Thus, it is essential to
try to keep the plaintext data type as small as possible for best performance.“
[49] (ll. 107-109) It can be any positive integer.

Note on some parameters Table 4 denotes the notation of some parameters loga-
rithmically, e.g., log2 𝑡 for the plain_modulus. This indicates, that in SEAL it sometimes
suffices to enter the bit size the parameter will have, e.g., 20. The library then calculates
a 20-bit number in the background that matches the remaining parameters.17

Notation Name Data type Example value

𝜆 security_level integer 128

𝑑 or 𝑛 poly_modulus_degree integer 4096

log2 𝑞 coeff_modulus array of Integers [36, 36, 37]
log2 𝑡 plain_modulus integer 20

Table 4: High-level parameters for the BFV scheme in SEAL

2.4.2 The low-level point of view

The security level is used as an example to illustrate the complex relationships between
the different parameters. The security level parameter is called 𝜆 and typically takes
integer values such as 128, 192 or 256.

1: Controlling 𝜆 The BFV scheme can be shown to be IND-CPA secure. In short, this
implies that an attacker who has only the ciphertext and the public key cannot learn
anything about the underlying plaintext. [55, p. 131]

The security of the BFV scheme is based on the hardness of the ring learning with
errors (RLWE) problem.18 The security level 𝜆 controls the allowed time for an attacker

17To enable batching in BFV (i.e., the above mentioned packing of integers into an array), a prime
number is needed as plain_modulus. Thus, the automatic computation of a 20 bit prime comes in
very handy.

18Details on the RLWE assumption can be found in [48]

24

2 Theory

to break an encryption scheme. More precisely a security level of 𝜆 means that all
attacks requiring no more than 2𝜆 operations are unsuccessful.19 [12, p. 127]

The authors of [23] give the following formula for predicting the runtime in seconds
that will break the BFV scheme:

log2(𝑡𝑖𝑚𝑒) = 1.8/ log2(𝛿) − 110. (6)

„If we assume a security level of 𝜆 bits, i.e., we set 𝑡 𝑖𝑚𝑒 = 2𝜆, then the minimal 𝛿 we
can achieve according to the above estimate is log2(𝛿) = 1.8/(𝜆 + 110). For instance,
when we set 𝜆 = 128, we obtain that 𝛿 ≃ 1.0052.“ [23, p. 16] Immediately, the reader is
confronted with a new, unknown, low-level parameter: 𝛿. In this specific context, 𝛿 is
defined by the authors as follows:

„Gamma andNguyen [6] defined theHermite factor 𝛿𝑚 of a basisB of an𝑚-dimensional
lattice Λ as ‖b1‖= 𝛿𝑚 ⋅ det(Λ)1/𝑚, with b1 the shortest vector in B.“ [23, p. 15]

Lattice theory is not covered in this thesis and therefore the reader is referred to [23]
for more details. However, to understand what the Hermite factor 𝛿𝑚 is, the reader
needs to know lattices.

2: Some parameters depending on 𝛿 Nearly all of the parameters involved in
this scheme have some relationship to each other. Some of them are expressed in
inequalities. The following inequality, for example, describes the condition to choose
the parameters 𝛼, 𝑞 and 𝜎 in dependence of 𝑑 and 𝛿, where 𝛿 controls the security level,
as shown in Eq. (6) [23, p. 16]:

𝛼 ⋅
𝑞
𝜎
< 2(2⋅√𝑑 log2(𝑞) log2(𝛿)) (7)

The parameters that appear in this inequality are:

1. 𝛼: This is a constant. The scheme needs the condition Eq. (7) to be secure.

2. 𝑞: The modulus of the ciphertext space, which is chosen (together with 𝜎) based
on this inequality.

19For example, a security level of 𝜆 = 128 means that there can be no successful attacks as long as
attackers can perform at most 2𝜆 operations. [12, p. 127]

25

2 Theory

3. 𝜎: The standard deviation of the noise, which is chosen (together with 𝑞) based
on this inequality.

4. 𝑑: The degree of a polynomial (corresponds to poly_modulus_degree), which is
chosen based on this inequality.

5. 𝛿: The root-Hermite factor, which influences the security level.

3: Parameters for FHE Another example is the following equation: [23, p. 16]

4 ⋅ 𝛼 ⋅ 𝛽(𝜀) ⋅ 𝛿𝐿min
𝑅 ⋅ (𝛿𝑅 + 1.25)𝐿min+1 ⋅ 𝑡𝐿min−1 < 2(2⋅√𝑑 log2(𝑞) log2(𝛿)) (8)

„The [...] formula thus allows us to either choose 𝑑 first and then compute a valid
(𝑞, 𝜎)-pair or vice-versa.“ [23, p. 17]

The authors also provide a simple example of how to set parameters for the scheme:
„To provide a simple example, consider the family 𝑓𝑑(𝑥) = 𝑥𝑑+1, then 𝛿𝑅 = 𝑑,𝐻(𝑓𝑑) = 1
and for 𝑡 = 2, ℎ = 63 we have 𝐿𝑚𝑖𝑛 = 9. For 𝜖 = 2−64 we have 𝛽(𝜖) ≃ 9.2 and 𝛼 ≃ 3.8
and for 128-bit security level we have log2(𝛿) = 0.0076. If we choose 𝑞 = 2𝑛 and 𝑑 = 2𝑘,
then substituting all these values then finally leads to

15.13 + 19 ⋅ 𝑘 < 0.174 ⋅ √𝑛 ⋅ 2𝑘/2.

So if we choose 𝑘 = 10, then we require 𝑛 > 1358 to guarantee FHE capabilities.“ [23,
p. 17]

It becomes clear, that it is almost impossible to give a brief overview of some param-
eters, because they all depend on each other and none of them is unimportant. Even
if libraries like SEAL take the part of choosing some parameters, it still remains a dif-
ficult task for a non-expert to even set the 2-4 high-level parameters from Table 4 on
page 24.

2.4.3 Tools to set the right parameters

The online sandbox tool morfix [35] offers a front end of SEAL.20 It allows the user to
experiment with HE without having to know how to program, or how to set encryp-

20Actually, the back end of morfix is a JavaScript (JS) library called node-seal [5], which is a web im-
plementation of SEAL.

26

2 Theory

Figure 3: https://s0l0ist.github.io/seal-sandbox/ automatically computes pa-
rameters based on user inputs

tion parameters (if the standard set of parameters is used). A fresh load of the web
page will bring up the following setup: Using the HE scheme BFV, the security level is
set to 128. The default „Polymodulus Degree“ is set to 4096, and the resulting „Coef-
ficient Modulus (Bit Sizes)“ is [36, 36, 37]. The „Plain Modulus Size (Bit Size)“ is set to
20. Changing the parameters, results in automatically computed values for the other
parameters, see the screenshot in Fig. 3. However, these calculations are not explained
on the web page. In Fig. 3 the „Polymodulus Degree“ was manually set to 8192 Bits.
The „Coefficient Modulus“ [43, 43, 44, 44, 44] was computed by the web page.

A blog post on https://medium.com [60] explains very well how to set the parameters
in SEAL for the CKKS scheme.

27

https://s0l0ist.github.io/seal-sandbox/
https://medium.com

A
ct
io
n

N
ot
at
io
n

N
am

e
C
on

te
xt

Ex
pl
an

at
io
ns

/R
em

ar
ks

Sp
ec
ia
lc

as
e

Ex
am

pl
e

co
m
pu

te
𝛼

a
co

ns
ta
nt

𝛼
=
√

ln
(1 𝜀) 𝜋

𝛼
⋅
𝑞 𝜎
<
2(

2⋅
√
𝑑l
og

2(
𝑞)
lo
g 2

(𝛿
))

(s
ee

[2
3,

Eq
.(
6)

p.
16

])
𝛼
=
3.
8

𝐵
bo

un
d

𝐵
=
𝛽(
𝜀)
⋅𝜎

a
di
st
ri
bu

tio
n
𝜒
ov

er
th
e
in
te
ge

rs
is

ca
lle

d
𝐵-

bo
un

de
d
if
it
is

su
pp

or
te
d
on

[−
𝐵,
𝐵]

(s
ee

[2
3,

p.
3]
)

𝐵
=
10

𝜎

co
m
pu

te
𝛽(
𝜀)

a
fu
nc

tio
n

𝛽(
𝜀)

=
m
in
{𝛽

∈
ℝ
∶
er
f (

𝛽 √2
)
<
𝜀}

w
ith

pr
ob

ab
ili
ty

1
−
𝜀s

am
pl
es

ar
e
bo

un
de

d
by

𝛽
⋅𝜎

𝛽(
𝜀)

=
9.
2

𝑑
de

gr
ee

of
po

ly
no

m
ia
l

us
ua

lly
𝑓(
𝑥)

=
𝑥𝑑

+
1,
𝑑
=
2𝑘

no
ta
tio

n
no

tc
on

si
st
en

ti
n
lit
er
at
ur

e,
so

m
et
im

es
𝑛
in
st
ea

d
of

𝑑
𝑑
=

𝑛
a
po

w
er

of
2
([
8,

p.

2]
)o

r

𝑑
=
2𝑘

([
23

])

𝑑
=
21

0

co
m
pu

te
lo
g 2

𝛿
𝛿:

ro
ot
-H

er
m
ite

fa
ct
or

𝛿
=
1.
00
52

𝛿 𝑅
ex

pa
ns

io
n
fa
ct
or

of
𝑅,

ri
ng

co
ns

ta
nt

𝛿
=
m
ax

{
‖𝑎
⋅𝑏‖

‖𝑎
‖⋅‖
𝑏‖

∶
𝑎,
𝑏
∈
𝑅 }

in
fin

ity
no

rm
‖𝑎
‖=

m
ax
{|𝑎

𝑖|
∶
𝑖=

1,
…
,𝑑

−
1}
,𝑎

=
∑

𝑑−
1

𝑖=
0
𝑎 𝑖
𝑥𝑖

∈
𝑅

𝛿 𝑅
=
𝑑

Δ
Δ
=
⌊𝑞
/𝑡
⌋

th
e
ra
tio

Δ
w
ill

ba
si
ca

lly
de

te
rm

in
e
th
e
m
ax

im
al

nu
m
be

ro
fh

om
om

or
ph

ic
op

er
at
io
ns

w
hi
ch

ca
n
be

do
ne

in
a
ro
w

to
en

su
re

a
co

rr
ec

td
ec

ry
pt
io
n
([
8,

p.
3]
)

ch
oo

se
𝜀

up
pe

r
bo

un
d
fo
r
pr

ob
ab

ili
ty

𝛽(
𝜀)

=
m
in
{𝛽

∈
ℝ
∶
er
f (

𝛽 √2
)
<
𝜀}

er
f (

𝛽 √2
)
is

th
e
pr

ob
ab

ili
ty

th
at

a
sa
m
pl
e
or

ig
in
at
es

fr
om

ou
ts
id
e

th
e
ra
ng

e
of

w
id
th

2𝛽
𝜎

𝜀
=
2−

64

𝑓
po

ly
no

m
ia
l(
p
o
l
y
_
m
o
d
u
l
u
s
)

𝑓(
𝑥)

=
𝑥𝑑

+
1

ch
oo

se
ℎ

H
am

m
in
g
w
ei
gh

t
la
rg

e
en

ou
gh

s.
t.
𝜒
ha

s
su

ffi
ci
en

te
nt
ro
py

ℎ
=
63

𝑘
𝑘
∈
ℝ,

𝑘
>
1
or

𝑘
∈
ℕ

tr
an

sf
or

m
va

lid
pa

ir
(𝑞
,𝜎
)i
nt
o
an

ot
he

rv
al
id

pa
ir
(𝑞
𝑘 ,
𝜎 𝑘
)(
se
e
[2
3,

p.
16

])

or
𝑑
=
2𝑘

us
ag

e
no

t
co

ns
is
te
nt

in
lit
er
at
ur

e,
so

m
et
im

es
nu

m
be

r
of

bi
ts

of
𝑑,

so
m
et
im

es
nu

m
be

r
of

sm
al
lm

od
ul
i

𝑞 1
,…

,𝑞
𝑘

𝑘
=
10

ch
oo

se
𝜆

se
cu

ri
ty

le
ve

l
lo
g 2

𝛿
=

1.
8

𝜆+
11
0

„t
im

e“
=
2𝜆

,𝜆
pr

op
or

tio
na

lt
o
nu

m
be

r
of

bi
ts

of
tim

e
ne

ed
ed

fo
r
su

cc
es
sf
ul

at
ta
ck

(s
ee

[2
3,

p.
15

f.]
)

𝜆
=
12
8

𝐿 𝐿 m
in
,𝐿

m
ax

m
ul
tip

lic
at
iv
e
de

pt
h

𝐿 m
in
=
9

𝑛
nu

m
be

r
of

bi
ts

of
𝑞

𝑞
=
2𝑛

4
⋅𝛼

⋅𝛽
(𝜀
)⋅

𝛿𝐿
m
in

𝑅
⋅(
𝛿 𝑅

+
1.
25
)𝐿

m
in
+
1
⋅𝑡
𝐿 m

in
−
1
<
2(
2⋅
√
𝑑l
og

2(
𝑞)
lo
g 2

(𝛿
))

(s
ee

[2
3,

p.
16

])
𝑛
>
13
58

𝑞
m
od

ul
us

in
th
e

ci
ph

er
te
xt

sp
ac

e

(c
o
e
f
f
_
m
o
d
u
l
u
s
)

𝑞
=
2𝑛

([
23

])
𝑞
=
21

35
8+

…

𝑞 1
,𝑞

2,
…
,𝑞
𝑘

sm
al
lm

od
ul
i,

RN
S
ba

se
(s
ee

[8
,p

.4
])

∏
𝑘 𝑖=
1
𝑞 𝑖
=
𝑞

us
ed

fo
r
C
hi
ne

se
Re

m
in
de

r
T
he

or
em

in
fu
ll
RN

S
va

ri
an

to
fB

FV

𝑅
ri
ng

𝑅
=
ℤ
[𝑥
]/

(𝑓
(𝑥
))

ri
ng

of
po

ly
no

m
ia
ls

w
ith

co
effi

ci
en

ts
in

ℤ
an

d
de

gr
ee

≤
de
g(
𝑓)

−
1

𝑅 𝑡
,𝑅

𝑞,
𝑅 𝑞
[𝑌
]

ri
ng

s
𝑅 𝑡

=
ℤ
𝑡[𝑥

]/
(𝑓
(𝑥
))

or

𝑅 𝑞
=
ℤ
𝑝[
𝑥]
/
(𝑓
(𝑥
))
,

ri
ng

of
po

ly
no

m
ia
ls

w
ith

co
effi

ci
en

ts
in

ℤ
𝑝
or

ℤ
𝑡a

nd
de

gr
ee

≤
de
g(
𝑓)

−
1;

𝑅 𝑡
pl
ai
nt
ex

ts
pa

ce
;𝑅

𝑞[
𝑌]

ci
ph

er
te
xt

sp
ac

e
(s
ee

[8
,p

.3
])

𝜎
no

is
e
st
an

da
rd

de
vi
at
io
n

𝜎
=
√
VA

R(
𝜒)

𝑡
m
od

ul
us

in
pl
ai
nt
ex

t
sp

ac
e

(p
l
a
i
n
_
m
o
d
u
l
u
s
)

𝑡<
<
𝑞

𝑡=
2
or

𝑡|𝑞

ch
oo

se
𝜒

pr
ob

ab
ili
ty

di
st
ri
bu

tio
n
on

𝑅,
no

is
e
is
sa
m
-

pl
ed

fr
om

𝜒
in

ge
ne

ra
ln

ot
as

si
m
pl
e
as

ju
st

sa
m
pl
in
g
ac

co
rd

in
g
to

𝐷
ℤ
,𝜎

(d
is
-

cr
et
e
G
au

ss
ia
n
di
st
ri
bu

tio
n)

sp
ec

ia
lc

as
e
𝑓(
𝑥)

=
𝑥𝑑

+
1
w
ith

𝑑
a
po

w
er

of
2:

𝜒
≈
𝐷
ℤ
,𝜎
w
ith

𝐷
ℤ
,𝜎
∶
⎧ ⎨ ⎩

ℤ
→

[0
;1
]

𝑥
↦

∼
𝑒−

𝜋
𝑥2 𝜎2

⎫ ⎬ ⎭

Ta
bl
e
5:

Pa
ra
m
et
er
s
th
at

oc
cu

r
in

th
e
th
eo

re
tic

al
de

sc
ri
pt
io
n
of

th
e
BF

V
sc
he

m
e

2 Theory

2.5 Primitives from the homomorphic encryption standard

In this section, some primitives inherent to all FHE and SHE schemes are presented.
These primitives are based on a standard that was published by HomomorphicEncryp-
tion.org. [4] This is a group of researchers from industry (e.g., Microsoft, Samsung,
Intel), government (e.g., National Institute of Standards and Technology (NIST)) and
academia (e.g., Boston University, University of Hannover) who have addressed the
task of standardizing FHE. That HE needs standardization is evident from the previ-
ous Section 2.4 on page 21, which describes the chaos concerning the parameters in HE
schemes. The consortium organizes annual workshops and standards meetings, where
new developments are presented and discussed. The first standard was published in
late 2018 and includes, e.g., general notations and definitions and a description of the
FHE schemes BGV, BFV and GSW.

At the time of writing, there does not seem to be a newer standard. But of course there
are a lot of discussions going on, see for example https://www.iso.org/standard/8

3139.html.

2.5.1 Public-key encryption algorithms

When FHE and SHE schemes are based on a PKE scheme, they require the following
generic algorithms: keygen, enc, and dec.

These algorithms do not yet have homomorphic properties.

29

https://www.iso.org/standard/83139.html
https://www.iso.org/standard/83139.html

2 Theory

The key generation algorithm
KeyGen(params) → sk, pk, ek

The input of the algorithm The outputs of the algorithm

• params: an object that
holds the parameters of the
scheme

• sk: the secret key

• pk: the public key

• ek: the evaluation key

Table 6: KeyGen

A difference in comparison to traditional PKE schemes can be observed: Beside the
public key pk and the secret key sk, the key generation algorithm in Table 6 also outputs
a so-called evaluation key ek. This key is needed to perform homomorphic evaluations
on ciphertexts, i.e., calculating the result of a function homomorphically. Details on
this and how the params object is created with the ParamGen algorithm are described
below in Section 2.5.2 on the next page.

The encryption algorithm
Encrypt(pk, m) → c

The inputs of the algorithm The output of the algorithm

• pk: the public key

• m: the message

• c: an encryption of m under
pk

Table 7: Encrypt

30

2 Theory

The decryption algorithm
Decrypt(sk, c) → m

The inputs of the algorithm The output of the algorithm

• sk: the secret key

• c: the ciphertext

• m: the decryption of c

Table 8: Decrypt

The encryption and decryption algorithms in Table 7 on the preceding page and Table 8
are known from common PKE schemes and also behave as such. However, the imple-
mentations of these algorithms vary between FHE schemes, as some of the schemes are
based on different mathematical concepts, e.g., ideal lattices and polynomial rings. De-
tails on one of these implementations (BFV) can be found in Section 2.6 on page 36.

2.5.2 Homomorphic encryption algorithms

HE schemes come along with a set of algorithms, required for homomorphic evalua-
tions. The first algorithm that is needed is the parameter generation algorithm (Table 9
on the next page). Unfortunately, some starting parameters still have to be set man-
ually, unlike to what the name of the algorithm suggests. The difficulties of this task
were explained in Section 2.4 on page 21. The object output by the algorithm en-
capsulates the entered parameters. This way, they can easily be forwarded to other
algorithms mentioned below, that all need these parameters.

31

2 Theory

The parameter generation algorithm
ParamGen(𝜆, PT, K, B) → params

The inputs of the algorithm The output of the algorithm

• 𝜆 ∈ {128, 192, 256}: the secu-
rity level

• PT ∈ {MI, EX, AN}: the plain-
text space

• K: the dimension of a plain-
text vector

• B: an auxiliary parameter
used to control the complex-
ity of the programs or cir-
cuits that one can expect
to run over encrypted mes-
sages

• params: an object that
holds the parameters of the
scheme

Table 9: ParamGen

The inputs of the ParamGen algorithm were already mentioned on a low level in the
previous Section 2.4 on page 21. A new aspect is the choice between different plain-
text types PT. These types determine the data structure in which a plaintext will be
stored and the data type of plaintexts, e.g., bits, integers or floating-point numbers.
The standard defines the following three plaintext types:

• MI: stands for modular integers and allows plaintexts to be integers modulo some
prime 𝑝. All operations are also performed modulo 𝑝.

• EX: stands for extension fields/rings. Simply put, plaintexts are encoded as an
integer polynomial with coefficients from the range (0, 𝑝 − 1) for some prime 𝑝.

32

2 Theory

• AN21: stands for approximate numbers and allows plaintexts to be floating-point
numbers. Homomorphic evaluations can be performed up to a predetermined
precision, depending on other parameters.

The dimension of a plaintext vector containing integers (MI) or extension fields/rings
(EX) is parameterized with the input K. This allows the aforementioned packing of
plaintexts into a large array.

The parameter B controls how complex the evaluations on the ciphertext can be. This
also has an effect on the size of keys and ciphertexts. Small values yield smaller key
sizes, smaller ciphertext sizes but also less complex programs or circuits that can be ex-
pected to run over encrypted messages. [4, p. 3] Larger values result in larger key and
ciphertext sizes but the potential complexity of homomorphic evaluations is greater.

What follows are algorithms that allow the user to evaluate functions over cipher-
texts.

The homomorphic addition algorithm
EvalAdd(params, ek, c1 , c2) → c3

The inputs of the algorithm The output of the algorithm

• params: an object that
holds the parameters of the
scheme

• ek: the evaluation key

• c1 : an encryption of a plain-
text m1

• c2 : an encryption of a plain-
text m2

• c3 : an encryption of a plain-
text m3 = m1 + m2

Table 10: EvalAdd

21This plaintext space type is not part of the standard published in 2018. But it is mentioned there as
part of future versions of the standard. The type can be related to the CKKS scheme that operates
on floating-point numbers as plaintexts.

33

2 Theory

The homomorphic multiplication algorithm
EvalMult(params, ek, c1 , c2) → c3

The inputs of the algorithm The output of the algorithm

• params: an object that
holds the parameters of the
scheme

• ek: the evaluation key

• c1 : an encryption of a plain-
text m1

• c2 : an encryption of a plain-
text m2

• c3 : an encryption of a plain-
text m3 = m1 ⋅ m2

Table 11: EvalMult

The above algorithms EvalAdd (Table 10 on the preceding page) and EvalMult (Ta-
ble 11) let the user homomorphically add (or multiply) two encrypted values. The
result is the encrypted sum (or product) of the underlying plaintexts. As an exam-
ple, Section 2.1.1 on page 9 (RSA example) represents a homomorphic multiplication.
Here, the evaluation key ek is required to perform the homomorphic operations. „It
should be given to any entity that will perform homomorphic operations over the ci-
phertexts. Any entity that has only the public and the evaluation keys cannot learn
anything about the messages from the ciphertexts only.“ [4, p. 4]

In addition, there are the algorithms EvalAddConst and EvalMultConst. They simply
provide the addition of a plaintext constant to a ciphertext or the multiplication by
plaintext constant with a ciphertext. This way, it is not necessary to have the second
parameter of the calculation encrypted.

The algorithm in Table 12 on the next page is also very important for FHE, as it re-
freshes a given ciphertext to reduce its complexity. This complexity refers to the inher-
ent noise attached to every ciphertext. Once it gets too large, no further homomorphic
operations can be made, and in the worst case, correct decryption may not be possi-

34

2 Theory

ble anymore. Therefore, it is crucial to lower this noise regularly with the Refresh

algorithm.

The refresh algorithm
Refresh(params, ek, c1) → c2

The inputs of the algorithm The output of the algorithm

• params: an object that
holds the parameters of the
scheme

• ek: the evaluation key

• c1 : an encryption of a plain-
text m1

• c2 : another encryption of a
plaintext m1

Table 12: Refresh

Especially this algorithm, Refresh, is realized in many different and complex ways.
During the first generation of FHE, regarding Gentry’s initial scheme, the refresh algo-
rithm corresponds to the bootstrapping procedure that resets the noise of a ciphertext
by evaluating the decryption circuit homomorphically. This changed in second gen-
eration schemes, like BFV, where a technique called relinearization was introduced.

Relinearization in BFV

On a high level, what essentially happens during relinearization is the following: In
the BFV scheme, ciphertexts not only have a noise but also an integer valued size. The
size corresponds to the number of polynomials that represent the ciphertext. A new,
i.e., freshly encrypted ciphertext has size 2, and homomorphic multiplications let this
size grow. Specifically, „if the input ciphertexts have sizes 𝑀 and 𝑁, then the output
ciphertext after homomorphic multiplicationwill have size𝑀+𝑁−1.“ [49] (ll. 279-280)
The relinearization procedure reduces the size of a ciphertext from 3 back to 2.

35

2 Theory

The reason why this is necessary is, that the greater the size of ciphertext is, the faster
the noise parameter grows. This means, that multiplying two ciphertexts, one or both
of which has a size greater than 2, adds more noise to the resulting ciphertext than
multiplying ciphertexts of small size, where the best case is a size of 2.

The authors who proposed the BFV scheme [23], provide two different approaches for
the relinearization algorithm, both of which require the introduction of a relineariza-
tion key: rlk. This key can be generated alongside the other keys pk, sk and ek in
the KeyGen algorithm. The first variant is called the dynamic relinearization and the
second variant works with so-calledmodulus-switching. The details to this techniques
are beyond the scope of this thesis. The reader is referred to [23, pp. 8-9].

Multi-party homomorphic encryption

Beyond the two party approach of FHE, which includes a client that encrypts their data
and a server that homomorphically evaluates functions on that data and sends them
back to the client, a multi-party setting is also possible to think of. In fact, the lattigo
library [51] provides implementations of the schemes BFV and CKKS in the program-
ming language Go, that support multi-party functionalities for both schemes.

A multi-party HE library extends the standard two party setting to 𝑁 parties. „In such
schemes, the involved parties collectively (hence, interactively) enforce the access con-
trol to the data by distributing the scheme’s decryption circuit.“ [51, p.1] Techniques
that provide these functionalities have been proposed in [13, 47, 6, 50].

However, in this thesis, this approach will not be necessary, as the two party setting
suffices for the implementation in Section 3 on page 38.

2.6 The RNS BFV scheme

In Section 3 on page 38 an implementation of an HE application will be presented. This
implementation will make use of the residue number system (RNS) BFV scheme with
the help of the library node-seal. This feature (RNS), which speeds up computations
in the scheme, is described below.

The concrete computations underlying the BFV scheme involve multiplications of very
large numbers, due to the large coefficients of the polynomials. A work by Bajard et al.

36

2 Theory

[8] introduces the usage of the chinese remainder theorem (CRT) to speed up the mul-
tiplication of these large numbers. Representing numbers via the CRT is also known
as the RNS representation. Hence, the alternative implementation of the BFV scheme
using the CRT to gain performance advantages is called the full RNS variant of BFV,
if every multiplication is done using the RNS representation. It is also implemented in
SEAL.

The full RNS variant of BFV by [8] uses the first variant of the above mentioned re-
linearization techniques (see Section 2.5.2 on page 35) from the BFV scheme. [8, p.
9]

2.7 Security of FHE

To conclude this theoretical chapter, we will briefly address the security of FHE. In
2009, Craig Gentry already had the following to offer on this subject:

• „Unfortunately, a scheme that has nontrivial homomorphisms cannot be CCA2
secure, because it is malleable“ [26, p. 32]

• „However, [...] finding a CCA1-secure fully homomorphic encryption scheme
[is] an interesting open problem“ [26, p. 33]

A lot has happened since then. For the current security issues around FHE, we refer
to Computing Compass, where one can find the following statement, for example:

• „CCA security is not possible for FHE. Due to the homomorphism, chosen-
ciphertext attacks are possible“ [52, p. 26]
Whether FHE is IND-CPA safe is not stated.

In addition, in the context of security, circuit privacy/evaluation privacy must also be
mentioned:

Circuit privacy [26, p. 32] (also called evaluation privacy [4, p. 15]) ensures that a
freshly encrypted ciphertext cannot be distinguished from a ciphertext which is the
result of homomorphic operations.

37

3 Implementation

3 Implementation

This chapter describes the implementation of a use case for FHE. Section 3.1 explains
which application is implemented and why it was chosen. Section 3.2 on page 44 and
Section 3.3 on page 46 explain which library was chosen and why. Then the imple-
mented application is presented in Section 3.4 on page 49 with the help of screenshots.
Finally, in Section 3.5 on page 54 the integration of the application into the CTO web-
site is described.

3.1 Application selection

The goal is to create a web application for the website CrypTool-Online (CTO), a web-
site with applications for testing and learning classic and modern cryptography.22 The
application is intended to introduce the user to HE with a step-by-step program, that
presents different properties and behaviors of an FHE scheme.

At first, the idea was to build a web application that represents a complete front end
of a selected FHE library. The user would have been able to generate any number
of plaintexts and ciphertexts and connect them with any homomorphic function the
library offered. But it turns out that this task would be very complex and too extensive
for this thesis.23

As the parameters are too complex (see Section 2.4 on page 21) most users would not
understand such an app. So we decided to choose an app where HE is integrated from
the very beginning to achieve security by design.

The Lattigo polls demo The choice then fell on a Doodle-like application that only
covers a simple use case of HE. The final inspiration was found in the paper intro-
ducing the Lattigo library for multi-party homomorphic encryption (MHE). [51] The
paper presents a demo application written in Go that demonstrates the use of the Lat-
tigo library. The selected use case is an application for „privacy preserving scheduling“
[51, p. 5], i.e., a tool to conduct a poll online that hides the inputs, calculations and
results using HE. The code for this Go application called Lattigo-polls-demo can be
found on GitHub [38] and is briefly described in Section 3.3 on page 46.
22https://www.cryptool.org/de/cto/
23For the three schemes RSA, Paillier, and Gentry-Halevi such an application idea is implemented in

JavaCrypTool.

38

https://www.cryptool.org/de/cto/

3 Implementation

In general, a poll is a tool that can be used to identify a subset of a set of choices that
is suitable for each participant taking part in the poll. A simple example is the task
of finding the days in a given period of time, e.g., a week from Monday to Friday, on
which each participant is free. First, a poll is created by the poll creator, who defines
the set of options that a participant can choose from. Then, an arbitrary number of
people individually submit their answers to the poll. When everyone has submitted
their answer, the result of the poll is determined by calculating the intersection of all
the answers given.

Privacy of free polling tools Such tools can be found free on the internet. Exam-
ples are Doodle24, StrawPoll25, and Nuudel.26 In these web applications, the server
calculates the result after all participants in the poll have submitted their input, i.e.,
they send their unencrypted data to the server. This represents a lack of data privacy
because a malicious server could read the user’s input. The principle of privacy by
design is thus not satisfied.

The Hypertext Transfer Protocol Secure (HTTPS) protocol does not help here either,
because with its help the data is only transmitted securely, i.e., encrypted, but unen-
crypted at the endpoint when received. Neither the submissions nor the results of
the poll are encrypted outside of the transmission of the data, because the encryption
must be removed again by the server for processing the data. It is usually possible to
control who can see the results after the poll has closed, either all participants or only
the poll creator. But this is done through access control using passwords rather than
encryption.

The solution using homomorphic encryption The privacy problems described
above can be solved using HE. The aim of this section is to explain how to implement
a polling tool that preserves data privacy. Using HE to conduct a poll has the following
advantages:

1. The user encrypts their data before sending it to the server. HTTPS is not even
required.

2. The server receives the encrypted inputs and homomorphically evaluates the
result without ever seeing the plaintext data from any participant.

24https://doodle.com/en/
25https://strawpoll.com/en/
26https://nuudel.digitalcourage.de: Non-tracking tool of the non-profit Digitalcourage e.V.

39

https://doodle.com/en/
https://strawpoll.com/en/
https://nuudel.digitalcourage.de

3 Implementation

3. The result itself is also encrypted and,

a) in our setting, can only be decrypted by the poll creator.

b) in an MHE setting, can only be decrypted by all participants.

4. The input of a participant is not shown on the website and cannot be read –
neither by another participant nor by the poll creator.

The MHE variant of the implementation, where all participants can decrypt the result,
is omitted: This technique would require the introduction of additional MPC protocols
and the use of a dedicated MHE library, which would also need to be explained. Again,
this is beyond the scope of this thesis. Therefore, the focus will be on the situation
where only the poll creator has the ability to decrypt the poll result (and may show
the result on his website).

The procedure on a high level To conduct an encrypted poll, an HE scheme can
be used. Contrary to what the title of the inspiring paper might suggest („Lattigo: a
Multiparty Homomorphic Encryption Library in Go“ [51]), there is no need for a mul-
tiparty setting for such an application. This becomes clear considering the following
application scenario from [52, p. 52].

Private data aggregation Let there be 𝑛 clients, an aggregation server and a pro-
cessing server. Suppose that the clients want to aggregate their data without revealing
it to the aggregation server. This can be accomplished in the following way: The pro-
cessing server generates keys for an FHE scheme, i.e., a public key, a private key and
an evaluation or relinearization key. The public key is made available, especially to
the clients. The evaluation key is made available to the aggregation server. The clients
encrypt their inputs using the public key received from the processing server and send
their encrypted input to the aggregation server. The aggregation server homomorphi-
cally combines the encrypted user data upon receiving them using the evaluation key.
Then, the aggregation server sends the aggregated and encrypted data to the process-
ing server. The processing server can process the aggregated data after decrypting it
with the secret key.27

27It is supposed that the post processing of the aggregated data on the processing server is too com-
plex to be evaluated homomorphically, as this can be very resource-intensive, and is therefore done
conventionally, i.e., on the decrypted data.

40

3 Implementation

Client

4. enter data

5. encrypt data with pk

Aggregation Server

7. combine data

homomorphically with ek

Processing Server

1. set paramters

2. generate sk, pk, ek

9. decrypt data with sk

10. process data

6. send data 8. send data

3. send pk

3. send ek

sk = secret key
pk = public key

ek = evaluation key

data = encrypted data
data = unencrypted data

Figure 4: Private data aggregation

The private data aggregation scenario is shown in Fig. 4. Here, the client on the left is
representative of all 𝑛 clients whose data is to be aggregated.

The above scenario can be used in a slightly modified form to realize private polls: 𝑛
participants want to find out through a poll on which days of the week everyone is
free. They want to keep their answers secret from the server that calculates the result
of the poll. There is a poll creator who generates the public and private key for an FHE
scheme. The public key is made accessible to the participants so that they can use it
to encrypt their answers and send them to the server. The server homomorphically
computes the result of the poll and sends it to the poll creator. Only the poll creator
has the secret key and thus the ability to decrypt answers and results.

This case of conducting a private poll as a special case of private data aggregation
is shown in Fig. 5 on the next page. As in Fig. 4, the one participant on the left is
representative of all 𝑛 participants in the poll. Fig. 6 on page 43 shows the data flow
between the poll creator, the aggregation server and the participants.

The outline for conducting a privacy-preserving poll is as follows (the numbers in
parentheses after each step refer to the steps in Fig. 5 on the following page):

1. Instantiating the poll: The poll creator ...

a) ... sets the parameters of the scheme. (1)

b) ... generates the keys for the HE scheme. (2)

41

3 Implementation

Participant

4. enter data

5. encrypt data with pk

Aggregation Server

7. aggregate data

homomorphically with ek

Poll Creator

1. set paramters

2. generate sk, pk, ek

9. decrypt result with sk
3. send pk

6. send data 8. send data

10. send result

3. send ek

sk = secret key
pk = public key

ek = evaluation key

data = encrypted data
data = unencrypted data

Figure 5: Special case of private data aggregation: polling

c) ... publishes the public key to the participants. (3)

d) ... sends the evaluation key to the server that computes the poll result. (3)

2. Conducting the poll: Each participant ...

a) ... enters their answers to the poll. (4)

b) ... encrypts their data. (5)

c) ... sends the encrypted data to the server. (6)

3. Closing the poll and calculating the results. The server ...

a) ... aggregates / combines the received data and thereby computes the en-
crypted poll result. (7)

b) ... sends the encrypted poll result to the poll creator. (8)

4. Sharing the results. The poll creator ...

a) ... decrypts the poll result with the secret key. (9)

b) ... may send the result to the participants. (10)

42

3 Implementation

Poll Creator

Server

Participant 1 Participant 2 Participant 3 Participant 4

Figure 6: Private data aggregation in our setting of conducting a private poll

In the two scenarios presented, it should be noted that only the aggregation server
performs homomorphic calculations. Nothing is computed homomorphically by the
other parties.

The procedure on a low level What happens on a lower level when calculating
the poll result is briefly described in the following, before a more detailed explanation
of the implementation of the application is given in the subsequent Sections 3.2 to 3.5
on pages 44–54.

Submitting an answer Suppose that a participant in the poll is asked to select their
free days of the week by clicking on check boxes representing the day of the week.
This selection is then converted into a bit array of seven entries, where a 0, i.e., an
unchecked check box, indicates that the day is free and a 1, i.e., a checked check box,
indicates that the day is occupied. The indices of the array correspond to the weekdays
from Monday (index 0) to Sunday (index 6). The array structure and an example input
by a participant is shown in Table 13 on the next page. The example shows an array
encoding the participants’ input: Occupied on Monday, Wednesday, Saturday and
Sunday; free on Tuesday, Thursday and Friday. This array is then encrypted and sent
to the server.

43

3 Implementation

Day of the Week Mon Tue Wed Thu Fri Sat Sun

Array index 0 1 2 3 4 5 6

Example [0, 1, 0, 1, 1, 0, 0]

Table 13: Structure of a bit array representing the occupation data of a poll participant
for the seven days of a week

Calculating the poll result When all participants have submitted their encrypted
answers to the poll, the server can calculate the result homomorphically. To do this,
it suffices to multiply all the arrays together, component wise. To understand why
this works, consider the following small example: Let the first participant have their
free days encoded in the array 𝑃1 = [0, 1, 1, 1, 1, 0, 0] and the second participant in
𝑃2 = [1, 0, 1, 1, 0, 0, 1], respectively. Multiplying these arrays component wise brings
the result [0, 0, 1, 1, 0, 0, 0]. A more compact overview of this calculation can be ob-
served in Table 14. The crucial property of this calculation is that as soon as one
participant’s array contains a 0 for a given day, the array containing the poll result
must also contain a 0 for that day. This is because 0 ⋅ 𝑥 = 0, for all 𝑥. If, and only if, all
participants’ arrays contain a 1 for a given day, a 1 will also appear in the result array.
This is because 1 ⋅ 1 ⋅ … ⋅ 1 ⋅ 1 = 1.

Mon Tue Wed Thu Fri Sat Sun

𝑃1 [0, 1, 1, 1, 1, 0, 0]
𝑃2 [1, 0, 1, 1, 0, 0, 1]

𝑃1 ⋅ 𝑃2 [0, 0, 1, 1, 0, 0, 0]

Table 14: An example of two poll participants and the result that is calculated based
on their inputs

In the following sections the implementation details are further described.

3.2 Choosing the appropriate library

This section introduces node-seal. It is a library that ports the SEAL library from C++

to the Wasm format so it can be used with JS. The Lattigo library (written in Go) is
mentioned, which is the library used by the Lattigo-polls-demo.

44

3 Implementation

SEAL for JavaScript As described in Section 3.1 on page 38, the first idea was to
implement a complete front end for an HE library. The resulting application is meant
to be made publicly available to the CTO website.28 For this reason, an FHE library
was sought, that can be integrated into JS as simply as possible, because this is the
programming language the web page is constructed with. Luckily, the developer Nick
Angelou ported the SEAL library, which is written in C++, to WebAssembly (Wasm)
in a new library called node-seal. [5] Wasm is a low-level byte code that is platform-
independent and can be run in modern web browsers. [34] As a compilation target,
most C++ programs can be compiled to the Wasm format, with tools like Emscripten.
[1] The resulting Wasm module and its functions can then be called in JS using so-
called glue code, which is automatically generated. For more details on how C/C++

programs can be ported to the web using Wasm and Emscripten, refer to [34, 1].

However, once the decision had been made to use the node-seal library for the applica-
tion, the implementation aim was changed. Rather than offering a complete front end
of, in this case, the SEAL library, a smaller application representing a specific HE use
case was chosen. The new goal was to implement a polling app based on the Lattigo-
polls-demo, as described in Section 3.1 on page 38. Lattigo and SEAL both contain
implementations of the following schemes: BFV, BGV and CKKS. In the Lattigo-polls-
demo the BFV scheme is used, which also can be used in the node-seal library.

Lattigo The Lattigo-polls-demo is written in Go and with the MHE library Lattigo
[39, 38]. Like C/C++ the Go language natively compiles to Wasm. The developers of
the Lattigo-polls-demo thus implemented their application as a web service using Go
and Wasm. This involves an additional step of using a tool chain than creates the
needed Wasm binaries. For this thesis the decision has been made, to use the available
Wasm library node-seal, that already compiled the whole SEAL library to the Wasm
format. This avoids writing Go code that implements the HE logic of the application
and compiling it to Wasm. Instead, the HE logic can be implemented directly in JS
using the node-seal library.

Apart from the above, it is not necessary to use Go to implement a polling application.
The high-level and low-level descriptions in the Section 3.1 on page 38 show, that it
is not a complex task to implement. Almost every HE library, including SEAL and
thus node-seal, supports the multiplication of packed ciphertexts, which is the only
homomorphic operation needed for this task.

28https://www.cryptool.org/en/cto/

45

https://www.cryptool.org/en/cto/

3 Implementation

logN: 13,

t: 65537,

qi: []uint64{0x3fffffffef8001, 0x4000000011c001, 0x40000000120001}, // 54 + 54

+ 54 bits

pi: []uint64{0x7ffffffffb4001}, // 55 bits

sigma: DefaultSigma,

Listing 1: Default parameters for the BFV scheme used in the Lattigo-polls-demo
(params.go in [39])

For this thesis, a new graphical user interface (GUI) was designed and implemented
based on the idea of the Lattigo-polls-demo. It is presented in Section 3.4 on page 49.

3.3 From Lattigo to node-seal

In this section the original Go implementation of the Lattigo-polls-demo is described.
Then the realization with the node-seal library of our application is explained.

The implementation of the Lattigo-polls-demo Here, the focus is on the cryp-
tographic aspects rather than on the server and client structure, which is also imple-
mented. When the server side of the application starts, a so called evaluator is gener-
ated from default parameters. An evaluator is an object in Lattigo that is parameterized
with values described in Section 2.4 on page 21. This object can then be used to per-
form homomorphic evaluations on ciphertexts. In this special case, when using the
BFV scheme, these operations can be made without additional keys. The parameters
used in the Lattigo-polls-demo can be found in the following listing and in Table 15 on
the following page.

As an example of an implementation of the HE logic, the calculation of the poll result
is used. How the calculation works in Go can be seen in Listing 2 on page 48. How the
same example looks implemented in JS can be seen in Listing 3 on page 48.

The calculation of the poll result The aggregation of the poll responses is per-
formed homomorphically by the server. Since homomorphic calculation requires that

46

3 Implementation

Parameter Value Decimal value

log𝑁 13

𝑡 65537

𝑞1 0x3fffffffef8001 18014398508400641

𝑞2 0x4000000011c001 18014398510645249

𝑞3 0x40000000120001 18014398510661633

𝑝1 0x80000000130001 36028797020209153

𝑝2 0x7fffffffe90001 36028797017456641

Table 15: Default parameters for the BFV scheme used in the Lattigo-polls-demo
(params.go in [39])

as few multiplications as possible take place on a ciphertext, a special method is used
for this. This method is explained using the JS code in Listing 3 on the next page.

The calcResultHE function receives two arguments. The argument inputData is an ar-
ray whose elements are the encoded answers of the survey participants. The argument
pi29 is an object which provides the necessary information to execute the functions of
the BFV procedure.

In a while loop, the following calculation is now performed until only one element
is left. The first two elements of the array are homomorphically multiplied together
(pi.evaluator.multiply(agg[0], agg[1])). This product is relinearized immediately
to keep the size of the ciphertext small (pi.evaluator.relinearize(...)). This ci-
phertext is then appended to the end of the array (agg.push(...)). The two used
elements are then deleted from the array (agg.splice(0, 2)).

In this way, as few multiplications as possible are performed on the same ciphertext,
since they are always moved to the very back of the array. The result of the procedure
is finally the product of all elements of the array passed to the function.

29pi stands for poll instance

47

3 Implementation

// Close computes the polls' result and closes the poll

func (ps *PollServer) Close(p *Poll) {

p.Closed = true

if len(p.Participants) > 0 {

agg := p.responses

// aggregates the responses recursively

for len(agg) > 1 {

agg = append(agg[2:],

ps.RelinearizeNew(

ps.MulNew(agg[0], agg[1]), &p.rlk),

)

}

p.result = agg[0]

}

}

Listing 2: Original implementation of the algorithm calculating the poll result in Go
(server.go in [38])

export async function calcResultHE(inputData, pi) {

let agg = [...inputData]

while (agg.length > 1) {

agg.push(

pi.evaluator.relinearize(

pi.evaluator.multiply(agg[0], agg[1]),

pi.relinKey

)

)

agg.splice(0, 2)

}

return agg[0]

}

Listing 3: Efficient multiplication of arrays with minimal multiplicative depth in JS.

48

3 Implementation

3.4 Screenshots of our application

The application is a kind of Doodle enforcing security by design by using theHE library
node-seal. The GUI and the API calls to the HE library use own code written in JS.

This section presents the implemented application with some screenshots. The app
first shows a user guidance and then explains what information is given to the user so
that the benefit of HE in this example becomes clear. At the same time, a small sample
poll is conducted.

The introduction page The application is divided into two sub pages, named „In-
troduction“ and „Polling page“. When the start page is opened, it looks like Fig. 7. The
user is provided with a short information that this polling tool uses HE to satisfy the
privacy by design principle.30 The user is requested to start the application by clicking
the Start button on the bottom of the page.

Figure 7: The landing page of the application

30https://en.wikipedia.org/wiki/Secure_by_design

49

https://en.wikipedia.org/wiki/Secure_by_design

3 Implementation

Figure 8: The poll creator’s point of view before creating a poll

Creating anewpoll After clicking the Start button the actual polling page is loaded.
At first, it looks like Fig. 8. From now on, information about which role the user is in
will be displayed at the top of the page (point of view). The first role is that of the poll
creator. The user is asked to create a new poll by clicking the corresponding button.

The first participant After clicking the Create new poll button the point of view
changes to the first participant of the poll. A table appears in the middle of the page
where the participants can make their entries, see Fig. 9 on the following page. Ad-
ditional information about the poll is given to the user at the top of the page. At the
bottom of the page there is information about how many participants can still take
part in the poll. This restriction is due to the chosen parameters of the BFV encryption
scheme, see Section 3.3 on page 46.

The first attendee can now enter their availability by clicking on the check boxes below
the weekdays. An example is shown in Fig. 9 on the following page. Clicking the
Submit button converts the input into a binary vector and encrypts it as described in
Section 3.1 on page 38.

50

3 Implementation

Figure 9: The first participant’s point of view

The next participant After an entry has been made and sent, the page updates
again. New information about the polling process appears at the top of the page. The
user’s role changes to the next participant. A new row of check boxes is displayed
for this participant. The check boxes from the previous row are replaced with lock
icons to symbolize that the answers of the last participants have been encrypted and
are therefore no longer visible. This can be seen in Fig. 10 on the following page.

Closing the poll When at least one response to the poll has been received, theClose
poll button is enabled. Clicking this button closes the poll and triggers the server to
calculate the result.

To complete the example, another possible assignment is shown in Fig. 10 on the next
page. If this is then submitted and the poll is then closed, the result is calculated and
displayed, as can be seen in Fig. 11 on page 53.

The result of the poll is color coded in the last row of the table: A red box indicates
that at least one participant does not have time on that day. A green box, on the other
hand, indicates that all participants are free on that day. Afterwards, another poll can
be made by pressing the Restart poll button.

51

3 Implementation

Figure 10: The second participant’s point of view

52

3 Implementation

Figure 11: The poll creator’s point of view after the poll is closed

53

3 Implementation

3.5 Contribution to CrypTool-Online

The application described in Chapter 3 will be integrated as a plugin into the CrypTool-
Online (CTO) project. „CrypTool-Online (CTO for short) offers applications for testing,
learning and discovering old and modern cryptography.“ [17] A new version of the
website is under development where this application will be made available.31

To contribute to the CTO project, a fork of the main repository on GitHub was created
so that one can work on their own content in an isolated environment. This way
one can either provide entire plugins or help improve existing plugins. In order to
merge your changes back into the original repository you can create a pull request.
All programming was done in Visual Studio Code.32 The editor is shown in Fig. 12 on
the next page.

Detailed and easy-to-understand documentation summarizes all the steps you need to
take to participate. Links to the documentation of the used libraries and frameworks
used help to understand and use them very quickly. The most important ones are
Next.js, React, Webpack and Chakra-UI.

The structure of CTO is based on plugins, which are simply organized in folders. This
folder structure is then reflected in the user interface. For example, the application
developed in this thesis is accessed via the following folder path: /ctoapps/he-poll.
In addition, the overview of all plugins on the home page is clearly categorized and
provided with short descriptions via a file called ctoapps.json.

31The current development status can be seen at https://dev.cryptool.org/.
Update: In the meantime, this web app is part of the productive CTO: see https://www.cryptool.o
rg/en/cto/he-poll/.

32https://code.visualstudio.com

54

https://dev.cryptool.org/
https://www.cryptool.org/en/cto/he-poll/
https://www.cryptool.org/en/cto/he-poll/
https://code.visualstudio.com

3 Implementation

Fi
gu

re
12

:V
is
ua

lS
tu
di
o
C
od

e

55

4 Evaluation and conclusion

4 Evaluation and conclusion

This chapter summarizes the findings of this thesis. Then, a conclusion is drawn that
relates to the title of the paper.

The theory is very complex In summary, while the basic concept of homomorphic
encryption (HE) could be made rather easy to understand, fully homomorphic encryp-
tion (FHE) cannot be explained in depth in simple words. The main reason for this
is the inconsistent notation of parameters in the literature and their extremely com-
plex intertwining in the theory of each scheme (see Section 2.4). The assumptions on
which the security of FHE is based on require a broad fundamental knowledge in var-
ious branches of mathematics, such as lattices, probability theory but also, of course,
cryptography. These are rather high theoretical requirements for a bachelor’s thesis
in computer science.

Relatively simple implementation Against this background, the implementation
of the application for CrypTool-Online (CTO) was easier than expected, although not
trivial. The main idea, based on the Lattigo polls demo, was easy to extract. The
evaluation algorithm had to be transferred from Go to JS and then implemented with
node-seal instead of Lattigo. The very well documented libraries of Lattigo and node-
seal made the latter more comfortable. The early problem of having little programming
experience in both Go and JS was excellently solved with Codeium’s33 explain feature
(see Fig. 14 on the following page).

The architecture of our application can be seen in Fig. 13 on the next page. The imple-
mentation of the GUI in JS with Next.js34, React35 and Chakra-UI36 was also supported
by very good library documentation of thementioned software. Surprisingly, using the
ChatGPT37 chat bot to quickly turn concrete ideas into code has proven useful here
as well. The used libraries shown in Fig. 13 are SEAL and node-seal. node-seal uses
Wasm to access the SEAL library and is imported as a JS library.

33Codeium is „a free AI-powered toolkit“, which is also available for Visual Studio Code https://code
ium.com

34https://nextjs.org
35https://react.dev
36https://chakra-ui.com
37https://chat.openai.com

56

https://codeium.com
https://codeium.com
https://nextjs.org
https://react.dev
https://chakra-ui.com
https://chat.openai.com

4 Evaluation and conclusion

GUI

JavaScript

Next.js

React

Chakra UI

node-seal

SEAL

JavaScript

WebAssembly

Figure 13: Architecture of our application

Figure 14: Codeium can explain the whole function or just a line of code

57

4 Evaluation and conclusion

Conclusion: The state of HE and FHE The state of HE consists of constant rapid
development, both in theory and in practice. This is exemplified by the fact that the
latest HE standard [4] has not even included the CKKS scheme [14] (see Section 2.3)
nor the RNS optimization [8] (see Section 2.6), although both are already available in
most libraries, e.g., SEAL [62] and Lattigo. [39] One can also see it in the fact that since
2018 there is more than one publication per week that has FHE in its title.38 See also
Fig. 1.

Nevertheless, FHE is still far from being practically relevant. First of all, this is due
to the extensive theoretical knowledge, mentioned in Section 2.4, that a programmer
must have in order to program a meaningful application. In addition, current methods
are still very slow and require a lot of memory and processing power. [52, pp. 58-60]

In practice this problem is addressed by also using somewhat homomorphic encryp-
tion (SHE) schemes instead of FHE schemes, see Section 2.4.1.

38https://dblp.org/search/publ?q=fully+homomorphic+encryption

58

https://dblp.org/search/publ?q=fully+homomorphic+encryption

Bibliography

Bibliography

[1] About Emscripten. May 25, 2023. url: https://emscripten.org/docs/introdu
cing_emscripten/about_emscripten.html (cit. on p. 45).

[2] Shweta Agrawal, Shafi Goldwasser, and Saleet Mossel. „Deniable Fully Homo-
morphic Encryption from Learning with Errors“. In: Advances in Cryptology –
CRYPTO 2021. Ed. by TalMalkin and Chris Peikert. Cham: Springer International
Publishing, 2021, pp. 641–670. isbn: 978-3-030-84245-1 (cit. on p. 6).

[3] Adi Akavia, Craig Gentry, Shai Halevi, andMargarita Vald.Achievable CCA2 Re-
laxation for Homomorphic Encryption. Cryptology ePrint Archive, Paper 2022/282.
2022. url: https://eprint.iacr.org/2022/282 (cit. on p. 6).

[4] MartinAlbrecht,Melissa Chase, HaoChen, Jintai Ding, ShafiGoldwasser, Sergey
Gorbunov, Shai Halevi, JeffreyHoffstein, KimLaine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan.Homomorphic Encryption Security Standard. Tech. rep. Toronto,
Canada: HomomorphicEncryption.org, Nov. 2018. url: http://homomorphicen
cryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandar

dv1.1.pdf (cit. on pp. 8, 29, 33, 34, 37, 58).

[5] Nick Angelou. Apr. 21, 2023. url: https://github.com/s0l0ist/node-seal
(cit. on pp. 26, 45).

[6] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. „Multiparty Computation with Low Communica-
tion, Computation and Interaction via Threshold FHE“. In: Advances in Cryp-
tology – EUROCRYPT 2012. Ed. by David Pointcheval and Thomas Johansson.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 483–501. isbn: 978-3-
642-29011-4 (cit. on p. 36).

[7] Thomas Attema, Pedro Capitão, and Lisa Kohl. „On Homomorphic Secret Shar-
ing from Polynomial-Modulus LWE“. In: Public-Key Cryptography – PKC 2023.
Ed. by Alexandra Boldyreva and Vladimir Kolesnikov. Cham: Springer Nature
Switzerland, 2023, pp. 3–32. isbn: 978-3-031-31371-4 (cit. on p. 6).

[8] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca. „A
Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes“. In:
Selected Areas in Cryptography – SAC 2016. Ed. by Roberto Avanzi and Howard
Heys. Cham: Springer International Publishing, 2017, pp. 423–442 (cit. on pp. 6,
15, 28, 37, 58).

59

https://emscripten.org/docs/introducing_emscripten/about_emscripten.html
https://emscripten.org/docs/introducing_emscripten/about_emscripten.html
https://eprint.iacr.org/2022/282
http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
https://github.com/s0l0ist/node-seal

Bibliography

[9] Josh Benaloh. „Dense Probabilistic Encryption“. In: Proceedings of the workshop
on selected areas of cryptography. 1994, pp. 120–128. url: https://www.microso
ft.com/en-us/research/wp-content/uploads/1999/02/dpe.pdf (cit. on p. 14).

[10] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and Nigel P.
Smart. FINAL: Faster FHE instantiated with NTRU and LWE. Cryptology ePrint
Archive, Paper 2022/074. 2022. url: https://eprint.iacr.org/2022/074 (cit.
on p. 6).

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully Homomorphic
Encryption without Bootstrapping. Cryptology ePrint Archive, Paper 2011/277.
2011. url: https://eprint.iacr.org/2011/277 (cit. on pp. 6, 18, 19).

[12] Johannes Buchmann. Einführung in die Kryptographie. 6th ed. Springer, 2016.
url: https://doi.org/10.1007/978-3-642-39775-2 (cit. on pp. 9, 25).

[13] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. „Efficient Multi-Key Ho-
momorphic Encryption with Packed Ciphertexts with Application to Oblivious
Neural Network Inference“. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’19. London, United Kingdom:
Association for Computing Machinery, 2019, pp. 395–412. isbn: 9781450367479.
url: https://doi.org/10.1145/3319535.3363207 (cit. on p. 36).

[14] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. „Homomorphic
Encryption for Arithmetic of Approximate Numbers“. In: International confer-
ence on the theory and application of cryptology and information security. Springer.
2017, pp. 409–437 (cit. on pp. 6, 19, 58).

[15] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. „Fast
Fully Homomorphic Encryption Over the Torus“. In: Journal of Cryptology 33.1
(2020), pp. 34–91 (cit. on pp. 6, 19, 20).

[16] Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and François-Xavier Stan-
daert. Towards Globally Optimized Hybrid Homomorphic Encryption – Featuring
the Elisabeth Stream Cipher. Cryptology ePrint Archive, Paper 2022/180. 2022.
url: https://eprint.iacr.org/2022/180 (cit. on p. 6).

[17] CrypTool-Online. May 26, 2023. url: https://www.cryptool.org/en/cto/ (cit.
on p. 54).

[18] DeepL Translator. url: https://www.deepl.com/translator (cit. on p. 7).

[19] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. „Fully
Homomorphic Encryption over the Integers“. In:Annual international conference
on the theory and applications of cryptographic techniques. Springer. 2010, pp. 24–
43 (cit. on pp. 6, 8, 18, 19).

60

https://www.microsoft.com/en-us/research/wp-content/uploads/1999/02/dpe.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/1999/02/dpe.pdf
https://eprint.iacr.org/2022/074
https://eprint.iacr.org/2011/277
https://doi.org/10.1007/978-3-642-39775-2
https://doi.org/10.1145/3319535.3363207
https://eprint.iacr.org/2022/180
https://www.cryptool.org/en/cto/
https://www.deepl.com/translator

Bibliography

[20] Léo Ducas and Daniele Micciancio. „FHEW: Bootstrapping Homomorphic En-
cryption in less than a second“. In: Advances in Cryptology–EUROCRYPT 2015:
34th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34.
Springer. 2015, pp. 617–640 (cit. on pp. 6, 19, 20).

[21] T. Elgamal. „A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms“. In: IEEE Transactions on Information Theory 31.4 (1985), pp. 469–
472. doi: 10.1109/TIT.1985.1057074 (cit. on p. 14).

[22] Bernhard Esslinger, ed. Das CrypTool-Buch: Kryptographie lernen und anwenden
mit CrypTool und SageMath. 12th ed. CrypTool-Projekt, 2018 (cit. on pp. 8, 12).

[23] Junfeng Fan and Frederik Vercauteren. „Somewhat Practical Fully Homomor-
phic Encryption“. In: Cryptology ePrint Archive (2012) (cit. on pp. 6, 15, 16, 19,
25, 26, 28, 36).

[24] David Froelicher, Juan Ramón Troncoso-Pastoriza, Apostolos Pyrgelis, Sinem
Sav, Joao Sa Sousa, Jean-Philippe Bossuat, and Jean-Pierre Hubaux. „Scalable
Privacy-PreservingDistributed Learning“. In: Proc. Priv. Enhancing Technol. 2021.2
(2021), pp. 323–347. url: https://doi.org/10.2478/popets-2021-0030 (cit. on
pp. 7, 21).

[25] Robin Geelen, Ilia Iliashenko, Jiayi Kang, and Frederik Vercauteren. On Polyno-
mial Functions Modulo 𝑝𝑒 and Faster Bootstrapping for Homomorphic Encryption.
Cryptology ePrint Archive, Paper 2022/1364. 2022. url: https://eprint.iacr
.org/2022/1364 (cit. on p. 6).

[26] Craig Gentry. A Fully Homomorphic Encryption Scheme. Stanford University,
2009 (cit. on pp. 6, 8, 14–16, 18, 19, 37).

[27] Craig Gentry. „ComputingArbitrary Functions of EncryptedData“. In:Commun.
ACM 53.3 (Mar. 2010), pp. 97–105. issn: 0001-0782. url: https://doi.org/10.1
145/1666420.1666444 (cit. on pp. 8, 17).

[28] Craig Gentry. „Fully Homomorphic Encryption Using Ideal Lattices“. In: Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing. 2009,
pp. 169–178 (cit. on p. 6).

[29] Craig Gentry and Shai Halevi. „Implementing Gentry’s Fully-Homomorphic En-
cryption Scheme“. In: Advances in Cryptology–EUROCRYPT 2011: 30th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Tallinn, Estonia, May 15-19, 2011. Proceedings 30. Springer. 2011, pp. 129–
148 (cit. on pp. 6, 19).

61

https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.2478/popets-2021-0030
https://eprint.iacr.org/2022/1364
https://eprint.iacr.org/2022/1364
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444

Bibliography

[30] Craig Gentry, Shai Halevi, and Nigel P. Smart. „Homomorphic Evaluation of
the AES Circuit“. In: Advances in Cryptology – CRYPTO 2012. Ed. by Reihaneh
Safavi-Naini and Ran Canetti. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 850–867. isbn: 978-3-642-32009-5 (cit. on p. 16).

[31] Craig Gentry, Amit Sahai, and Brent Waters. „Homomorphic Encryption from
Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-
Based“. In: Cryptology ePrint Archive (2013). url: https://eprint.iacr.org/2
013/340 (cit. on pp. 6, 19, 20).

[32] Shafi Goldwasser and Silvio Micali. „Probabilistic Encryption & How to Play
Mental Poker Keeping Secret All Partial Information“. In: STOC ’82. San Fran-
cisco, California, USA: Association for Computing Machinery, 1982, pp. 365–
377. url: https://doi.org/10.1145/800070.802212 (cit. on p. 14).

[33] Jincheol Ha, Seongkwang Kim, Byeonghak Lee, Jooyoung Lee, and Mincheol
Son. Rubato: Noisy Ciphers for Approximate Homomorphic Encryption (Full Ver-
sion). Cryptology ePrint Archive, Paper 2022/537. 2022. url: https://eprint.i
acr.org/2022/537 (cit. on p. 6).

[34] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Hol-
man, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. „Bringing the
Web up to Speed with WebAssembly“. In: Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. PLDI
2017. Barcelona, Spain: Association for Computing Machinery, 2017, pp. 185–
200. isbn: 9781450349888. url: https://doi.org/10.1145/3062341.3062363
(cit. on p. 45).

[35] Homomorphic Encryption Sandbox. Feb. 5, 2024. url: https://s0l0ist.github
.io/seal-sandbox/ (cit. on p. 26).

[36] Marc Joye. „SoK: Fully Homomorphic Encryption over the [Discretized] Torus“.
In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2022.4
(Aug. 2022), pp. 661–692. url: https://tches.iacr.org/index.php/TCHES/art
icle/view/9836 (cit. on p. 6).

[37] Markulf Kohlweiss, Anna Lysyanskaya, andAnNguyen. Privacy-Preserving Blue-
prints. Cryptology ePrint Archive, Paper 2022/1536. 2022. url: https://eprint
.iacr.org/2022/1536 (cit. on p. 6).

[38] Lausanne Laboratory for Data Security. May 3, 2023. url: https://github.com
/ldsec/lattigo-polls-demo (cit. on pp. 38, 45, 48).

[39] Lattigo v4. EPFL-LDS, Tune Insight SA. Aug. 2022. url: https://github.com/t
uneinsight/lattigo (cit. on pp. 45–47, 58).

62

https://eprint.iacr.org/2013/340
https://eprint.iacr.org/2013/340
https://doi.org/10.1145/800070.802212
https://eprint.iacr.org/2022/537
https://eprint.iacr.org/2022/537
https://doi.org/10.1145/3062341.3062363
https://s0l0ist.github.io/seal-sandbox/
https://s0l0ist.github.io/seal-sandbox/
https://tches.iacr.org/index.php/TCHES/article/view/9836
https://tches.iacr.org/index.php/TCHES/article/view/9836
https://eprint.iacr.org/2022/1536
https://eprint.iacr.org/2022/1536
https://github.com/ldsec/lattigo-polls-demo
https://github.com/ldsec/lattigo-polls-demo
https://github.com/tuneinsight/lattigo
https://github.com/tuneinsight/lattigo

Bibliography

[40] KangHoon Lee and JiWon Yoon. „Discretization Error Reduction for High Preci-
sion Torus Fully Homomorphic Encryption“. In: Public-Key Cryptography – PKC
2023. Ed. by Alexandra Boldyreva and Vladimir Kolesnikov. Cham: Springer Na-
ture Switzerland, 2023, pp. 33–62. isbn: 978-3-031-31371-4 (cit. on p. 6).

[41] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No, and
HyungChul Kang. „High-Precision Bootstrapping for Approximate Homomor-
phic Encryption by Error Variance Minimization“. In: Advances in Cryptology
– EUROCRYPT 2022. Ed. by Orr Dunkelman and Stefan Dziembowski. Cham:
Springer International Publishing, 2022, pp. 551–580. isbn: 978-3-031-06944-4
(cit. on p. 6).

[42] Yongwoo Lee, DanieleMicciancio, AndreyKim, RakyongChoi,MaximDeryabin,
Jieun Eom, and Donghoon Yoo. Efficient FHEW Bootstrapping with Small Evalu-
ation Keys, and Applications to Threshold Homomorphic Encryption. Cryptology
ePrint Archive, Paper 2022/198. 2022. url: https://eprint.iacr.org/2022/198
(cit. on p. 6).

[43] Baiyu Li, Daniele Micciancio, Mark Schultz, and Jessica Sorrell. Securing Approx-
imate Homomorphic Encryption Using Differential Privacy. Cryptology ePrint Ar-
chive, Paper 2022/816. 2022. url: https://eprint.iacr.org/2022/816 (cit. on
p. 6).

[44] libshe. June 3, 2023. url: https://github.com/bogdan-kulynych/libshe (cit. on
p. 8).

[45] Feng-Hao Liu and Han Wang. „Batch Bootstrapping I:“ in: Advances in Cryptol-
ogy – EUROCRYPT 2023. Ed. by Carmit Hazay andMartijn Stam. Cham: Springer
Nature Switzerland, 2023, pp. 321–352. isbn: 978-3-031-30620-4 (cit. on p. 6).

[46] Zeyu Liu, DanieleMicciancio, and Yuriy Polyakov. Large-Precision Homomorphic
Sign Evaluation using FHEW/TFHE Bootstrapping. Cryptology ePrint Archive,
Paper 2021/1337. 2021. url: https://eprint.iacr.org/2021/1337 (cit. on
p. 6).

[47] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. „On-the-Fly Mul-
tiparty Computation on the Cloud via Multikey Fully Homomorphic Encryp-
tion“. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of
Computing. STOC ’12. New York, New York, USA: Association for Computing
Machinery, 2012, pp. 1219–1234. isbn: 9781450312455. url: https://doi.org/1
0.1145/2213977.2214086 (cit. on p. 36).

[48] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. „On Ideal Lattices and
Learning with Errors over Rings“. In: Advances in Cryptology – EUROCRYPT
2010. Ed. by Henri Gilbert. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 1–23. isbn: 978-3-642-13190-5 (cit. on p. 24).

63

https://eprint.iacr.org/2022/198
https://eprint.iacr.org/2022/816
https://github.com/bogdan-kulynych/libshe
https://eprint.iacr.org/2021/1337
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/2213977.2214086

Bibliography

[49] Microsoft. 1_bfv_basics.cpp. Microsoft Research, Redmond, WA. May 22, 2023.
url: https://github.com/microsoft/SEAL/blob/main/native/examples/1_b
fv_basics.cpp (cit. on pp. 23, 24, 35).

[50] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-
Pierre Hubaux. Multiparty Homomorphic Encryption from Ring-Learning-With-
Errors. Cryptology ePrint Archive, Paper 2020/304. 2020. url: https://eprint
.iacr.org/2020/304 (cit. on p. 36).

[51] Christian Vincent Mouchet, Jean-Philippe Bossuat, Juan Ramón Troncoso-Pas-
toriza, and Jean-Pierre Hubaux. „Lattigo: a Multiparty Homomorphic Encryp-
tion Library in Go“. In: Proceedings of the 8th Workshop on Encrypted Computing
and Applied Homomorphic Cryptography. CONF. 2020, pp. 64–70 (cit. on pp. 6, 7,
21, 36, 38, 40).

[52] JörnMüller-Quade, ThomasAgrikola, Laurin Benz, andAnneMüller. „Encrypted
Computing Compass“. In: (Nov. 2022). url: https://www.cyberagentur.de/en
crypted-computing-compass/ (cit. on pp. 7, 12, 13, 18–20, 37, 40, 58).

[53] KarthikNandakumar, Nalini Ratha, Sharath Pankanti, and Shai Halevi. „Towards
Deep Neural Network Training on Encrypted Data“. In: 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2019,
pp. 40–48. doi: 10.1109/CVPRW.2019.00011 (cit. on p. 7).

[54] Pascal Paillier. „Public-Key Cryptosystems Based on Composite Degree Residu-
osity Classes“. In: Proceedings of the 17th International Conference on Theory and
Application of Cryptographic Techniques. EUROCRYPT’99. Prague, Czech Repub-
lic: Springer-Verlag, 1999, pp. 223–238. isbn: 3540658890 (cit. on pp. 12, 14).

[55] Rachel Player. „Parameter selection in lattice-based cryptography“. PhD thesis.
Royal Holloway, University of London, Egham, UK, 2018. url: https://pure.r
oyalholloway.ac.uk/ws/files/29983580/2018playerrphd.pdf (cit. on p. 24).

[56] Oded Regev. „On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography“. In: J. ACM 56.6 (Sept. 2009). url: https://doi.org/10.114
5/1568318.1568324 (cit. on p. 14).

[57] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. „On Data Banks and
Privacy Homomorphisms“. In: Foundations of secure computation 4.11 (1978),
pp. 169–180 (cit. on p. 14).

[58] Ronald L Rivest, Adi Shamir, and Leonard Adleman. „A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems“. In: Communications of the
ACM 21.2 (1978), pp. 120–126 (cit. on pp. 8, 14).

64

https://github.com/microsoft/SEAL/blob/main/native/examples/1_bfv_basics.cpp
https://github.com/microsoft/SEAL/blob/main/native/examples/1_bfv_basics.cpp
https://eprint.iacr.org/2020/304
https://eprint.iacr.org/2020/304
https://www.cyberagentur.de/encrypted-computing-compass/
https://www.cyberagentur.de/encrypted-computing-compass/
https://doi.org/10.1109/CVPRW.2019.00011
https://pure.royalholloway.ac.uk/ws/files/29983580/2018playerrphd.pdf
https://pure.royalholloway.ac.uk/ws/files/29983580/2018playerrphd.pdf
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324

Bibliography

[59] Lawrence Roy and Jaspal Singh. „Large Message Homomorphic Secret Sharing
from DCR and Applications“. In: Advances in Cryptology – CRYPTO 2021. Ed. by
Tal Malkin and Chris Peikert. Cham: Springer International Publishing, 2021,
pp. 687–717. isbn: 978-3-030-84252-9 (cit. on p. 6).

[60] Boaz Sapir. Data Science without Seeing Data: How to Set Microsoft Open Source
SEAL Parameters. May 19, 2023. url: https://medium.com/intuit-engineerin
g/data-science-without-seeing-data-how-to-set-microsoft-open-source-

seal-parameters-72929b184058 (cit. on p. 27).

[61] Sinem Sav, Apostolos Pyrgelis, Juan Ramón Troncoso-Pastoriza, David Froe-
licher, Jean-Philippe Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. „POSEI-
DON: Privacy-Preserving Federated Neural Network Learning“. In: 28th Annual
Network and Distributed System Security Symposium, NDSS 2021, virtually, Febru-
ary 21-25, 2021. The Internet Society, 2021. url: https://www.ndss-symposium
.org/ndss-paper/poseidon-privacy-preserving-federated-neural-network

-learning/ (cit. on pp. 7, 21).

[62] Microsoft SEAL (release 4.1). Microsoft Research, Redmond, WA. Jan. 2023. url:
https://github.com/Microsoft/SEAL (cit. on p. 58).

[63] Douglas R. Stinson. Cryptography – Theory and Practice. 3rd ed. Chapman &
Hall/CRC, 2006 (cit. on p. 8).

[64] Cormen Thomas H, E Charles, Rivest Ronald L, and Stein Clifford. Introduction
To Algorithms Third Edition. Mit Press, 2009 (cit. on p. 19).

[65] Vinod Vaikuntanathan. Homomorphic Encryption References. May 17, 2023. url:
https://people.csail.mit.edu/vinodv/FHE/FHE-refs.html (cit. on pp. 18,
19).

65

https://medium.com/intuit-engineering/data-science-without-seeing-data-how-to-set-microsoft-open-source-seal-parameters-72929b184058
https://medium.com/intuit-engineering/data-science-without-seeing-data-how-to-set-microsoft-open-source-seal-parameters-72929b184058
https://medium.com/intuit-engineering/data-science-without-seeing-data-how-to-set-microsoft-open-source-seal-parameters-72929b184058
https://www.ndss-symposium.org/ndss-paper/poseidon-privacy-preserving-federated-neural-network-learning/
https://www.ndss-symposium.org/ndss-paper/poseidon-privacy-preserving-federated-neural-network-learning/
https://www.ndss-symposium.org/ndss-paper/poseidon-privacy-preserving-federated-neural-network-learning/
https://github.com/Microsoft/SEAL
https://people.csail.mit.edu/vinodv/FHE/FHE-refs.html

List of Abbreviations

List of Abbreviations

API application programming interface
AES Advanced Encryption Standard
AGCD approximate gcd
BDDP bounded distance decoding problem
BFV Brakerski/Fan-Vercauteren
BGV Brakerski-Gentry-Vaikuntanathan
CKKS Cheon-Kim-Kim-Song
CRT chinese remainder theorem
CTO CrypTool-Online
CVP closest vector problem
DGHV Dijk-Gentry-Halevi-Vaikuntanathan
FHE fully homomorphic encryption
GSW Gentry-Sahai-Waters
GUI graphical user interface
HE homomorphic encryption
HTTPS Hypertext Transfer Protocol Secure
JS JavaScript
LWE learning with errors
MHE multi-party homomorphic encryption
MPC multi-party communication
NIST National Institute of Standards and Technology
PHE partially homomorphic encryption
PKE public-key encryption
RLWE ring learning with errors
RNS residue number system
RSA Rivest-Shamir-Adleman
SEAL Simple Encrypted Arithmetic Library
SHE somewhat homomorphic encryption
SIMD single instruction, multiple data
SSSP sparse subset sum problem
TFHE Fully Homomorphic Encryption over the Torus
Wasm WebAssembly
XOR exclusive or

66

List of Tables

List of Tables

1 Homomorphic properties of some partially homomorphic encryption
schemes . 14

2 The formula 1−(1−𝑥) ⋅ (1−𝑦) decomposed into smaller parts, to better
comprehend the correlation with the logic gate OR 17

3 Overview of some FHE schemes grouped in three generations 19
4 High-level parameters for the BFV scheme in SEAL 24
5 Parameters that occur in the theoretical description of the BFV scheme 28
6 KeyGen . 30
7 Encrypt . 30
8 Decrypt . 31
9 ParamGen . 32
10 EvalAdd . 33
11 EvalMult . 34
12 Refresh . 35
13 Structure of a bit array representing the occupation data of a poll par-

ticipant for the seven days of a week 44
14 An example of two poll participants and the result that is calculated

based on their inputs . 44
15 Default parameters for the BFV scheme used in the Lattigo-polls-demo

(params.go in [39]) . 47

67

List of Figures

List of Figures

1 Number of publications on homomorphic encryption per year 6
2 First, second, and third generation FHE schemes 20
3 An online demo that automatically computes parameters based on user

inputs . 27
4 Private data aggregation . 41
5 Special case of private data aggregation: polling 42
6 Private data aggregation in our setting of conducting a private poll . . 43
7 The landing page of the application . 49
8 The poll creator’s point of view before creating a poll 50
9 The first participant’s point of view . 51
10 The second participant’s point of view 52
11 The poll creator’s point of view after the poll is closed 53
12 Visual Studio Code . 55
13 Architecture of our application . 57
14 Codeium can explain the whole function or just a line of code 57

68

Eidesstattliche Erklärung

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, insbesondere keine
anderen als die angegebenen Informationen aus dem Internet. Diejenigen Paragraphen
der für mich geltenden Prüfungsordnungen, die etwaige Betrugsversuche betreffen,
habe ich zur Kenntnis genommen.

Der Speicherung meiner Bachelorarbeit zum Zweck der Plagiatsprüfung stimme ich
zu. Ich versichere, dass die elektronische Versionmit der gedruckten Version inhaltlich
übereinstimmt.

(Datum) (Unterschrift)

Content of the CD

• Bachelor’s thesis as PDF

• Source code of the application

69

	Kurzzusammenfassung
	Abstract
	Contents
	Introduction
	Theory
	Homomorphic encryption
	Example: RSA
	Other partially homomorphic cryptosystems
	Summary

	Fully homomorphic encryption
	Gentry's blueprint
	Gentry's FHE scheme and its practical drawbacks
	What computations are possible with FHE

	Generations and variants
	Parameters
	The high-level point of view
	The low-level point of view
	Tools to set the right parameters

	Primitives from the homomorphic encryption standard
	Public-key encryption algorithms
	Homomorphic encryption algorithms

	The RNS BFV scheme
	Security of FHE

	Implementation
	Application selection
	Choosing the appropriate library
	From Lattigo to node-seal
	Screenshots of our application
	Contribution to CrypTool-Online

	Evaluation and conclusion
	Bibliography
	List of Abbreviations
	List of Tables
	List of Figures
	Eidesstattliche Erklärung
	Content of the CD

