

Analysis of the Functionality, Risks and Counter-Measures

of Current Padding Attacks and the Implementation of an

Attack in the Open-Source Program CrypTool 2

Bachelor Thesis

Frankfurt School of Finance and Management

Submitted to

Prof. Dr. Peter Roßbach

and

Prof. Bernhard Esslinger

Supervised by

Dr. Martin Franz

by

Alexander Colin Jüttner

Flörsheim, October 2012
(small updates in Oct 2020 for publishing)

2

Table of Contents

1 Motivation .. 4

2 Preliminaries ... 5

2.1 Cryptographic Building Blocks Used in this Thesis ... 5

2.2 Notation Used Throughout in this Thesis .. 9

3 Current Padding Attacks .. 12

3.1 General Mechanisms ... 12

3.1.1 Padding Oracle Attack ... 12

3.1.2 Message Distinguishing Attack .. 18

3.2 Attack Applications ... 22

3.2.1 Decrypting Messages sent via TLS .. 22

3.2.2 Decrypting IMAP Messages under TLS .. 26

3.2.3 Encrypting Messages with CBC-R .. 30

4 Padding Oracle Attack Plugin .. 34

4.1 Plugin Placement ... 34

4.2 Plugin Development Approach ... 35

4.2.1 Creating the Template .. 35

4.2.2 Creating the Padding Oracle Attack Plugin ... 36

4.3 Plugin Architecture .. 38

4.4 Experiment: Attack Efficiency .. 41

5 Conclusion .. 44

6 References .. 45

3

Table of Figures

Figure 1: Creation of a ciphertext with a stream cipher on bit level .. 5

Figure 2: CBC mode encryption (left) and decryption (right) ... 6

Figure 3: Ciphertext creation in TLS. SQN is a sequence number added to every message sent

in TLS ... 9

Figure 4: Types of texts used throughout this thesis .. 9

Figure 5: Type of decryptions used throughout this thesis .. 10

Figure 6: Attack setup .. 13

Figure 7: Structure of the transmitted plaintext message ... 18

Figure 8: Creation of a decryption collision by modifying the padding 19

Figure 9: The two possible outcomes when removing the padding block and changing the last

3 bytes of the truncated message .. 19

Figure 10: Overwriting bytes belonging to the MAC over the course of the attack 22

Figure 11: Sample login command. The username is "myname" and the password is

"test1234" ... 26

Figure 12: Fragmentation of the sample login command into plaintext blocks 27

Figure 13: Forging a plaintext with CBC-R ... 30

Figure 14: Hiding the garbled block in a string ... 31

Figure 15: The GUI of the Padding Oracle Attack plugin before execution 39

Figure 16: The Padding Oracle Attack plugin during execution ... 40

Figure 17: Density of request ranges during the attack .. 43

Table of Tables

Table 1: TLS versions used in client-side applications as per 15.09.2012 25

Table 2: TLS versions used on the server side as per 15.09.2012 ... 25

Table 3: Probability mass function of the amount of requests required to find a valid padding

 .. 41

All figures illustrated in this thesis have been created by the author.

4

1 Motivation

Padding is used in cryptographic systems to increase the length of a message to the multiple

of a given block size. Since the padding does not contain any sensitive information,

considering its security side effects is often neglected. However, a lack of security of the

padding bytes can cause vulnerabilities which negate the security measures of the whole

system. Over the last years, several attacks that exploit systems with poorly integrated

padding have been developed and successfully deployed against real systems. These attacks

are called padding attacks.

The aim of this thesis is to explain the functionality of some current padding attacks.

Additionally, possible counter measures and their effectiveness are presented. Some

applications to modern systems, protocols and programs are described as well, in order to

stress the threat originating from these attacks. Within the scope of this thesis, a plugin for the

open-source software CrypTool 2 has been implemented. This plugin visualizes a padding

oracle attack for educational purposes. The development and architecture of this plugin are

also explained in this thesis. An experiment which shows the efficiency of the attack was

performed with the plugin. The execution and the results of the experiment are described in

the final chapter of this thesis.

5

2 Preliminaries

2.1 Cryptographic Building Blocks Used in this Thesis

Ciphers

Ciphers are cryptographic algorithms that are used for encryption and decryption. Encryption

describes the process of transforming a message into a ciphertext. The main goal of

encryption is to provide privacy. Messages transmitted over potentially insecure channels can

be encrypted in order to prevent unauthorized parties from reading the messages.

Keys are used in modern ciphers to modify the transformation process. Without keys,

messages could be properly encrypted and decrypted by unauthorized parties as soon as the

transformation process is revealed. For all common cryptosystems choosing strong keys is

essential to ensure security. Especially in computer networks it is easier to manage separate

keys for different communication parties than different ciphers.
1

Ciphers can be categorized by the way they use keys. Asymmetric ciphers use a key pair

consisting of a public and a private key to encrypt and decrypt data, while symmetric ciphers

use the same (private) key for encryption and decryption. In this thesis the focus will rest on

symmetric ciphers.

Symmetric ciphers can further be categorized into stream and block ciphers. Block ciphers

divide a plaintext message into strings of a fixed length (called blocks) and encrypt/decrypt

one block at a time. Block ciphers can be run in different modes of operation. The National

Institute of Standards and Technology (NIST)
2
 describes five modes of operation: Electronic

Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback

(OFB) and Counter (CTR). ECB is the simplest mode and encrypts each plaintext block

independently with the same key.
3

Stream ciphers usually encrypt/decrypt on bit level by computing an XOR of each bit of a

plaintext stream with the corresponding bit of a keystream.

1
 Menezes/van Oorschot/Vanstone (1997), p. 12

2
 http://www.nist.gov/index.html

3
 Dworkin (2001)

Plaintext 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 …

Keystream 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 …

Cipherstream 1 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 …

Figure 1: Creation of a ciphertext with a stream cipher on bit level

6

Cipher block chaining

Cipher Block Chaining (CBC) is a mode of operation for block ciphers. One major flaw of

ECB mode is that two identical plaintext blocks encrypt to identical ciphertext blocks. In

some cases, this can leak information about the underlying plaintext.

CBC does not leak this kind of information: In CBC mode encryption, the XOR of a plaintext

block and the ciphertext of the preliminary plaintext block is encrypted (see Figure 2). This

‘chaining’ causes ciphertext blocks to depend on all preceding ciphertext blocks.
4

The probability of two identical plaintext blocks resulting in identical ciphertext blocks is

therefore very low.

When the first plaintext block is encrypted, no preceding ciphertext blocks exist yet.

Therefore, an XOR of the first plaintext block and a special data block called initialization

vector (IV) is computed. The IV consists of arbitrary values and causes two messages with

identical plaintext to encrypt to different ciphertext. IVs can be sent publicly when using CBC

mode, although it is recommended to use a secret IV. Attacks described in the remainder of

this thesis manipulate the decryption of a ciphertext. This manipulated decryption will result

in the generation of a different plaintext. Secret IVs prevent attackers to influence the

generation of the first plaintext block.
 5

Padding

Padding describes practices to expand the length of messages. Applying padding to data can

pursue two different goals:

1. Length-Hiding: In some cases, the length of an encrypted message can reveal

information about the type or even the content of the message. In order to obscure the

length of the actual message, padding can be attached to the message before

encryption.
6

2. Formatting: Some cryptographic algorithms require a certain text length. Especially

block ciphers require the message length to be a multiple of the block length.

4
 Menezes/van Oorschot/Vanstone (1997), p. 230

5
 Dworkin (2001), p. 8

6
 Tezcan/Vaudenay (2011), p. 1

Figure 2: CBC mode encryption (left) and decryption (right)

7

Although many different padding methods exist, most of them share the requirement to be

‘unambiguous’.
7
 This specification assures that the message data can be identified and the

padding data can be completely removed without the risk of deleting other parts of the

message. If the length of the actual message is known to the receiver (via another channel or

from another context), also an ambiguous padding scheme can be used without any further

concern.

The vulnerabilities described in this thesis apply to most unambiguous padding schemes,

although the focus will rest on the padding scheme described in the Cryptographic Message

Syntax (CMS).
8
 CMS describes the IETF’s standard syntax for cryptographically protected

data.
9
 In this padding scheme, the padding is appended after the message with as many bytes

as required, and each byte has as value the total padding length. As an example it is assumed

that the message 61 62 63 shall be padded to 8 bytes. The PKCS#7 scheme then goes: The

number of required padding bytes (> 0) is encoded with binary encoding in one byte. This

byte is used one or several times to pad the message. Example: 61 62 63 05 05 05 05 05. The

padding length does not necessarily have to be smaller than the block length. Blocks

completely consisting of padding bytes are possible, although the maximum padding length is

256.
9

Padding Oracle

In this document, a padding oracle is a function which checks if a padding is valid or not and

publishes the result of the check. When the padding oracle receives a ciphertext message, the

message is first decrypted in CBC mode under a given key and then the padding is checked.

After checking the padding, the padding oracle returns either 0 (bad padding) or 1 (valid

padding). A padding oracle is a “black box” for attackers, since the actual transformation

process, including interim results, is secret. An attacker can only see the output for a given

input.

Padding oracles are commonly used in secured communication channels, although they do not

have to be specifically defined as such. Vaudenay stated that when an entity receives an

encrypted message, it normally decrypts it and then tries to remove the no longer required

padding. If the padding cannot be identified and therefore not be removed, an error occurs. In

7
 Dworkin (2001), p. 17

8
 Other padding schemes, for example zero padding (appends (if required) zero bytes until the message is padded

to a multiple of the block length. This padding method can only be inverted unambiguously if the message does

not end in zero bytes. Example: 61 62 63 00 00 00 00 00),

ANSI X.923 padding (appends zero bytes, followed by a byte containing the number of message bytes in the

final block in binary encoding. In a different variant the last byte contains the number of padding bytes.

Example: 61 62 63 00 00 00 00 04) and 01 00 padding (appends the byte 01 and fills the rest of the block with

zero bytes. Example: 61 62 63 01 00 00 00 00) exist as well, but are not discussed in the remainder of this thesis.
9
 Housley (2009), p. 28

8

this case, aborting any further processing can reveal padding information as well as returning

an error message.
10

 So the attacker misuses the decrypting entity’s normal reaction by

flooding it with malicious messages.

Rizzo and Duong describe different methods to find padding oracles. However, this is beyond

the scope of this thesis. Further information can be found in Rizzo/Duong (2010).

Message Authentication Code

Message Authentication Codes (MACs) are used to provide data integrity and authentication

between two communication parties. MAC algorithms use a message and a key to produce a

fixed-size output.
11

 When a party sends a message, the MAC is appended to it. The receiving

party then reproduces the MAC and compares it with the transmitted one. If the MAC does

not match, the integrity of the message cannot be verified and the message should be directly

discarded. Authentication schemes intend to prevent attackers forging valid MACs without

any knowledge about the key. In this case, attackers are unable to create valid own messages.

Transport Layer Security

Transport Layer Security (TLS) is one of the most widely used security protocols on the

internet. The first version, TLS 1.0, is based on the protocol ‘Secured Sockets Layer’ (SSL)

and has been defined in RFC2246
12

 in January 1999. The current version of TLS is 1.2, which

has been defined in RFC5246
13

 in August 2008. Although TLS 1.2 provides stronger

implementations of security mechanisms, many applications only support older versions of

the protocol. The protocol is also backward compatible which means that outdated versions of

the protocol may be used even if one communication party supports the newest version.
13

TLS consists of two sub-protocols: The TLS Handshake Protocol and the TLS Record

Protocol. The Handshake Protocol authenticates the communicating parties and negotiates the

keys and ciphers ought to be used. The Record Protocol aims to provide privacy and integrity

for the transmitted messages. As depicted in Figure 3, a MAC-then-Encode-then-Encrypt

(MEE) construction is used to achieve this security goal. When sending a message under

MEE, TLS first creates and adds a keyed MAC to the message. If necessary, padding data is

added in the encoding step. Using block ciphers makes padding become necessary, because

TLS always uses block ciphers in CBC mode. Finally, the message is encrypted with the

cipher that has been selected in the handshake.

The TLS decryption of the ciphertext works similarly: After decryption, the padding is

removed and then the MAC is validated and removed. Since errors can occur while removing

10

 Vaudenay (2002), p. 1
11

 Menezes/van Oorschot/Vanstone (1997), p. 321
12

 Dierks/Allen (1999)
13

 Dierks/Rescorla (2008)

9

the padding as well as while validating the MAC, TLS distinguishes between both padding

and MAC errors.

In the remainder of this thesis it will always be assumed that TLS is used with a block cipher

in CBC mode.

2.2 Notation Used Throughout in this Thesis

Terminology

Communication parties consist of a client and a server. Clients send messages containing

secret information to a server, while servers process received messages. The secret

information is defined as cleartext and needs to be protected by cryptographic means.

Optional elements, such as MACs or padding data, can be added to the cleartext. The

concatenation of the cleartext and other elements is denoted as plaintext. Plaintexts are

encrypted in CBC mode prior to sending it.

Figure 3: Ciphertext creation in TLS. SQN is a sequence number added to every message sent in TLS

Cleartext (Other)

Plaintext

Ciphertext

Concatenation

Encryption

Figure 4: Types of texts used throughout this thesis

10

Throughout this thesis, two types of encryption/decryption exist. Encryption expresses the

transformation of a plaintext using a cipher and a key. CBC mode encryption expresses the

transformation of a plaintext into a ciphertext, including any ‘plain’ encryptions and XOR

computations. This also applies to decryption / CBC mode decryption, as illustrated in Figure

5.

In all attacks described in this thesis, it is assumed that a padding oracle exists in the used

server.

Ciphertext Decrypted Ciphertext

Preceding Ciphertext

Plaintext

Decryption

CBC mode
Decryption

Figure 5: Type of decryptions used throughout this thesis

11

Variables and Symbols

iP : plaintext block at position i ; the first block is denoted with the index number 1

iC : ciphertext block at position i , CBC mode encryption of block iP

iD : decryption of ciphertext block iC

nd : byte at position n of decrypted block iD

1iC : ciphertext block 1iC , which has been modified during the attack

nc : byte at position n of modified ciphertext block
1iC

iP : plaintext block computed by the padding oracle when receiving a modified message

b : block length in bytes

l : padding length in bytes

g : guessed byte value (used in Chapter 3.2.2)

 : bitwise XOR operation

A roof line was added on top of the variable when this value was modified by the attacker,

and a superscripted “,” was added for values computed by the padding oracle.

The implemented CrypTool 2 plugin uses a simplified notation. Single bytes are not denoted

and the block indices are not subscripted. For example, the second plaintext block is denoted

as ‘P2’ in the plugin, instead of 2P .

12

3 Current Padding Attacks

This chapter describes current padding attacks. Chapter 3.1 focuses on how the mechanisms

work in theory, analyzes the risk originating from them and presents possible counter

measures. Chapter 3.2 presents some examples, where one of the mechanisms, the Padding

Oracle Attack (POA), has been applied to real protocols and systems.

3.1 General Mechanisms

Two mechanisms are analyzed in this chapter. The Padding Oracle Attack (Chapter 3.1.1) can

be used to decrypt an encrypted message without knowledge about the key, while the

Message Distinguishing Attack (Chapter 3.1.2) enables attacker to distinguish between two

messages.

3.1.1 Padding Oracle Attack

The attack described in this chapter is both a side channel and a man-in-the-middle attack that

has been discovered by Serge Vaudenay in 2002.
14

 It exploits information revealed by a

padding oracle. Padding oracles reveal the validity of a message’s and this was for a long time

considered as insignificant in terms of information leakage. This chapter illustrates how this

validity information can be misused to allow the attacker to decrypt ciphertext blocks.

3.1.1.1 Overview

Setup

A client tries to send a message to the server. This message was encrypted in CBC mode and

consists of several ciphertext blocks. Only the client and the server know the cryptographic

key that was used to encrypt the message. Before the message reaches the server, it is

intercepted by an attacker. This attacker is able to modify the ciphertext blocks and send

messages to the server. Upon receipt of a message, the server decrypts it in CBC mode and

checks the padding afterwards. The result of the padding validation is then returned to the

attacker. The attacker uses these server responses to decrypt the message. Although the attack

described below, targets only one block at a time, any ciphertext block of the message can be

targeted.

14

 Vaudenay (2002)

13

The attack consists of three phases:

 In the first phase, the attacker tries to find a message with a valid padding after

decryption. If the last ciphertext block is targeted, a valid padding already exists and

the first phase can be skipped.

 Different possibilities for a valid padding exist, so in the second phase the actual

padding length is determined.

 In the last phase, the decryption of the ciphertext block is calculated.

Strategy

The client sends an encrypted message to the server. The attacker intercepts this message

before it reaches its destination. In order to gain knowledge about the underlying plaintext, the

attacker modifies the intercepted message and forwards it to the server. The server provides a

padding oracle to validate any received message. The server responses are intercepted as well,

since the attacker needs them for the decryption. The goal of the attacker is to ascertain the

underlying plaintext iP of a ciphertext block iC . In CBC mode decryption, a plaintext block

iP is generated with the decrypted ciphertext block iD and the preceding ciphertext block 1iC

. The formula to decrypt iP is:

 1iC iD = iP

An attacker who was able to intercept two ciphertext blocks iC and 1iC , is able to ascertain

the underlying plaintext as soon as iD is known. The attacker therefore tries to gain

knowledge about iD . The general idea behind the attack is to replace 1iC in the above

equation with a modified ciphertext block
1iC . This will automatically result in a different

plaintext block iP . If the attacker knows which plaintext is generated when using
1iC , iD

can be computed easily:

1iC iP = iD

The next chapter describes how a padding oracle can be used to gain the necessary

information about the generated plaintext iP .

Client Server

Attacker

Message

Modified Messages

Interception

Padding Oracle Response

Figure 6: Attack setup

14

3.1.1.2 Functionality

Phase 1: Find Valid Padding

In the first phase, a ciphertext message that results in a plaintext with a valid padding needs to

be found. The original ciphertext block 1iC is therefore replaced with a modified block
 1iC .

If iC is the last ciphertext block of the message, the original 1iC already generates a valid

padding. The value of
1iC is therefore initially set to the value of 1iC . If iC

is not the last

block,
1iC has to be changed until a valid padding is found. Following CBC mode, the

padding oracle decrypts iC and then generates the plaintext by computing the XOR of
1iC

and the decrypted block iD . Afterwards, the padding oracle checks if the padding is correct.

As long as the padding oracle returns 0 (invalid padding), the last byte of
1iC is changed and

the message
1iC , iC is resent to the padding oracle. When the padding oracle returns 1, the

padding is valid. Therefore,
1iC iD

must end with ‘01’ or ‘02 02’ or ‘03 03 03’, …, or

‘FF…FF’.
15

Phase 2: Find Padding Length

At this point, the message
1iC , iC

results in a valid padding. The next step is to determine the

length of the padding by finding the first padding byte. The padding bytes are always at the

end of a block. When the position of the first padding byte is known, the length of the padding

is therefore known as well. Determining the padding length can be done by using the padding

oracle again.

This time, the first byte of
1iC is changed. The message

1iC , iC
 is again sent to the padding

oracle. If the padding remains valid, the first byte does not influence the padding. In this case,

the second byte of
1iC is changed. This process is repeated until the padding oracle returns 0.

As soon as 0 is returned, a previously valid padding byte must have been changed. The

changed byte and all subsequent bytes of the block therefore must be padding bytes. The

amount of existing padding bytes is defined as the padding length l .

Phase 3: Block Decryption

In phase 3, the ciphertext block is decrypted. The padding length l had been determined in the

previous phase. Since the value of the padding bytes equals the padding length, the last l

ciphertext byte(s) can already be decrypted:

bc bd = l

bc l = bd

The other bytes cannot be decrypted yet, because only the value of the padding bytes is

known. In order to decrypt the hindmost unknown byte lbd , the generated padding has to be

15

 Based on the padding scheme defined in Chapter 2.1 - Padding

15

increased. This can be achieved by modifying the last l bytes of
1iC , so the last l bytes of iP

have the value 1l :

 1l id =
ic | for blbi ,...,1

The new plaintext iP will only be valid if lbp
 also equals 1l . Similar to phase 1,

1iC has

to be changed at position lb until the padding turns valid. As soon as the padding is valid,

the value of lbd can be calculated as well. This process is repeated until the whole block is

decrypted.

Example:

The last l = 2 bytes have already been decrypted. The plaintext generated by the padding

oracle is therefore:

1iC iD = […] ?? 02 02

The padding is now increased to l = 3 by setting the last l bytes of
1iC = iD l . The

generated plaintext is therefore:

1iC iD = […] ?? 03 03

Then
2bc is changed until the padding oracle returns 1 (=>

2bc 2bd = 03).

3.1.1.3 Requirements

The attack only works if a padding oracle exists and if an attacker is able to identify padding

errors. If an attacker is unable to gain information about the validity of the padding or is

unable to distinguish a padding error from other errors, e.g. from invalid MACs, the attack is

not feasible. The existence of a padding oracle represents the side-channel characteristic of

the attack.

Another requirement is that a block cipher encryption mode is used where the attacker can

change the value of a specific byte in the plaintext. Modifying an intercepted message is

characteristic for man-in-the-middle attacks. Many block cipher modes of operation like CBC,

CFB and OFB meet this requirement. Theoretically, the attack is also applicable when using

stream ciphers, since changing a ciphertext byte nc directly results in a different plaintext at

position n . This also applies to CFB and especially to OFB, which uses a block cipher to

create a keystream. In practice, padding is normally not used with stream ciphers, because it is

unnecessary. Stream ciphers do not require the input to be a certain length and other methods

to hide the message length are available. In CBC mode, a decrypted plaintext byte np can be

changed by altering the byte at the same position of the preceding ciphertext block, as

explained above.

16

3.1.1.4 Risk Assessment

The attack described above poses many risks for any private communication over the internet.

The most obvious risk is the loss of confidentiality, since unauthorized parties are able to read

private messages. Thus, the main objective of protocols such as SSL/TLS cannot be

guaranteed anymore.

Another problem is that the threat caused by this attack is underestimated by many software

developers. Although the attack and working solutions have been known for a long time,

many applications are still vulnerable. Counter-measures have either not or only poorly been

implemented. Stronger implementations of the attack have been therefore developed over

time. Some of these implementations are described in the remainder of this thesis, together

with some practical applications.

3.1.1.5 Possible counter measures

Arbitrary-Tail Padding (ABYT-Pad)

A very promising fix is the ABYT-Pad method.
16

 The padding scheme fulfills the requirement

of unambiguousness
17

, although no invalid padding exists:

A message is padded by choosing an arbitrary byte value, which is distinct from the last byte

of the original message. Bytes with the previously chosen value are then appended to the

message, until the intended length is reached. The padding can be removed by deleting all

matching trailing bytes. In order to keep the original message untouched, at least one padding

byte has to be added. The padding is always correct, because there is always at least one byte

which can be removed and the padding scheme does not expect a certain amount of padding

bytes. Since padding should not be used to validate data integrity, there is no necessity that

the values of the padding bytes depend on the overall padding length. An equivalent padding

on bit level is also possible. The padding bits are simply set to the opposite value of the last

bit of the message. As every padding is considered correct, an attacker is not able to gain any

information necessary for the attack. Example: The message 61 62 63 shall be padded to 8

bytes. By adding the arbitrarily selected value 78 to the message, the message fulfills the

required message length: 61 62 63 78 78 78 78 78.

Authenticated Encryption

As already mentioned, encryption is used to provide confidentiality only. Authenticated

Encryption on the other hand also provides integrity. Authenticated Encryption can be

achieved either by using special schemes or creating a composition of a standard encryption

16

 Black/Urtubia (2002), p. 7
17

 Further information in Chapter 2.1 - Padding

17

scheme and an authentication scheme.
18

 By adding authentication mechanisms, the involved

parties are able to notice manipulations in the received message which renders the attack

unfeasible. This of course implies that the authentication check must be performed before any

decoding, such as removing the padding. Optimally, the padding is included in the MAC

generation. Since MAC algorithms produce a fixed-length output, the padding can be added to

the message before computing the MAC. If every component of the message is included in

the MAC computation, not bit can be changed without being detected. For example, a 24 bit

cleartext 61 62 63 shall be protected with keyed MD5 hash and AES in CBC mode. MD5

produces a 128 bit hash value, so 13 padding bytes (104 bits) are required to fill all blocks.

The message is first padded, then the MAC is calculated and finally the plaintext, including

padding and MAC, is encrypted. If the cleartext, MAC or padding is changed, the MAC will

not match anymore. Therefore, malicious modifications can be identified directly.

Electronic Cipher Block Mode

Although ECB mode lacks some security features of other operation modes, it is not

vulnerable to this attack. In order to systematically forge a new padding, single bytes of the

generated plaintext have to be changed. However, changing a byte of a ciphertext block leads

to the manipulation of the whole plaintext block. Although this also applies to CBC mode,

one difference remains: By changing a single byte of a ciphertext block, only one byte of the

succeeding block is changed as well. In ECB mode, the ciphertext blocks are not connected at

all and single bytes cannot be changed. It is therefore not possible to manipulate a single byte

of the generated plaintext.

18

 Bellare/Namprempre (2007), p. 3

18

3.1.2 Message Distinguishing Attack

This attack was introduced by Kenneth Paterson, Thomas Ristenpart and Thomas Shrimpton

in 2011 and is also a side channel and man-in-the-middle attack.
19

 Instead of being able to

decrypt messages, this attack only enables unauthorized parties to distinguish between two

messages of different length.

3.1.2.1 Overview

Setup

A client tries to send a message to the server via TLS. The plaintext message consists of three

blocks. The first block is the publicly sent IV, the second block contains the transmitted

cleartext, the complete MAC and at least one padding byte and the last block only contains

padding bytes. Two possible values of different length exist for the cleartext.

The plaintext is encrypted in CBC mode with a key known only to the client and the server.

Before the message reaches the server, the message is intercepted by an attacker (similarly to

Figure 6). The attacker knows the possible cleartext values and the length of the MAC. By

modifying the message and forwarding it to the server, the attacker tries to distinguish

between both possible values.

Strategy

Due to the additional padding block, a so called decryption collision is possible. A decryption

collision occurs when different ciphertext messages decrypt to the same cleartext. The idea

behind this attack is to cause such a decryption collision by removing the padding block and

adjusting the remaining padding bytes to form a valid padding. Since the encryption was

performed in CBC mode, the attacker can adjust the remaining padding bytes by modifying

the first ciphertext block.

19

 Paterson/Ristenpart/Shrimpton (2011)

Cleartext MAC PADInitialization Vector PAD

Plaintext Block 1 Plaintext Block 3Plaintext Block 2

Figure 7: Structure of the transmitted plaintext message

19

The amount of padding bytes depends on the length of the cleartext. At this point, the attacker

does not know the length of the cleartext for sure, so the actual amount of padding bytes is not

known either. The strategy is to change all bytes, which could belong to the padding. This will

cause the server to react differently, depending on the underlying plaintext. The attacker can

then interpret the server’s reaction to distinguish between the cleartexts. In the case of the

shorter cleartext, only the padding bytes will be changed. If the longer cleartext was

transmitted, not only padding bytes will be changed but also at least one byte belonging to the

MAC. This results in an error. The reaction of the server can therefore be used to determine

which cleartext was sent.

3.1.2.2 Functionality

After intercepting the message, the attacker removes the last ciphertext block directly. This

block can be removed without any problems, because it only contains padding bytes and does

not influence the decryption of the other blocks. The value of the padding bytes is equivalent

to the amount of all padding bytes. After removing the padding block, the remaining padding

bytes will therefore have a wrong value. In order to generate a valid padding, the values of the

padding bytes have to be reduced by the block length. Since the encryption was performed in

CBC mode, this can be achieved by changing the corresponding bytes of the IV (the first

block of the message).

Figure 8: Creation of a decryption collision by modifying the padding

11 11 11 11 11 11 11 11… 11 11 11

… 11 11 11

… 03 03 03

Remove Padding Block

Adjust Remaining Padding Bytes

11 … 11… 11 11 11

… 03 03 03

10 … 10… xx 10 10

… xx 02 02

MAC byte

Padding: Valid
MAC: Valid

Padding: Valid
MAC: Invalid

Scenario 1: Scenario 2:

Figure 9: The two possible outcomes when removing the padding block and changing the last 3 bytes of the truncated

message

20

The amount of padding bytes is not definitely known, so all bytes that might belong to the

padding are changed. For example, if the amount of padding bytes is either 2 or 3, the last 3

bytes are changed. If the cleartext of the message is the shorter one, the message will be

perfectly valid: Only padding bytes have been changed and the cleartext as well as the MAC

are untouched. If the longer cleartext had been sent, the padding is valid too. The MAC on the

other hand will not be valid, because at least one byte belonging to the MAC was changed.

In conclusion, an error will only occur if the longer cleartext had been transmitted. Therefore,

both messages are distinguishable.

3.1.2.3 Requirements

General Requirements

The first requirement is that the possible cleartexts must have different lengths. If all

cleartexts have the same length, this attack cannot be used to distinguish between them.

Additionally, the attacker needs to know the lengths of the MAC and the cleartexts. Without

knowing anything about the lengths, it is not possible to know which bytes need to be

changed. In order to change specific bytes, a block cipher in CBC (-like) mode needs to be

used. If these requirements are met, the attack is applicable when using TLS 1.0.

TLS 1.1 and 1.2

In TLS 1.1 and 1.2, attackers are not able to distinguish between MAC and padding errors. In

order to distinguish between two messages, altering one message must result in an error,

while altering the other message must be completely valid. The generation of a valid

plaintext, although the ciphertext was changed, is only possible with a decryption collision.

Therefore, the attack only works with TLS 1.1 and higher if the plaintext contains an

additional padding block. Additionally, cleartext, MAC and at least one padding byte must be

in the first plaintext block. In order to cause a collision decryption, the padding block(s) are

removed and the remaining padding bytes are changed. These remaining padding bytes are

changed by altering the preceding ciphertext or IV block. If the padding bytes are in the first

plaintext block, the IV has to be changed. Changing the IV does not affect further decryption

at all. However, if the padding bytes are not in the first plaintext block, a ciphertext with

underlying plaintext needs to be changed. The plaintext that is generated from the altered

ciphertext block most likely causes a MAC error. This error will always occur, independently

of the underlying cleartext. It is therefore not possible to distinguish between the cleartexts.

This requirement can be only achieved when the MAC length is shorter than the block length.

AES is a recommended block cipher
20

 with the longest block length (128 bit).
21

 The TLS 1.2

20

 Dierks/Rescorla (2008), p. 22

21

specification mentions HMAC as mechanism for message authentication.
20

 HMAC uses

cryptographic hash functions to create the MAC.
22

 The resulting MAC length therefore

depends on the used hash function. Commonly used hash functions, such as MD5, SHA1 or

SHA256, have an output longer than 128 bit. However, it is possible to use so called truncated

MACs. Truncated MACs are 80 bit long and can be used to save bandwidth.
23

 The attack is

therefore applicable if a truncated MAC is used with AES and the cleartext lengths are shorter

than 40 bit, leaving at least 8 bit for the padding.

Another requirement for the attack to work when using TLS 1.1 or 1.2 is that the IV is sent

publicly. Without controlling the IV, influencing the generation of the first plaintext block to

forge a valid padding is not possible.

3.1.2.4 Risk Assessment

This attack does not bear as many risks as Vaudenay’s attack. Since the attacker needs to

know the possible cleartexts, the attack is seldom applicable. If, on the other hand, all

requirements are met, the attack can cause serious problems. Only one server request is

necessary to allow an attacker to distinguish between the cleartexts. It is therefore irrelevant

that TLS terminates the connection as soon as an error occurs. Although the attack has been

only tested with TLS, applications to other protocols or systems are imaginable.

3.1.2.5 Possible counter measures

Properly implemented authenticated encryption can prevent the applicability of the attack.

The attack requires the padding to be changed. If the server can detect manipulations to any

part of the message, including the padding, and refuses any further processing, the attack is

not feasible.

21

 NIST (pbl.) (2001), p. 7
22

 Krawczyk/Bellare/Canetti (1997)
23

 Eastlake 3
rd

 (2011), p. 13

22

3.2 Attack Applications

This chapter presents three applications of Vaudenay’s Padding Oracle Attack (see Chapter

3.1.1) to systems and protocols. Chapter 3.2.1 describes the decryption of messages sent via

TLS. As explained in that chapter, the attack is not very feasible against TLS. Therefore,

chapter 3.2.2 describes how the attack turns feasible, when TLS is used to protect IMAP

messages. The last chapter, 3.2.3, describes how the Padding Oracle Attack can be modified

to properly encrypt messages.

3.2.1 Decrypting Messages sent via TLS

This chapter describes the applicability of Vaudenay’s Padding Oracle Attack (see Chapter

3.1.1) to decrypt messages transmitted via the TLS protocol. It is always assumed, that TLS

1.0 is used. To give an overview of the current situation, the TLS versions currently used in

practice are described too.

3.2.1.1 Applicability

Padding Oracle Existence

The first requirement for Vaudenay’s attack to be applicable is the existence of a padding

oracle. Since the TLS protocol also makes use of the MEE construction
24

 when an encrypted

message is received, the existence of such an oracle is possible. As defined in Chapter 2.1 -

Padding Oracle, Padding Oracles publish the validity of the padding. Although TLS always

checks the padding, this does not necessarily mean that attackers are able to gain information

about the padding validity. After a message is decrypted, first the padding is removed and

then the integrity (MAC) is checked. If an error occurs while removing the padding data or

while checking the MAC, an error message is returned by the protocol. As described in phase

3 of Vaudenay’s attack (Chapter 3.1.1), an attacker changes bytes in order to forge a new and

known padding for the generated plaintext. Over the course of the attack, bytes belonging to

the MAC tag or the cleartext will be replaced with forged padding bytes.

24

 Described in Chapter 2.1 - Transport Layer Security

Figure 10: Overwriting bytes belonging to the MAC over the course of the attack

Cleartext MAC Tag Padding

Cleartext MAC Ta Padding

23

Although a manipulated ciphertext may result in a valid padding, the rest of the message will

be altered. This will eventually lead to an error when validating the MAC. Therefore, an

attacker will most likely receive an error, every time a request is sent. If an attacker is able to

distinguish between a MAC and a padding error, a padding oracle exists and can be used for

the attack.

Authenticated Encryption

TLS attempts to achieve an authenticated encryption by adding a MAC before encryption.

However, the integrity verification is flawed: Before checking the authenticity, the padding is

removed. If the padding is not valid, it cannot be removed and an error message is sent back

to the client. The server therefore sends a response before the integrity of the message is

checked. In order to ensure “real” integrity of the message, the MAC has to be computed over

the cleartext and the padding. Since MAC algorithms produce an output of fixed length, the

amount of required padding bytes can be calculated prior to computing the MAC tag.

Additionally, the MAC has to be checked before the padding. This leads to a rejection of the

complete message even if only the padding was changed.

Error Distinguishability

In order to conceal the error type, TLS also encrypts error messages. This means an attacker

cannot directly distinguish between padding and MAC errors. In TLS 1.0, an error message

which does not reveal the type of error is returned and no further processing is performed as

soon as any error occurs.
25

 Computing and checking MACs require a noticeable processing

time, because cryptographic operations are expensive and need to be performed on the

complete message. This leads to the conclusion that the response time of a server differs,

depending on the type of error occurred. Canvel et al. demonstrated that the time difference

between the server responses can be interpreted in a way which makes it possible to

distinguish between padding and MAC errors. In order to make the results more reliant, the

aforementioned discrepancy can be increased. This is done by adding random blocks at the

beginning of the message, because the longer the message is, the longer it takes to calculate

the MAC tag.
26

This vulnerability has been removed in TLS 1.1 by forcing the server to check the MAC, even

if a padding error occurred. Additionally, the error message for both errors is the same.

Therefore, the errors are not distinguishable and the attack is not applicable to TLS version

1.1 or higher.
27

25

 Dierks/Allen (1999), p. 26
26

 Canvel et al (2003), p. 4
27

 Dierks/Rescorla (2006), p. 23

24

Throughout this thesis version 1.0 will be regarded when analyzing TLS.

Fatal Alerts

Both padding and MAC errors count as fatal errors. When a fatal error occurs, the connection

is immediately closed.
28

 This means, that if during the attack a padding or MAC error occurs,

the connection is lost and no further tickets will be processed by the server. Creating a new

connection also includes a TLS handshake, so the cryptographic keys are renegotiated. The

attacker can therefore not continue the decryption of any formerly intercepted messages.

This means, that if a message is intercepted and the attacker has no information about the

underlying plaintext, it is only possible to guess. A single byte can have 256 (2
8
) possible

values. Guessing a single byte correctly on the first try therefore has a probability of 2
-8

(almost 0.4%). Although it is possible to guess multiple bytes at the same time, the probability

to guess correctly decreases exponentially. An attacker is only able to make one guess with

one connection, because even if the guess is correct, a MAC error arises and the connection is

terminated.

In conclusion, the attack is not very feasible when trying to decrypt messages, sent via TLS,

where no further information about the underlying plaintext is available. Still, the next chapter

describes how the existing vulnerability can be effectively used to decrypt sensitive

information.

3.2.1.2 TLS versions used in practice

The TLS version an application supports is defined by the used SSL engine. Some

applications have an SSL engine included, while others use engines provided by the operating

system. The table below shows which TLS versions are supported by different client-side

applications based on the operating system and SSL engine used.

28

 Dierks/Rescorla (2008), p. 30

25

Engine OS Application TLS
1.0

TLS
1.1

TLS
1.2

NSS29 All Firefox 15.0.1/ Thunderbird 12.0.1 Yes No No

NSS All Chrome 2130 Yes No No

SCHANNEL29 XP/2000/Vista/2008 IE7/IE8/Safari Yes No No

SCHANNEL 7/2008R2 Safari 5 Yes No No

SCHANNEL 7/2008R2 IE8/IE9 Yes31 Yes Yes

Opera 10 All Opera 10 Yes Yes Yes

Safari 5 OSX Safari 5 Yes32 No No

Table 1: TLS versions used in client-side applications as per 15.09.2012

Table 1 illustrates that TLS 1.1 and 1.2 are hardly supported by modern browser applications.

Even if an application that supports newer versions of TLS is used, a connection via TLS 1.0

may be established. This is caused by the backwards compatibility of TLS: If newer versions

of the protocol are not supported by all communication parties, an older version is used.

Although Table 2 demonstrates that the support of newer TLS versions is slightly more

common on the server-side, the backwards compatibility still raises many issues.

Engine Webserver TLS 1.0 TLS 1.1 TLS 1.2

IIS6 Windows 2003 Yes No No

IIS7 Windows 2008 Yes Yes No

IIS7.5 Windows 2008R2 Yes Yes Yes

mod_ssl Apache HTTP Server Yes No No

mod_gnutls Apache HTTP Server Yes Yes Yes

JSSE Tomcat Yes No No

NSS Apache/Redhat/Sun Java Enterprise Yes Yes Yes

Table 2: TLS versions used on the server side as per 15.09.2012

The vulnerability against padding oracle attacks has been known since 2002. TLS 1.1, which

is immune against this attack, has been released in 2006. Nonetheless, most applications still

do not support the newest standard. Although including TLS 1.1 support in applications is a

good start, it is still not enough to completely secure a TLS connection against the attack

described above. Since TLS 1.0 is vulnerable against this and other attacks, clients and servers

should support TLS 1.1 or 1.2 and refuse any connection with older versions or at least inform

the user about the security risks.

29

 Zoller (2011)
30

 Google tried to implement TLS 1.1 in version 21, but this caused too many issues so it was removed:

http://code.google.com/p/chromium/issues/detail?id=142172 (Extracted 15.09.2012).
31

 TLS 1.1 and 1.2 are supported, but TLS 1.0 is set as default.
32

 Apple states TLS is supported, but does not specify the version: http://www.apple.com/safari/features.html

(Extracted 15.09.2012).

http://code.google.com/p/chromium/issues/detail?id=142172
http://www.apple.com/safari/features.html

26

3.2.2 Decrypting IMAP Messages under TLS

The Instant Message Access Protocol (IMAP) is a protocol which allows users to access

electronic messages on a server. Its current version is 4rev1 and has been defined in

RFC3501
33

 in March 2003. Most modern mail servers support IMAP, so e-mail clients (e.g.

Microsoft Outlook, IBM Lotus Notes or Mozilla Thunderbird) can access these servers via

IMAP. IMAP allows clients to retrieve messages, permanently remove messages, alter

mailboxes and folders, etc. IMAP can also be used with TLS to provide more security

concerning privacy and integrity.
34

The attack described below is an extension of the attack on the TLS protocol, described in

Chapter 3.2.1. It has been introduced in 2003 by Brice Canvel, Alain Hiltgen, Serge

Vaudenay and Martin Vuagnoux.
35

3.2.2.1 Client Server Communication in IMAP

The communication between an IMAP client and server is text based. If a network connection

is established, the server will send an initial greeting. Further interaction is initiated by the

client with so called client commands. These commands consist of a tag, the command name

and optional arguments. The tag is used as identifier and can be freely defined by the client.

Upon receiving a command, the server uses the same tag to allocate the response to the initial

request. Most commands are only available when the client is authenticated, so the first client

command usually is “login” with the username and password as arguments.

IMAP sends all messages unencrypted. SSL/TLS is used commonly with IMAP to ensure

privacy.

3.2.2.2 The Attack

Strategy

The following attack does not have the goal to decrypt transmitted e-mails, but the login

information. If an attacker would be able to decrypt the login information, the security of the

whole mailbox would be breached.

33

 Crispin (2003)
34

 Newman (1999)
35

 Canvel et al. (2003)

Figure 11: Sample login command. The username is "myname" and the password is "test1234"

27

Considering a block length of 8 byte, the first plaintext block contains only the sequence

number and some bytes of the login command.
36

 The second block on the other hand already

contains some bytes of the username (see Figure 12). Therefore, the second block is targeted

first.

Following Vaudenay’s attack scheme, the attacker starts by altering the hindmost byte 8c

of

the first ciphertext block until a valid padding is found. In contrast to the original attack,

searching for a valid padding is not performed via brute force. Instead, the attacker selects a

variable g as guess for the value of the last plaintext byte. This guess is used with the

original ciphertext to set the modified ciphertext byte
8c :

 8c

 g 01 = 8c

The ‘01’ represents the intended padding. If the guess is correct, all values except the intended

padding will be offset. Currently, the last byte is targeted. If the generated plaintext ends with

‘01’, the padding will be valid. Over the course of the attack, the intended padding will

change in order to forge a longer padding, similarly to phase 3 of Vaudenay’s attack (Chapter

3.1.1).

Upon receipt of the modified message, the server will decrypt it in CBC mode:

8c 8d = 8p | 0188 gcc

 8c 8d g 01 = 8p | 888 pdc

 8p g 01 = 8p

If the guess was right, g equals 8p , so 8p g equals ‘00’. The generated plaintext byte is

therefore ‘01’ and the server responds that the padding is valid. It can be assumed, that the

padding length is only one byte long, because it is unlikely that the username or password

contains characters that would form a valid padding.
37

 If the padding is invalid, the attacker

must wait for the client to initiate a new connection, change the guess, recalculate
8c and

resend the request to the padding oracle. After the hindmost byte was decrypted, the attack

can be continued as described in phase 3 of Vaudenay’s attack.

36

 Assuming a tag length smaller than 7 bytes
37

 In order to rule out special cases or when using different padding schemes the padding length can be checked

anyway, although this is not included in this thesis.

Block

Login Command a 0 0 1 l o g i n m y n a m e t e s t 1 2 3 4 …

1 2 3 4

Figure 12: Fragmentation of the sample login command into plaintext blocks

28

Optimization

Instead of guessing each byte via brute force, the attack can be optimized by using

dictionaries. Passwords and usernames often contain “real” words or names. Word lists with

possible words or character sequences used in passwords
38

 and their probability of occurrence

can be easily found on the Internet. These word lists can be used to create a search tree. First

of all, a word list needs to be transformed in a way to represent possible plaintext blocks.

Each node level of the tree then represents a possible byte value at the position of the plaintext

block. The first node level therefore represents the possible values for the last byte of the

plaintext block. Furthermore, each value at a certain position (node) has a certain probability

of occurrence. The probability that the plaintext block ends with a certain character sequence

can be calculated by computing the sum of the probabilities of every possible plaintext block

that ends with this sequence. The calculation of these conditional probabilities statistically

reduces the amount of requests sent to the padding oracle. During the search, the value of the

guessed g will be based on probabilities rather than a straight forward brute-force approach.

3.2.2.3 Applicability

As shown in chapter 3.2.2.2, the attack is feasible in real life. Although TLS looses the

connection when a fatal error occurs, cipher blocks can still be decrypted when the plaintext

remains the same. This does not only apply to IMAP, but to every message that is sent via

TLS. As long as the underlying plaintext is constant, it can be retrieved. The only remaining

exception where the cleartext cannot be completely retrieved is when one plaintext block

contains a cleartext component as well as parts of the MAC: The MAC is generated based on

the message and the key. If the key or the message changes, the generated MAC will be

different as well. In the case of IMAP, the command tag can be chosen by the client.

Microsoft Outlook for example selects 4 random alphanumeric characters as tag.
39

 Therefore,

attackers cannot assume that 2 messages have the same MAC and the underlying plaintext of

that block is not constant.

Waiting for the client to initiate new connections may seem very exhaustive, but in reality

most clients establish enough connections in order to make the attack feasible. Examples:

 Many clients check for new messages every few minutes. Instead of maintaining a

connection, the client often logs in again to the server for every check.

 Depending on the client, multiple connections may also be established if folders exist

in the mailbox or when messages are sent.

38

 In this paragraph, password stands for password as well as username or other information that may be targeted.
39

 Canvel et al (2003), p. 14

29

 Microsoft Outlook 2007 and Mozilla Thunderbird 12 perform a new login every time

a folder is selected. These are the default settings as of September 2012.

Compared to a brute-force approach, where attackers try to guess a valid username or

password directly, the attack described in chapter 3.2.2.2 is a greater security threat. The first

reason for this is that when performing a classical brute-force approach, the username and

password have to be completely correct in order to succeed. The padding oracle attack on the

other hand provides information on byte level: It is possible to gain information about single

bytes, which reduces the average amount of tries significantly. The second reason is that the

IMAP standard
40

 states that failed login attempts should be limited or delayed. If an error

occurs in the TLS protocol, IMAP will not count the request as a failed login attempt. Thus, in

comparison more attacks are possible before malicious activities are detected.
41

40

 Crispin (2003), p. 93
41

 Assuming that TLS does not block clients when too many errors occur or allow more tries than IMAP.

30

3.2.3 Encrypting Messages with CBC-R

CBC-R is a technique introduced by Juliano Rizzo and Thai Duong in 2010 and is an

extension of Vaudenay’s Padding Oracle Attack.
42

 The Padding Oracle Attack enables

attackers to decrypt messages without knowing the key. CBC-R on the other hand allows

attackers to encrypt messages without knowing the key. In contrast to Chapters 3.2.1 and

3.2.2, the MAC is not specifically incorporated. Properly implemented authenticated

encryption discards messages with an invalid MAC, even if it was correctly encrypted. This

chapter only covers message encryption, rather than forging completely valid messages,

including the MAC.

3.2.3.1 The Attack

Strategy

An attacker intercepted a message and successfully used a padding oracle to decrypt it.

During the decryption of a block iC , the preceding block 1iC was modified in order to forge a

plaintext iP with a valid padding:

1iC iD = iP

Instead of generating a plaintext with a valid padding, iP can be set to anything the attacker

wishes. This includes executable code, server commands, SQL statements, etc. If iD is

known, iP can be generated by simply setting
 1iC to:

iP iD =
1iC

When the server receives this modified message, it will decrypt it and generate the malicious

plaintext block iP . Of course, changing
1iC will subsequently lead to a different plaintext

block 1

iP which will most likely consist of incoherent, arbitrary bytes. In order to generate a

reasonable 1

iP , 2iC needs to be changed as well. If the intercepted message does not have a

block 2iC , the attacker can simply create it.

This can be continued to create a message containing complex malicious code. If the attacker

is able to set the IV, the message can be created completely. If not, the first plaintext will be

garbled. Some systems require a message to start with a certain value or magic number. Java

42

 Rizzo/Duong (2010)

Figure 13: Forging a plaintext with CBC-R

31

serialized object streams for example, require streams to begin with the constant hexadecimal

value ‘aced’.
43

 Messages which do not begin with the expected value are normally directly

rejected.

Workarounds for uncontrolled IVs

Controlling the IV means that the IV can be modified by an attacker. This is usually possible

when IVs are sent publicly with the message. If an attacker does not control the IV and uses

CBC-R, the first plaintext block will consist of incoherent, arbitrary bytes. Some systems

require the message to begin with a certain set of values, e.g. constant identifiers or the length

of the message. This set of values will be subsequently referred to as “header”. Rizzo and

Duong found two possible workarounds that can make the attack applicable.

The first possible workaround is to reuse a valid header. The intercepted message is very

likely to have a valid format. The first plaintext block 1P

therefore must begin with the

required header. This block is generated by computing the XOR of the IV and the first

ciphertext block 1C . The decryption of the first block is not influenced by other ciphertext

blocks in any way. In order to forge a ciphertext message with a valid header, 1C can be

simply put at the beginning of the message. By adding 1C to the message, it will decrypt to a

plaintext with a valid header and malicious code. The resulting plaintext will consist of a valid

first plaintext block 1P , a garbled block 2P and one or more valid malicious plaintext blocks.

While some servers may accept the valid header, the garbled block 2P may still lead to the

rejection of the message. However, if it is possible to place the garbled block as part of a

string, the server will most likely accept the message.
44

 The placement can be achieved by

analyzing the intercepted message. The message had already been decrypted by using the

padding oracle, so the underlying plaintext is known. If the message contains free text

elements like comments or labels, these can be used to hide the arbitrary block. Instead of just

reusing the first ciphertext block, all blocks up to the opening of the free text field are reused.

Following this block, the ciphertext block which decrypts to a garbled plaintext is placed. The

free text field can then be closed in the next block, directly before the malicious code begins.

The second possible workaround is brute forcing 1C . Reusing a valid header as described

above does not always work. Sometimes, the header is not fixed, but depends on different

43

 Oracle (2012)
44

 Rizzo/Duong (2010), p. 6

Figure 14: Hiding the garbled block in a string

32

parameters, such as the message length. Therefore, it may not be possible to find a header that

matches the malicious message. In this case, an attacker can try to find a valid 1C with brute-

force. The remaining problem when brute-forcing 1C directly is the existence of the garbled

block. The underlying plaintext of 1C is unknown, so the begin of free text fields cannot be

identified. Systematically hiding the garbled block is therefore not possible. A different

strategy is to find a valid 1C by changing the last ciphertext block. Although the attack

described above uses a ciphertext block of the intercepted message as basis, this is not

required. Any ciphertext block can be used. Changing the initial ciphertext block will require

a recalculation of the other ciphertext blocks, but the underlying plaintext will stay the same.

The only block that will result in a different plaintext is the first ciphertext block. Therefore, a

valid plaintext 1P can be brute-forced by changing the last ciphertext block. Additionally, the

created message will not have a garbled block. The remaining problem with this technique is

the increased processing time. All ciphertext blocks need to be recalculated in every iteration.

This also involves many padding oracle requests. Especially for longer messages, this

technique is very inefficient.
45

3.2.3.2 Applicability

The attack is applicable, if a decryption oracle exists. Although Vaudenay’s Padding Oracle

Attack was used here to decrypt the message, any decryption oracle does suffice. Depending

on the system, an attacker might also have to be able to modify the IV or hide the garbled

block. Another security flaw which makes CBC-R applicable to many systems is using

encryption to achieve authenticity. This thesis demonstrates various examples, where keys are

not necessary to modify encrypted messages. Vaudenay’s attack, for example, enables

attackers to decrypt messages without knowledge about the key. Assuming that correctly

encrypted messages must come from a trustworthy source is therefore wrong.

Rizzo and Duong were able to use CBC-R to create malicious view states.
45

 View states are

often used in websites to save form information. When a user submits a form to a server it is

normally rejected if mandatory fields are blank or other problems occur. By using a view

state, the entered information can be restored upon rejection and the user does not have to fill

out the whole form again. View states are included in frameworks such as Microsoft’s

ASP.NET or Oracles JavaServer Faces (JSF). Since the view states are usually stored on the

client, these can be accessed easily.
46

 Attackers can modify these view states, so when loaded,

malicious code is executed by the server. Depending on the implementation of the view states,

attackers could gain access to critical methods of the application, enable cross-site scripting,

45

 Rizzo/Duong (2010) p. 6
46

 In this scenario, a MITM attack is not necessary: Attackers can directly communicate with the server

33

download private files and much more.
45

 Additional security measures, such as

authentication, should therefore be implemented when using view states. The JSF

implementation Apache MyFaces, for example, advises that states should be encrypted to

prevent modifications to the view state.
47

 Since JSF is vulnerable to padding oracle attacks

and CBC-R, this specification does not prevent the creation of malicious view states.

CBC-R is also usable against ASP.NET applications. ASP.NET provides several padding

oracles and also relies on encryption to ensure authenticity. Rizzo and Duong were able to

successfully implement CBC-R attacks to access critical components.
48

 It was even possible

to send valid commands to the server. One of these commands induced the download of the

“web.config” file. By default, this file contains all cryptographic keys in plaintext. If an

attacker is able to get this file, the security of the whole application is breached.

47

 Geiler/Silvert (2009)
48

 Rizzo/Duong (2011)

34

4 Padding Oracle Attack Plugin

Chapter 4.1 describes the placement of the plugin in the context of this thesis and into

CrypTool 2. Chapter 4.2 explains how the plugin was developed and Chapter 4.3 illustrates

the architecture of the finished plugin. The plugin was used to conduct an experiment, which

evaluates the efficiency of the attack. The expected results, execution and analysis of this

experiment are explicitly explained in Chapter 4.4. On average, the attacks performed during

the experiment required between 585 and 1469 requests, with a mean value of 1048

requests.
49

4.1 Plugin Placement

Goal

The practical part of the thesis describes the implementation of a CrypTool 2 plugin. This

plugin visualizes Vaudenay’s Padding Oracle Attack
50

 in order for easier understanding.

The plugin performs the complete attack and also explains it step by step. The current version

only supports 64 bit ciphers, such as DES and Triple-DES.
51

 Users are able to modify

different components of the attack, for example the cryptographic key, the cipher and the

block cipher mode of operation, to see the effects on the attack.

CrypTool 2

CrypTool 2 is an open-source cryptography e-learning platform.
52

 It demonstrates

cryptographic concepts and techniques for educational purposes. CrypTool 2 implements

several algorithms, such as cryptographic, mathematical, or data processing functions. These

functions are provided as plugins. Plugins are programmed in C# and since CrypTool 2 is

open source, developers can easily create new plugins or improve existing ones. The

CrypTool 2 homepage provides a “Plugin Developer Manual”, which explains how to setup

the development environment and how to create a new plugin. Interfaces enable

communication between different plugins. Via interfaces, plugins receive input data and send

output data. Most plugins only perform a single transformation step. By connecting plugins

with each other, a sequence of several transformation steps can be established. These

sequences are referred to as workflows and can be modeled with a graphical user interface

(GUI). The GUI allows visual programming, so users can create workflows without having to

know any programming language. More than 100 workflows are already available in

49

 For further information refer to Chapter 4.4.
50

 As explained in Chapter 3.1.1.
51

 Right after the bachelor thesis the author added to CrypTool 2 a POA template for attacking AES (128 bit).
52

 www.cryptool.org

35

CrypTool 2 by default. These workflows are called templates and delivered as cwm file. They

can be used to visualize complex cryptographic systems that exist in practice.

4.2 Plugin Development Approach

The Padding Oracle Attack plugin performs the main actions of the attack. Chapter 4.2.1

describes how the plugin is embedded in the template. Chapter 4.2.2 describes how the plugin

was created and which problems occurred during the creation.

4.2.1 Creating the Template

Three communication parties, the client, the server and the attacker, are involved in the attack.

The complete communication flow of the attack is visualized; this allows users to understand

the role of every party. Instead of implementing every component in one single plugin, the

attack was designed as a template, consisting of several plugins. Although the main actions

are performed solely by the Padding Oracle Attack plugin, other plugins are used to provide

client and server functionality, such as data input, encryption and decryption and the padding

check. This allows the attack to be more resource efficient and flexible. One reason for this is

that many algorithms, for example ciphers, already exist as plugins in CrypTool 2.

Reproducing the available functionality in order to compress the whole attack in a single

plugin would have therefore not been resource-efficient. Additionally, the attack can easily be

modified without changing any plugin code. By using different plugins to design the

workflow, users can replace plugins or change the settings to modify the attack. For example,

users can choose the used cipher by replacing the encryption/decryption plugin.

In order to create the template, the required functionality of each communication party is

analyzed. The client has to be able to enter a message, which is then encrypted in CBC mode.

The server has to be able to decrypt received messages and check the padding. The attacker

has to be able to modify the intercepted message, to send requests to the server and to react to

any received server response. Constructing the decisions and actions of the attacker with

different plugins is too complex and is therefore implemented as one new plugin. Since

CrypTool 2 provides data input and encryption plugins, the client and server functionality can

almost completely be reproduced with existing plugins. However, the padding oracle

functionality of the server does not exist and therefore has to be implemented as well. The

remainder of this thesis only describes the creation of the padding oracle attack plugin.

36

4.2.2 Creating the Padding Oracle Attack Plugin

Overview

The plugin is developed iteratively. Each iteration consists of the phases analysis, design,

implementation and testing. The creation of the padding oracle attack plugin can be

categorized in 3 major iterations, which will be described roughly in the following.

Functional

First of all, the required interfaces and the functionality of the plugin are analyzed. The main

goal of the plugin is to help users understand the attack. Therefore, the attack has to be

divided into small steps. Complex algorithms are not necessary, since most steps only require

computing an XOR and updating the output. However, the program flow is very complex,

because the plugin has to perform different actions depending on the user input, response

from the padding oracle and the overall progress of the attack. The actions are triggered by

events. Two types of events exist: click events and input-changed events. The click event

allows users to decide when the next step is performed, and the input-changed event allows

the plugin to automatically react as soon as the padding oracle sends a response. Event

listeners invoke a specified method when an event occurs. As already mentioned, actions are

performed depending on several factors. Since the event listener always invokes the same

method, states are used to decide which actions are performed. After modeling the program

flow, the padding oracle attack plugin can be programmed.

Informational

At this point, the plugin is able to perform the whole attack, although the information

provided by the plugin is very scarce. In order for users to understand the attack, more

information, such as explanations, interim results and instructions, have to be included. By

explaining the attack to different people, the necessary information is determined. The

questions, comments and reactions from the test subjects are analyzed to define which

information is required during certain stages of the attack. One of the resulting insights is that

users can understand the attack process easier, if not only the transformation, but also the

input and output data is shown constantly. The relations among used data blocks, especially

how the XOR computations are performed, have to be displayed too. Some actions, such as

incrementing the forged padding in phase 3, are too complicated and have to be divided into

smaller sub steps. Since the steps are defined by the states, additional states had to be

included. In order to make the modifications to the preceding ciphertext block more

comprehensible, the ciphertext block is no longer modified directly. Instead, the ciphertext

block remains constant and a data block named ‘overlay’ represents the changes. The

37

modified ciphertext block is therefore received by computing an XOR of the original

ciphertext block and the overlay.

Graphical

The goal of this iteration is to create a dashboard for the plugin which allows users to review

all relevant data, receive information concerning the current actions, and control the progress

of the attack. Standard CrypTool 2 plugins only provide a limited selection of UI elements.

Due to the complexity of the attack, this type of interface is not suitable. However, developers

are able to add a presentation view to plugins. Presentation views are based on the Windows

Presentation Foundation
53

 (WPF) and allow developers to add content such as images, text

fields, buttons and other elements to the plugin. The presentation view consists of the user

interface defined with the Extensible Application Markup Language (XAML) and code

behind, to control the interface. In the preceding iteration, the necessary information had been

distinguished. Based on those results, the design of the interface is modeled. The user has to

be able to understand the data flow during the attack. The GUI is therefore divided into an

input, attack logic and output section. For consistency reasons, only the text based

information, but not the structure of the dashboard are changed during the progress. The user

is able to control the progress of the attack with buttons.

Problems

The biggest problems during the implementation of the functionality were caused by a bug in

the CrypTool 2 core program. This bug always added the click event listener twice. This

caused actions, for example sending a server request, to be performed twice too. The bigger

problem resulting from this was a so called call overflow. When the output data of a CrypTool

2 plugin changes, this has to be processed by all connected plugins before the output can be

changed again. Since the output was directly updated twice, the other plugins were not able to

continue processing. The problem was solved with a workaround: By removing the event

listener in a ‘try…catch’ statement, an existing event listener is always removed before a new

one is added. Therefore, only one event listener exists at a time and actions are not performed

multiple times. Another problem was that plugins only start processing, when all input

interfaces receive data. Logically, the padding oracle should only send a response if a request

from the Padding Oracle Attack Plugin had been received. However, the Padding Oracle

Attack Plugin was unable to send a request, because it did not receive an input from the

padding oracle. Since both plugins required an input from each other in order to be able to

send a message, the process could not be executed. A workaround for this problem was to let

53

 http://msdn.microsoft.com/en-us/library/ms754130.aspx, extracted 05.10.2012

http://msdn.microsoft.com/en-us/library/ms754130.aspx

38

one plugin initially send an output, without having any input. Since it is easier to let the forge

a Boolean message, than to create a complete ciphertext message, it was decided that the

Padding Oracle should initially send a message. The sources of the problems were very hard

to find, because both problems caused all plugins to stop processing. The problem sources

were therefore only detectable by analyzing the plugin behavior, instead of analyzing the

code. Additionally, all problems occurred at the same time, so even if a solution for one

problem was found, the other problems still prevented the plugins from working.

Although some complication occurred during the implementation of the GUI, no major

problems resulted from these. One complication was that CrypTool 2 automatically scales

elements like images and buttons, while it leaves text elements unchanged. The scale and the

position of text based information were therefore always wrong. By setting the presentation to

a fixed size, the automatic scaling was deactivated. Another minor complication was that the

main plugin methods are in a different thread than the presentation view. The presentation

view can therefore not be directly changed by these methods. This problem was solved by

using the Dispatcher-Class, a gateway which manages a thread’s work queue.
54

4.3 Plugin Architecture

Plugin Interface

The plugin provides three interfaces to enable communication with other plugins. The first

interface receives the encrypted message from the client as input. Since changing the message

during the attack is neither necessary nor useful, the ciphertext interface is only accessed at

the beginning. The other input interface is connected to the server and receives the result of

the padding check. An output interface which is also connected to the server exists too. The

plugin uses this interface to send the modified messages to the server.

Workflow

The attack consists of 3 different phases, and the actions performed by the plugin depend on

the currently active phase. The actions themselves are triggered by events. Two different

kinds of events exist: Click events and input-changed events. Click events occur when the

user clicks on a button while input-changed events occur when an input from the padding

oracle is received. In order to perform the appropriate action regarding the currently active

phase, states are used. When an event occurs, the current state defines which actions are

performed.

54

 http://msdn.microsoft.com/de-de/magazine/cc163328.aspx, extracted 05.10.2012

http://msdn.microsoft.com/de-de/magazine/cc163328.aspx

39

User Interface

The user interface is divided into three major parts: input, attack logic and output.

The input part displays the intercepted ciphertext blocks and the response from the padding

oracle. Only two ciphertext blocks are used during the attack. The second block contains an

underlying plaintext, which the attacker tries to ascertain. The first block is manipulated to

influence the generation of the plaintext. While the ciphertext blocks remain constant during

the attack, the response from the padding oracle is variable.

The attack logic displays the data blocks relevant for the attack. This includes the decrypted

second ciphertext block (D2), the first ciphertext block (C1), an overlay (O) and the plaintext

(P2). The decrypted block and the plaintext block are only completely known at the end of the

attack. The overlay displays how the first ciphertext block is modified. During the attack, the

plaintext block displays the result of computing an XOR of the decrypted block, ciphertext

block and the overlay. Therefore, it reflects which padding is currently generated or targeted.

Since only one byte is targeted during a step, a pointer indicates which byte is currently

changed. By including explanations of every block as tooltips, the interface itself is less

confusing and users are still able to easily access all relevant explanations. The attack logic

also contains a text field which informs the user about interim results and further actions. The

actions are triggered by buttons. The button labeled ‘Next’ performs the next step only.

Occasionally, brute forcing is necessary. Another button, ‘Auto Search’, was included, so

users do not have to click through the complete brute forcing sequence. By clicking this

button, the currently targeted byte is automatically changed until the wanted value is found. In

Figure 15: The GUI of the Padding Oracle Attack plugin before execution

40

phase 3, up to 7 values have to be brute forced. Therefore, users are able to decrypt the whole

message with the button ‘Decrypt Completely’.

The output section displays the first ciphertext block with its current modifications and the

second ciphertext block. A counter which reflects the amount of server requests is also

included.

Figure 16 illustrates the Padding Oracle Attack plugin during execution.

Figure 16: The Padding Oracle Attack plugin during execution

41

4.4 Experiment: Attack Efficiency

Goal

The goal of the experiment is to evaluate the efficiency of the attack, and how many padding

oracle requests are required on average to decrypt a ciphertext block. The attack was therefore

performed 100 times with randomly chosen plaintext blocks. As illustrated at the end of this

chapter, the amount of necessary request per attack varied.

Setup

Every attack decrypts a ciphertext message provided by the client. The message consists of

two ciphertext blocks, the first one being the encrypted IV and the second one being the

cleartext encrypted in CBC mode. 256 possible values exist for each byte. The cleartext bytes

were generated with the Microsoft Excel 2007 standard random function. Since the cleartext

bytes are created randomly, the probability of each byte is equal. Although the IV influences

the encryption and the amount of necessary requests, it is statistically irrelevant. During the

attack, the first ciphertext block is modified to forge a plaintext with valid padding. The

padding oracle generates the plaintext by computing an XOR of the decrypted ciphertext

block and the encrypted IV. Since the decrypted ciphertext block is not known to the attacker,

the bytes of the first ciphertext block are changed arbitrarily with brute force. Generating a

specific plaintext byte therefore requires 128 tries on average.

Expectation

The expected amount of requests can be calculated for each phase. Phase 1 is completed when

a valid padding is found. As long as the padding remains invalid, the last byte is changed. The

easiest valid padding is when the plaintext ends with ‘01’. This padding does not depend on

any other values, so after 256 requests, a valid padding is definitely found. In some cases, two

possible values that result in a valid padding exist. For example, if the 6
th

 and 7
th

 plaintext

bytes have the value ‘03’, the padding is valid if the last byte is either ‘01’ or ‘03’. Let X be

the event of having a valid padding. The probability, that two values are able to form a valid

padding is:

The probabilities to find a valid padding after k requests are listed in Table 3:

of Requests 1 2 3 … k

Probability

Table 3: Probability mass function of the amount of requests required to find a valid padding

255

1

256

1
)(

7

1

n

n

XP

256

2

255

2

256

254

254

2

255

253

256

254

255256

2)256(

 k

42

The expected amount of requests necessary to find a valid padding is therefore:

If only one value, ‘01’, is able to form a valid padding, the expected amount of requests is:

On average, 128 requests are therefore necessary to complete phase 1:

In phase 2, the actual padding has to be determined. Let A be the event of having the padding

‘01’. The probability of A is 256
-1

. Since X always occurs when A occurs (1)|(AXP), the

probability that the valid padding is produced by event A can be calculated with the Bayes’

theorem:

The probability that the padding equals ‘01’ is therefore 99.61%. Since the plugin changes the

bytes from left to right, phase 2 requires 7 requests on average. If the padding is ‘01’,

changing the 7
th

 byte will still result in a valid padding. By starting the search at the 7
th

 byte,

the amount of requests can be reduced to a single try. Although this optimization is known, it

was not implemented in the plugin. Most users understand the attack better, if the search starts

at the beginning, and not at the 7
th

 byte. During the experiment, the optimized version of

phase 2 was not used either.

In phase 3, each byte is brute forced separately and then decrypted. The decryption does not

require any padding oracle requests, but the brute forcing does. In contrast to phase 1, the

targeted byte must have one specific value to produce a valid padding. On average, 128.5

requests are therefore necessary to decrypt one byte:

Since the amount of bytes to decrypt depends on the initial padding length, this has to be

included in the overall calculation of phase 3. The expected amount of requests decreases

linearly with the amount of initial padding bytes. Each of those expected values is then

multiplied with the probability that the corresponding padding length occurs. The sum of

these values results in the mean amount of necessary requests to complete phase 3:

9961,0
255

256

)(

)(

)(

)()|(
)|(

1

1

XP

AP

XP

APAXP
XAP

5.128
256

1
)(

256

1

n

nXE

67.85
255256

2)256(
)(

256

1

k

kk
XE

5.128
256

1
)(

256

1

n

nXE

1285.128
255

254
67.85

255

1
)(XE

43

In conclusion, phase 1 should require about 128, phase 2 7, and phase 3 899 requests. On

average, 1034 requests are therefore required for the whole attack.

Results of the Experiment

The experiment was performed with 100 random cleartext blocks. The attacks required

between 585 and 1469 requests to decrypt a message. On average, 1048 requests with a

standard deviation of 199 were necessary per attack. Each attack required around 1.35% more

requests than expected. The chart below illustrates the probability density for specific request

ranges.

The request density resembles a normal distribution, having the typical bell curve alike form

with a maximum around the expected value and decreasing values at both ends.

899)()8(
255

2568

1
1

n

n

XEn

0

5

10

15

20

25

A
tt

ac
ks

Requests

Request Density

Figure 17: Density of request ranges during the attack

44

5 Conclusion

This thesis presented several padding attacks which are applicable to commonly used systems

and programs. Some of these, for example Canvel et al.’s attack to gain IMAP login

information (Chapter 3.2.2) or an extended version of Duong and Rizzo’s CBC-R, which can

be used to access cryptographic keys of ASP.NET applications
55

, severely threaten security

mechanisms and should therefore be prevented. The counter measures described in this thesis

can prevent most padding attacks, although they might be vulnerable against others.

Vaudenay’s Padding Oracle Attack (POA) was one of the most important padding attacks

published in the last 10 years. This POA was successfully implemented within the CrypTool 2

framework for educational purposes.

55

 Rizzo/Duong (2011)

45

6 References

Bellare, M./Namprempre, C. (2007): Authenticated Encryption: Relations among notions and

analysis of the generic composition paradigm. In: Okamoto, T. (ed.): Advances in

Cryptology - ASIACRYPT 2000, Lecture Notes in Computer Science Vol. 1976, pp.

531-545, Kyoto, Japan, Springer

Black, J./Urtubia, H. (2002): Side-Channel Attacks on Symmetric Encryption Schemes: The

Case for Authenticated Encryption. In: Boneh, D. (ed.): Proceedings of the 11th

Usenix UNIX Security Symposium, San Francisco, California, USA, pp. 327-338,

USENIX Association Berkeley, CA, USA

Canvel, B./Hiltgen, A.P./Vaudenay, S./Vuagnoux, M. (2003): Password interception in a

SSL/TLS channel. In: Boneh, D. (ed.): CRYPTO 2003, Lecture Notes in Computer

Science Vol. 2729, pp. 583-599, Springer

Crispin, M. (2003): Internet Message Access Protocol -Version 4rev1, RFC3501 IETF

standard tracks

Dierks, T./Allen, C. (1999): The TLS Protocol - Version 1.0, RFC2246 IETF standard tracks

Dierks, T./Rescorla E. (2006): The Transport Layer Security (TLS) Protocol - Version 1.1,

RFC4346 IETF standard tracks

Dierks, T./Rescorla E. (2008): The Transport Layer Security (TLS) Protocol - Version 1.2,

RFC5246 IETF standard tracks

Dworkin, M. (2001): Recommendation for Block Cipher Modes of Operation. US Department

of Commerce, NIST Special Publication 800-38A

Eastlake 3rd, D. (2011): Transport Layer Security (TLS) Extensions: Extension Definitions,

RFC6066 IETF standard tracks

Geiler, M./Silvert, S. (2009): Class StateManager. In Apache Myfaces JSF Core-1.2 API

1.2.13-SNAPSHOT API

Housley, R. (2009): Cryptographic Message Syntax (CMS), RFC5652 IETF standard tracks

Krawczyk, H./Bellare, M./Canetti,R. (1997): HMAC: Keyed-Hashing for Message

Authentication, RFC2104 IETF

Menezes, A./van Oorschot, P./Vanstone, S. (1997): Handbook of Applied Cryptography,

CRC Press, Inc.

Newman, C. (1999): Using TLS with IMAP, POP3 and ACAP, RFC2595 IETF standard

tracks

NIST (pbl.) (2001): Announcing the ADVANCED ENCRYPTION STANDARD (AES),

Federal Information Processing Standards Publication 197

Oracle (2012): Object Serialization Stream Protocol.

http://docs.oracle.com/javase/6/docs/platform/serialization/spec/protocol.html

[extracted 21.09.2012]

46

Paterson, K./Ristenpart, T./Shrimpton, T. (2011): Tag Size Does Matter: Attacks and Proofs

for the TLS Record Protocol. In: Lee, D.H./Wang, X. (eds.): Asiacrypt 2011, Lecture

Notes in Computer Science Vol. 7073, pp. 372-389, Springer

Paterson/Yau (2004): Padding Oracle Attacks on the Iso CBC Mode Encryption Standard. In:

Okamoto, T. (ed.), Proc. CT-RSA04, Lecture Notes in Computer Science Vol. 2964,

pp. 305-323, Springer

Ristic, I./Kandek, W. (2012): SSL and Browsers: The Pillars of Broken Security. RSA

Conference 2012

Rizzo, J./Duong, T. (2010): Practical Padding Oracle Attacks. WOOT'10 Proceedings of the

4th USENIX conference on Offensive Technologies

Rizzo, J./Duong, T. (2011): Cryptography in the Web: The Case of Cryptographic Design

Flaws in ASP.NET. In: 2011 IEEE Symposium on Security and Privacy (SP), pp. 481-

489

Tezcan, C./Vaudenay, S. (2011): On Hiding a Plaintext Length by Preencryption. In: Lopez,

J./Tsudik, G.: Applied Cryptography and Network Security, Lecture Notes in

Computer Science Vol. 6715, pp. 345-358, Springer Berlin Heidelberg

Vaudenay (2002): Security Flaws Induced by CBC Padding Applications to SSL, IPSEC,

WTLS…. In: Advances in Cryptology EUROCRYPT'02, Amsterdam, Netherland,

Lecture Notes in Computer Science Vol. 2332, pp. 534-545, Springer

Zoller, T. (2011): TLS/SSL hardening and compatibility Report 2011.

