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Astratto

Astratto

In un mondo in cui I'intelligenza artificiale ¢ sempre piu in sviluppo, sia nella teoria che nella
pratica, questa tesi svolge il compito di introdurvi al progetto NCID di CrypTool, il quale utilizza
il Machine Learning per il rilevamento del cifrario dato un testo cifrato.

L’obiettivo della tesi ¢ introdurre i framework Keras e PyTorch, con particolare attenzione alla
traduzione dell’attuale implementazione del modello di allenamento e valutazione da Keras a Py-
Torch. Le differenze tra i due framework vengono analizzate nel dettaglio, insieme alle rispettive
caratteristiche e strategie di implementazione.

Infine, la tesi si propone di confrontare i risultati ottenuti dalla nuova implementazione con quelli
della versione originale, al fine di analizzarne le differenze e trarre delle conclusioni significative.



Abstract

Abstract

In a world where artificial intelligence continues to evolve both theoretically and practically, this
thesis presents the NCID project by CrypTool, which uses machine learning techniques to identify
the type of cipher used in a given ciphertext.

This thesis focuses on the use of the Keras and PyTorch frameworks, with particular attention
to the translation of the current model training and evaluation implementation from Keras to
PyTorch. The differences between the two frameworks are examined in detail, together with an
analysis of their characteristics and implementation strategies.

Finally, the thesis aims to compare the results obtained from the new implementation with those
of the original version, in order to analyze the differences and draw meaningful conclusions.



Contents

Listings

List of Figures

1 Introduction

L1 NCIDapp . . . o o o e e e e e e e
1.2 Cryptography aspects . . . . . . . . . . . i i e e
1.3 Developeraspects . . . . . . . . . . . e e e

2 Theory and Foundations

2.1 Machine Learning basics . . . . . . . . . . ... .o
2.2 Machine Learning architectures . . . . . . .. .. ... ... ... ......
221 FENN . . . e
222 LSTM . . . o
2.3 Trainin@ ProCess . . . . v v v v i e e e e e e e e e e e e e
2.4 Statistical features . . . . ... oL oL
25 KerasvsPyTorch . . . .. ... ... .
3 Implementation
3.1 Gutenberglibrary . . . . . . .. ...
3.2 Preprocess texts and calculate statistics . . . . . . .. ... ... ...
3.3 Fitandvalidatemodel . . . . . . . .. ... ..
33.1 Imports . . . . . . e
3.3.2 FENNPyTorchclass . . .. ... ... ... ... ... .. .....
333 FFNNtrainfunction . . . . ... ... ... ... .. ... ...,
3.3.4 FFENN prediction function . . . . . .. ... ... ... ........
33,5 LSTMPyTorchclass . . . .. ... ... ... ... ... .......
33.6 LSTMtrainfunction . . . .. .. ... ... ... ... . .......
3.3.7 LSTM prediction function . . . . .. .. ... ... ... .......
33.8 Otherchanges. . . . .. ... ... ... ...
3.4 BEvaluationcodeofthemodel . . . . . . ... ... ... ... ... . ... ..
3.4.1 Benchmark function . . .. ... ... ... .. ... ... ...
342 Modelloading . . . ... ... ...
343 Inputvalidation . . . . .. ... ... ... ... ...

4 Evaluation and results

4.1

First runs

10
10
11
12

13
13
15
16
17
18
21
22



Contents

42 DGXTUNS . . . o vt e e e e e e e e e 49

42.1 ResultsfromKeras . . ... ... ... ... .. .. ... ... ..., 51

422 ResultsfromPyTorch. . .. ... ... ...... ... ........ 53
4.3 Comparison . . . . ... e e 55
Conclusion 57
Acknowledgments 58
Bibliography 59
Appendix: Full Python code 61
8.1 Fulllistingof train.py . . . . . . . . . ... 61
8.2 Fulllistingofeval .py . . . . . . . . . o e 79



Listings

2.1

3.1

3.2

33

34

3.5

3.6

3.7

3.8

39

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32

4.1

Keras fit implementation . . . . . . . .. .. ... ... .. 23
Imports for PyTorch . . . . . . . ... ... ... .. ... ... .. ..., 26
Definition of the TorchFFNNclass . . . . . . ... ... ... ... ...... 26
Example of input . . . . . . . . ... ... 27
First linear layer (Linear input — hidden) . . . . ... ... ... ... .... 27
ReLU activation function . . . . . . . .. ... ... ... .. ... 27
Exampleofoutput. . . . . . . .. ... L 27
Adam optimizer and Loss function . . . . .. ... ... .. oL 28
Loop structure, code lines from train.py, see appendix from 155to 161 . . . . . 30
Batches before being splitted . . . . . . .. ... L Lo 31
Batches after being splitted . . . . . . . ... ... ... L. 31
Splitting the data between trainin and validation . . . . . .. ... .. .. ... 31
Wrong implementation . . . . . . . . . ... ... 32
Example of right implementation . . . . . . . ... ... ... ......... 32
Right implementation, see lines from 175 to 194 of the appendix . . . . . . .. 33
Evaluation 8.1 . . . . . . . . .. 34
Early stoppingcheck . . . ... ... .. ... .. ... 37
Custom predict functionfor FENN . . . . . . ... ... ... ... .. .... 38
Input LSTMclass . . . . . . . . . . e 39
Input LSTMclass . . . . . . . . . . . e 39
Forward method LSTMclass . . . . . . . ... ... ... ... . ....... 40
LSTM tensor CONVersion . . . . . . . . o oo v v v v v i e et 40
FENN tensor conversion . . . . . . . . . v v v v v v vt i et 41
Printing the model summary . . . . .. ... .. ... ... ... ... 41
Printing the model summary of FFNN . . . . . ... ... ... ... ..... 41
Printing the model summary of LSTM . . . . .. ... ... ... .. ..... 42
Saving the model with correct extension . . . . . . . ... .. ... ... ... 43
Saving the model with correct extension . . . . . . .. ... ... ....... 43
Newer input validation . . . . . . . . . ... Lo 43
New evaluation for FFNN and LSTM architecture . . . . . . .. ... ... ... 44
Setting model parameters . . . . . . . . .. L. 45
Changes to Ensemble architecture . . . . . . ... ... ... ......... 45
Newer input validation . . . . . . .. ... ... ... ... ... ... ..., 46
Dockerruncommand . . . . . . .. ..o 47



Listings

4.2 Redundant normalization . . . . . . . ... ... .. oL o 48
4.3 Shell scriptforPyTorch . . . . . . ... ... ... 50
Jincludes/train.py . . . ... oL L. e 61
Jincludes/eval.py . . . . . .. 79



List of Figures

1.1 Screenshot of NCID app . . . . . . . . . . o v i ittt e e 11
2.1  Structure of a feedforward neural network with two hidden layers (blue). . . . . 16
2.2 Internal structure of an LSTMunit . . . . . . . .. ... . ... ... ..... 18
3.1 Training process [6] . . . . . . . . L 24



1 Introduction

During my studies, I developed a strong interest in cryptography, and in particular in the breaking
of encrypted texts and all the mathematical logic behind it. For this reason, I decided to become
part of the CrypTool (CT) team. CrypTool! is an international open-source project which de-
velops free e-learning software for illustrating cryptographic and cryptanalytic concepts. One of
their outcomes is CrypTool-Online (CTO), a web-based tool that offers knowledge about cryp-
tology and free tools to self-educate and to teach about cryptology. Part of CTO is the Neural
Cipher Identifier (NCID) app® which can be found on GitHub [1].

The task assigned to me was to implement modifications to the code base that is used in the
Neural Cipher Identifier (NCID) app. Specifically, the modifications consisted of implement-
ing two different Machine Learning architectures among the five available, namely FFNN and
LSTM (see section 2.2), migrating from the current Keras framework to the new PyTorch frame-
work.

Therefore, in order to better understand the process carried out, we first need to introduce some
aspects: What is NCID? How is it related to cryptography? What tools did I use to implement
these modifications?

1.1 NCID app

The NCID project started as a master thesis supervised by the University of Applied Sciences Up-
per Austria, Hagenberg, and the CrypTool project. The NCID project is based on the 2021 paper
by Nils Kopal ‘‘Of Ciphers and Neurons — Detecting the Type of Ciphers Using Artificial Neural
Networks’’ [2]. Of course, this project has been further developed and improved over the years,
and in the theory chapter we will see who implemented the various ciphers and architectures of
the project (see section 2.2).

The NCID app, which is shown in fig. 1.1, allows the user to input an encrypted text string of
at least 30 characters, and from that identify the cipher used for the encryption. For that, NCID
uses several neural networks from which one or more can be selected. By doing so, it removes a
part that can be considered complicated for a user who is approaching the world of cryptography
for the first time.

!CrypTool: https://www.cryptool.org/en/
INCID: https://www.cryptool.org/en/cto/ncid/
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Neural Cipher Identifier
Identifies the cipher type with Al - from just a short given ciphertext
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Key Phrase 92.68%

Figure 1.1: Screenshot of NCID app

In fact, in cryptanalysis, the identification of the cipher is the first step required to be able to
decrypt an encrypted text. If you do not know which algorithm (cipher) was used to encrypt
the text, you can hardly choose the correct attack technique or analysis method. For this reason,
decryption often begins with statistical or structural observations on the ciphertext, which serve
precisely to hypothesize which cipher has been used. In this regard, we will introduce in the
theory chapter what are the statistical features used that allow the model to provide us with an
accurate result, that is a correct result in predicting the type of cipher.

1.2 Cryptography aspects

ACA refers to the American Cryptogram Association, an organization founded in 1930 in the
United States, dedicated to enthusiasts of classical cryptography and cryptogram puzzles. It is a
community of amateur and professional cryptographers that for nearly a century has published the
bulletin The Cryptogram, where classical ciphers (substitution, transposition, Vigenere, Playfair,
etc.) are proposed and solved, using their own notation and standards.

The NCID project initially intended to solve a challenge based on identifying ACA cipher types>.
Starting with a paper by Kopal [2] only the 56 ACA ciphers were originally planned. Later, the
project was extended to recognize the five rotor ciphers — Enigma, M-209, Purple, SIGABA
and Typex — also thanks to the work of Dalton and Stamp [3].

3See https://mysterytwister.org/challenges?search=Cipher+ID for more background.
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The NCID app obviously does not aim at detecting modern ciphers, which require enormous
computational power to break. First of all the practical problem: modern key spaces are gigantic.
For example, a 128-bit key requires up to 2'?® attempts for a brute-force attack. In addition,
modern cryptography is not just simple encryption: it uses modes of operation, authentication,
salting, password-iteration schemes, and more. Even if a ’partial’ vulnerability was found, the
combination of mechanisms often protects the overall communication.

1.3 Developer aspects

For the technical implementation of this project, I used Python, and more specifically I worked
closely with the Keras and PyTorch frameworks. Keras is a high-level framework for building ML
models, while PyTorch is lower-level and allows the programmer a much broader modification
of the data flow (see section 2.5).

All the code provided to me comes from the project’s GitHub repository*, which I was able
to fork and then modify and test on my local machine. In particular, we will discuss two files:
train.py and eval.py (see appendices on pages 61 and 79). The first contains all the functions
necessary for training the model, while the second includes everything needed for its evaluation.
This aspect will then be further explored in the implementation chapter.

4See [1]
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2 Theory and Foundations

This chapter focuses on outlining the foundational concepts necessary to address the topics cov-
ered in this thesis. We begin by examining the fundamentals of machine learning (section 2.1),
after which we will shift the focus to the architectures that I modified in the project and explain
their evolutionary process within it (section 2.2). We will then look at how the model training
process works, highlighting some key concepts of Machine Learning and about the NCID project
(section 2.3). We will continue by discussing what statistical features are (section 2.4), and fi-
nally, we will discuss the differences between the two frameworks adopted, Keras and PyTorch
(section 2.5).

2.1 Machine Learning basics

”A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.”

This is the definition that Tom Mitchell gives of Machine Learning in his book [4]. As we will
notice throughout our work, this definition perfectly applies to our case. In fact, our Task con-
sists in identifying the cipher, the Performance is measured through the accuracy of the trained
model in identifying the correct cipher, and the Experience is determined by the dataset of pairs
(x,y), where x is our input (that is, the strings encrypted with one of the 61 ciphers), and y are
the labels, namely the corresponding correct cipher for each x.

But how does my model map the inputs x to our label y? To accomplish this task, a machine learn-
ing model can be trained in different ways: supervised, unsupervised, or reinforcement learning.

Supervised learning In supervised learning, the training set (named D) is composed of pairs
(input, label).

Dsupervised ={(x1.y1)s (x2,¥2), ..., (X, yn) }

The goal is to learn a function f that maps the input x to its label y:

13



2 Theory and Foundations

f:X—>Y suchthat f(x)=y

Once trained, the model must be able to predict y for new, unseen inputs x.

Unsupervised learning In this case, the dataset contains only inputs, and thus there are no labels
y:

Dunsupervised ={x1,X2, ..., Xn}

The goal is to discover hidden structures, patterns, or relationships in the data, and in this case
the model learns a function g that transforms or groups the data:

g: X — Z where Z is a space of representations, clusters, or rules

Reinforcement learning Reinforcement learning is a type of machine learning in which an agent
learns to make decisions by interacting with an environment, aiming to maximize a cumulative
reward. It works without explicit labels for each action, but the agent learns through trial and
error, observing the consequences of its actions.

An example could be a robot trying to exit a labyrinth, where the environment is the labyrinth,
and the actions are moving up, down, left or right. The robot explores the maze randomly (explo-
ration phase) and records what happens after each action. Over time, it learns that some moves
lead to higher rewards than others (for example +10 if it exit and -1 for every step done), so it
starts to exploit (exploitation phase) what it has learned.

Clearly, our project uses supervised learning, because as anticipated we provide our model with
encrypted texts as input, and we also provide the corresponding labels. After sufficiently training
the model, we test it with previously unseen encrypted sentences: the better the model performs
at this task, the more accurate we consider it to be.

In particular, ours is a multiclass classification problem, that is, a supervised learning task in
which each input x € X belongs to at least one class among a set of k > 2 possible classes.
Formally:

fi:X—={cr,co,...,c}

where k > 3 and f(x) returns the correct class c; for each x.

Now let us focus on how the inputs are mapped, that is, how do we implement our function f?

14



2 Theory and Foundations

2.2 Machine Learning architectures

”The choice of architecture inherently constrains the representational capacity of a
model, determining not only what it can learn, but how efficiently it can transform
inputs into useful outputs™ [5]

Just as different vehicles serve distinct functions, a car for daily commuting, a tractor for agricul-
tural work, and a truck for freight transport, different machine learning architectures are designed
to address specific computational tasks. Certain models excel at image classification, while others
specialize in sequential data prediction or clustering analysis. Some architectures demonstrate
versatility across multiple domains, while others are finely tuned for specialized applications.
This diversity in design reflects the need for tailored solutions in artificial intelligence, where
the choice of architecture fundamentally shapes a model’s capabilities and performance. This
is precisely where our function lies: each architecture adopts a different way of processing and
evaluating the inputs, yet they all share the common goal of mapping them into a meaningful
output.

But which architectures does the NCID project employ? And who first introduced them?

The idea originates from the paper by Kopal [6], which employs the Artificial Neural Network
(ANN) for cipher identification. In the paper Kopal uses the book Make your own neural net-
work [7] to provide a good introduction to ANNSs: neurons are interconnected through input and
output links that carry signals, each associated with a specific weight. A neuron includes an
activation function a, which determines its output based on the incoming inputs. Concretely,
the neuron combines all incoming signals with their corresponding weights, adds a bias term b,
and then applies the activation function to this aggregated result to produce the final output (see
section 2.3).

A typical design in artificial neural networks is to arrange neurons into distinct layers. The input
data are first provided to an input layer composed of n neurons. This layer is connected to one or
more hidden layers, which process the information further. The final hidden layer is then linked
to the output layer. In this structure, every neuron in one layer is connected to every neuron in
the subsequent layer, this behavior is called fully connected layer. The learning, in general, is
performed by adapting the weights of the connections between the neurons.

Subsequently, with the paper A Massive Machine-Learning Approach for Classical Cipher Type
Detection Using Feature Engineering, architectures that computed features (see section 2.4) were
introduced through feature engineering, namely Feedforward Neural Networks, Decision Trees,
and Naive Bayes networks. But what does feature engineering actually mean?

In traditional machine learning, feature engineering plays a central role. It consists of manually
designing and selecting features that best represent the data, often relying on domain expertise and
statistical analysis. While this approach can yield effective results, it is limited by the knowledge
and creativity of the researcher, and may not capture complex or hidden patterns in the data.

15



2 Theory and Foundations

In contrast, feature learning, automatically extracts representations from raw data. Neural net-
works, for example, learn hierarchical features directly during the training process, reducing the
need for manual intervention. This allows models to discover intricate structures that would be
difficult to design by hand. However, feature learning requires larger datasets and higher compu-
tational resources compared to traditional feature engineering.

In fact, the paper Detection of Classical Cipher Types with Feature-Learning Approaches by
Dalton and Stamp served as inspiration for the addition of rotor ciphers in the project, which was
introduced by Maik Bastian.

It should be noted that Maik Bastian also had to incorporate an SVM classifier, since the main ar-
chitectures, although able to distinguish between ACA ciphers and rotor ciphers, were not capable
of effectively discriminating among the different types of rotor ciphers. The SVM was therefore
specifically trained for this task and integrated as an additional module: whenever the primary
model detected a rotor cipher, the final classification was performed by the SVM, resulting in
higher accuracy in distinguishing between the five rotor ciphers considered.

To sum up, for cipher identification, NCID uses a combination of five different architectures:
FFNN, LSTM, Transformer, RF and NBN. In the work I carried out, I had to translate from
Keras to PyTorch the Feedforward Neural Network and Long Short-Term Memory, and we will
now examine them in more detail.

2.2.1 FFNN

It is a subclass of ANN, in which the information flows only forward, from the input layer to the
output layer, without cycles or connections that send the signal backward. It is the most classical
and simple ANN model, sometimes also called MLP (Multilayer Perceptron). Figure 2.1 shows
the structure of an FFNN. The aim of the training is to guide f(x) to obtain the probability of
belonging to a class (our label, y).

Figure 2.1: Structure of a feedforward neural network with two hidden layers (blue).

We can build deep networks with more than just two hidden layers; in fact, modern architectures
often include over a hundred layers, each containing thousands of hidden layers. The term width
refers to the number of hidden units within a single layer, while depth describes the number of
hidden layers in the network. The total number of hidden units across all layers serves as an

16



2 Theory and Foundations

indicator of the network’s overall capacity.

If you are interested in exploring the topic further, I found useful consulting the paper by Good-
fellow et al. [5]

2.2.2 LSTM

Long-Short Term Memory (LSTMs) is a recurrent neural network architecture designed by Sepp
Hochreiter and Jiirgen Schmidhuber in 1997 [8]. In contrast to FENN, recurrent neural networks
incorporate loops, enabling information from later stages of processing to be sent back to earlier
stages. The LSTM has proven to be highly effective across a wide range of applications, including
unconstrained handwriting recognition, speech recognition, handwriting generation, and many
others [5].

To gain a clearer understanding of how the LSTM operates, its internal structure is illustrated in
fig. 2.2. This graphic was designed by myself. Similar graphics can be found in Shi Yan’s blog
post “Understanding LSTM and its Diagrams” (2016) [9].

The LSTM architecture is built around a single core component called the memory unit, or LSTM
cell. This unit comprises four neural networks, each containing an input layer and an output layer.
Together, these networks form what are called the three gates: the Forget Gate, the Input Gate,
and the Output Gate.

The Forget Gate determines how much of the long-term memory should be retained. This in-
formation is computed by combining the current input x, with the previous hidden state 4,_1,
which represents the short-term memory. A bias is then added, and the result is passed through
a sigmoid activation function. The output of the Forget Gate is subsequently multiplied by the
previous cell state c,_;, which represents the long-term memory.

The Input Gate computes the candidate long-term memory to be added, along with the proportion
of it that should be stored. This process consists of combining the current input x, with the
previous hidden state /,_1, passing the result once through a sigmoid activation and once through
a tanh activation. The two outputs are then multiplied element-wise, and the resulting vector is
added to the cell state.

Lastly, the Output Gate updates the short-term memory by passing the combination of the current
input x, and the previous hidden state /,_; through a sigmoid activation. This output is then
multiplied element-wise with the tanh of the updated cell state, and the result forms the new
hidden state #;.

17



2 Theory and Foundations

FORGET GATE INPUT GATE OUTPUT GATE

=®

®

Hid

Figure 2.2: Internal structure of an LSTM unit

2.3 Training process

I will take this section to explain some fundamental concepts about ML and the project that will
be useful multiple times throughout the work.

The path followed by a training process usually includes data setup, training and validation, and
finally a final evaluation. In chapter 3, we will see in detail how this procedure is structured in
NCID.

Let’s now introduce some common Machine Learning terminology:

Weights The weights in a neural network are numerical parameters that determine how much
each input influences the output. You can think of them as knobs that “weigh” the importance of
each input. During training, the model searches for weight values that minimize the error between
the predictions and the actual data. Therefore, the weights are not fixed: they are learned from
the data.

Bias The bias in a neural network is an additional value that allows the model to shift the output
independently of the inputs. It is similar to the intercept in a line y = mx + g, where the bias
corresponds to that g. Without a bias, the output would always be constrained to pass through
the origin (zero), which can limit the model’s ability to fit the data. With a bias, even if all inputs
are zero, the output can still take a value different from zero.

18



2 Theory and Foundations

Linear layer A linear layer is used to transform the inputs into outputs through a linear com-
bination of the values:
y=xWl +b

where x is the input vector, i.e., the data entering the layer and W is the weight matrix. In practice,
it is the basic building block of many neural networks. It serves to change the representation of
the data so that the model can later recognize patterns or make predictions.

Rectified Linear Unit The activation function ReLU instead applies a non-linear, element-
wise transformation, defined as:

ReLU(x) = max(0, x)

In other words, negative values are replaced with zero, while positive values remain unchanged.
The introduction of non-linearity is essential, as it enables the network to learn complex functions
that could not be represented by linear transformations alone.

Optimizer The Adam optimizer (Adaptive Moment Estimation) is a widely used weight update
algorithm in neural networks. It is a method based on computing the moments' of the gradient:
Adam maintains an exponential estimate of the first moments (the mean of the gradients) and
the second moments (the mean of the squared gradients), and uses these values to dynamically
adjust the learning rate? of each parameter. The combination of these two moments allows for
more stable and faster convergence compared to classical methods such as standard gradient
descent.

Simply put: when the network makes a prediction, we compare the result with the correct answer
and compute an error (loss). The optimizer looks’ at this error and decides how to adjust the
network’s weights to reduce it in the next iteration.

Softmax Softmax is a mathematical function widely used in neural networks, particularly in
the output layer of multi-class classification models. Its purpose is to transform a vector of real
values (i.e., the logits) into a probability vector, meaning numbers between 0 and 1 that sum to
1. Therefore, softmax is used to interpret a network’s outputs as probabilities, making it easier
to select the most likely class.

Momentum is an optimization technique that introduces a form of “inertia” in the weight update process, accumu-
lating part of the past gradients’ direction to make the descent more stable and faster.

2The learning rate is a hyperparameter that controls the step size during gradient descent, determining how much
the model’s parameters are updated in response to the estimated error at each iteration.
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2 Theory and Foundations

Loss function The loss function used in the NCID project is the Cross-Entropy Loss, typically
employed for multiclass classification problems like ours. Cross-entropy measures the distance
between the probability distribution predicted by the network and the true distribution of the
labels. It performs the following steps:

1. Applies the softmax function to the logits (the raw output of the architectures) to transform
them into probabilities.

2. Compares these probabilities with the true labels.

3. Returns the average log-loss? across all samples in the batch. The result of this computation
is a scalar tensor (a vector that contains a single value), which when printed outputs a single
value representing the loss.

Tokens Tokens are the smallest units of text into which a neural network splits a sentence in
order to process it. In practice, tokenization transforms raw text into a sequence of numerical
elements that the model can interpret. As we will see, these will be used in the LSTM (and more
generally in sequential models) because they allow the network to process sequences of elements
in order, preserving and learning the temporal or contextual dependencies between tokens.

Padding Padding is a technique that consists of adding values (typically zeros) to sequences of
variable length to make them all the same size. This technique is used in LSTMs because each
batch of data must have the same length since matrix operations require rectangular tensors.

Hyperparameters Finally, we would like to specify the parameters used as command line
inputs. These will be particularly useful during the evaluation phase, since they must remain
the same in order to compare the Keras models with the PyTorch ones. A quick reminder: We
will talk about samples, but these depend on the context and the architectures used, as well as on
the stage of the pipeline in which they are processed. For example, in the preprocessing phase,
samples consist of plaintext sentences; after encryption, they become ciphered sentences, and
later they are transformed into numerical features or representations suitable for the model.

The parameter --batch_size indicates the batch size, that is, how many samples are used in
a single weight update step during training. Larger values make training more stable but more
memory-intensive, while smaller values make the model noisier but allow more frequent updates.

--train_dataset_size specifies the total number of samples used in each fitting phase. It
is important that this number is divisible by the amount of ciphers chosen with --—ciphers, in
order to obtain a dataset that has the same number of inputs for each cipher type.

--dataset_workers determines how many parallel processes are used to read the samples.
More workers speed up the loading, which is useful with large datasets.

3For a deeper understanding the CrossEntropyLoss section of the PyTorch guide is available here [10]
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2 Theory and Foundations

—--epochs defines how many times the same dataset is presented to the model during training.
Increasing the number of epochs improves learning, but beyond a certain point it may lead to
overfitting*.

--plaintext_input_directory is the folder that contains the plaintexts used as a basis for
creating ciphertexts. These plaintexts are used to generate the training data (see section 3.1).

--model_name defines the name of the final saved model file, which must have the . h5 extension
for Keras and . pth for PyTorch.

--min_train_lenand --max_train_len set the minimum and maximum length, respectively,
of plaintexts used for training. If the value is set to -1, no constraint is applied. The same
logic applies to —-min_test_len and --max_test_len, which refer instead to the data for the
evaluation.

—--architecture defines the model architecture to be used. Combinations are also possible,
such as [FFNN,NB] or [DT,ET,RF,SVM,kNN], as well as a special case for rotor ciphers (SVM-
Rotor).

2.4 Statistical features

Features are numerical measures that can be computed from the ciphertext, highlighting certain
regularities. These regularities arise from the fact that the encrypted message retains statistical
correlations with the original language (English, Italian, etc.). Essentially, statistical features are
tools to quantify how much a ciphertext deviates from random text and how much it “resembles”
natural language text. These differences correspond to the known weaknesses of the ACA ciphers
and allow them to be identified and attacked.

One of the most widely used features in cryptanalysis is the Index of Coincidence (IoC), which is
the probability that two randomly chosen letters from a text are the same. In a natural language
like English, where some letters are much more frequent than others, the IoC takes on a charac-
teristic value of around 0.066. In completely random text, the IoC is much lower, approximately
0.038.

Using substitution or transposition ciphers, this value remains unchanged, because the letters are
simply rearranged. Consequently, an IoC that remains close to that of natural language is a strong
indication that the cipher belongs to one of these families.

In contrast, for ciphers like the Bacon cipher, the frequency distribution changes drastically. Here,
the IoC no longer reflects that of the original language and may appear anomalous or much higher.
Therefore, if the model observes an IoC value that is particularly high or low compared to the
typical English range, it can immediately rule out a simple transposition or substitution. In this
sense, the [oC becomes a discriminative feature: it allows distinguishing between cipher families

4Qverfitting is a phenomenon that occurs when a machine learning model learns the training data too well, memo-
rizing its noise and specific details instead of capturing general patterns.
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2 Theory and Foundations

that preserve the statistical structure of the language and others that alter it significantly. It is
through this type of analysis that the model can narrow down the possible ciphers used.

The project, as cited in the paper by Kopal et al. [6], initially implemented 28 statistical fea-
tures, divided into groups: distribution statistics, frequency statistics, binary features, and cipher-
specific features. After a selection phase, not all 28 features proved useful: only 20 were actually
used in the final models, because some did not improve accuracy or introduced noise, meaning
that a feature adds no new information and is redundant relative to others already present, leading
to incorrect classification. If you are interested in seeing all the features used in the project, they
can be found in [6].

2.5 Keras vs PyTorch

In the Machine Learning landscape, selecting the right framework is crucial for achieving desired
results. Keras [11] and PyTorch [12] are the most popular open-source frameworks (along with
TensorFlow, used for large-scale machine learning and deep learning applications; Scikit-learn,
used for traditional machine learning algorithms and data preprocessing; and NumPy, used for
efficient numerical computations and array manipulation), both used to train and evaluate neural
networks. Despite sharing a common goal, they differ in their design, making them suitable for
different use cases. This section aims to underline the main differences between Keras (intro-
duced in 2015 by Frangois Chollet) and PyTorch (released in 2016 by Meta Al, formerly Face-
book Al Research) by analyzing their principal functionalities and their respective strengths and
weaknesses. In the implementation chapter, we examine the actual translation from the Keras
version to the PyTorch one.

So, why translating a code from Keras to PyTorch?

There are several reasons that make the conversion of a model from Keras to PyTorch an essential
modification. Firstly, there is the desire to experiment with a new framework or the need to adapt
to the demands of the job market. In fact, Keras has declined in popularity in the last few years
among working environments, since PyTorch offers more flexibility for coding training loops.
The key differences between Keras and PyTorch reside in their architectures, how they define
and train models, and the level of control they provide to the coder over those processes.

Keras presents itself as a modular library designed for fast training and experimentation with
deep neural networks. Its architecture favors quick and easy prototyping, offering straightforward
“building blocks”. It is considered a ”plug-and-play” framework that allows the coder to quickly
build, train, and evaluate models, simplifying the development process.

PyTorch, on the contrary, is a low-level framework. It offers a more flexible approach and an
imperative programming style, where network behavior is defined directly in Python code.

But how do we train and evaluate a model with those frameworks?
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2 Theory and Foundations

In Keras, training and evaluating a model is fairly easy, since the whole training process is man-
aged by the fit method. For example, in the Keras implementation the FFNN was implemented
like this:

history = model.fit(statistics, labels,

batch_size=args.batch_size,

validation_data=(val_data, val_labels),

epochs=args.epochs,

callbacks=[early_stopping_callback,
tensorboard_callback,
custom_step_decay_lrate_callback,
checkpoint_callback])

Listing 2.1: Keras fit implementation

In PyTorch, instead, the architecture is divided into two parts: the definition of the states and
the definition of the path that the data has to follow during the training. Training and evaluation
require manual writing of complete training and test loops. This must include the upload of data
inside batches, the passage of data through the network, loss calculation, backpropagation, and
weight updates. [13]

Without delving into much theory, in pseudo code a neural network training loop looks like this:
[14]

Algorithm 1 Neural network training loop
for each epoch do
for each batch do
Load data
Pass data through network
Calculate losses
Calculate gradients
Adjust network weights through backpropagation
end for
end for

At this point you are probably wondering: Does PyTorch really expect me to write all that code?
The answer is yes, but as we said, it comes with benefits for the programmer who wants to
experiment with Machine Learning.

In summary, the decision between Keras and PyTorch should be driven by your project goals
and your familiarity with deep-learning concepts. If you need to prototype quickly or teach
fundamental models, Keras is likely the better fit; if you require research-grade flexibility, and
fine-grained control, PyTorch will better meet those demands. If you are eager to know what can
PyTorch accomplish I suggest you to read the implementation section 3.3.3 about the validation
steps.
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In this chapter, we examine the code modifications that were introduced, explaining both their
purpose and the rationale behind each change. Figure 3.1 shows the training process of the cipher
classification model. These are the fundamental steps performed by the code to create a new
model, starting from the extraction of texts from the Gutenberg Library and ending with the
evaluation of the trained model. In the following paragraphs, each of these steps will be analyzed
in detail, with particular emphasis on the £fit (i.e., the actual training) and validation stages, as
they required the most significant modifications.
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Figure 3.1: Training process [6]




3 Implementation

3.1 Gutenberg library

The initial step involves extracting plaintext. For this purpose, we utilize the Gutenberg Library,
an open-source collection of public domain texts, which provides a diverse set of literary works
suitable for training and testing our models. These texts serve as the basis for generating the
encrypted input used in our supervised learning tasks.

In the previous Keras-based implementation, the procedure for handling the Gutenberg plaintext
dataset was the same as in the PyTorch version. The dataset was downloaded from the same pub-
lic Google Drive link, automatically extracted into a temporary directory, and then relocated to
the project’s designated plaintext folder (data/gutenberg_en). After the extraction, auxiliary
directories created by the download manager were removed, leaving only the necessary dataset
in the target directory.

This design choice was not altered during the transition from Keras to PyTorch because the han-
dling of plaintext data is a preprocessing step independent of the training framework. Both frame-
works rely on the same input format: plaintext files are required to generate ciphertext samples
through encryption with the implemented classical ciphers, which are then converted into statis-
tical feature vectors or character sequences for model training. Consequently, the data pipeline,
from downloading and extracting the Gutenberg texts to splitting them into training and testing
subsets, remained unchanged.

3.2 Preprocess texts and calculate statistics

In this phase, the plaintexts are first encrypted using different cryptographic algorithms and then
preprocessed to be transformed into a numerical form suitable for training machine learning
models. The preprocessing consists of text normalization (for example, converting all letters to
lowercase), the removal or replacement of unrecognized symbols, and the conversion of character
sequences into numerical vectors. In summary, this phase makes it possible to translate the
encrypted texts into standardized numerical representations, making them comparable to one
another and enabling the models to learn the distinctive patterns of the different ciphers.

Like the previous plaintext extraction phase, this step did not require any changes, since the data
are preprocessed in the same way for both Keras and PyTorch. The only precaution is to provide
them, during training, in the appropriate format: tensors for PyTorch and NumPy arrays for Keras.

3.3 Fit and validate model

Let’s now move on to the major changes.

Initially, I tried to understand how the GitHub repository was formed [1]. The file that we will
examine now is called train.py, so every modification from now on (page 25 to 43) has been
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done on that file. I was first focused on understanding how the training sessions worked, which I
did by testing and running some basic training scripts on my local machine. These experiments
were mainly aimed at grasping the overall workflow of the code.

Once I understood the overall functioning, I began working on the changes related to the training
and validation of the model. In order to translate the code from Keras to PyTorch there are several
logical steps to follow.

3.3.1 Imports

The first step consisted of importing the PyTorch library along with all the necessary modules
required to run the code.

import torch

import torch.nn as nn

import torch.optim as optim

from torchinfo import summary

import numpy as np

from torch.utils.data import TensorDataset, DatalLoader

[ Y N T N

Listing 3.1: Imports for PyTorch

These include essential components such as torch . nn for defining neural networks, torch. optim
for optimization algorithms, and torch.utils.data for managing datasets and data loaders.
Additionally, torchinfo was imported to provide a summary of the model’s structure, and
NumPy was used for numerical operations and compatibility with existing data structures.

We will now delve into the details of the individual architectures.

3.3.2 FFNN PyTorch class

As anticipated in the theory chapter I personally worked on and translated the FFNN and LSTM
(see section 2.2), and in the following sections we will examine in detail the code modifications
that were introduced in order to use them with the new framework.

Let’s start from the FFNN class.

1 class FFNN(nn.Module):

2 def __init__(self, input_size, hidden_size, output_size,
< num_hidden_layers):

3 super () . __init__Q

4

5 self.input_size = input_size

6 self .hidden_size = hidden_size

7 self .output_size = output_size

8 self .num_hidden_layers = num_hidden_layers

9

10 layers = [nn.Linear (input_size, hidden_size), nn.ReLU()]

11 for _ in range(num_hidden_layers - 1):
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layers += [nn.Linear (hidden_size, hidden_size), nn.ReLU()]
layers.append(nn.Linear (hidden_size, output_size))
self.net = nn.Sequential (xlayers)

def forward(self, x):
return self.net (x)

Listing 3.2: Definition of the TorchFFNN class

To gain an intuitive understanding of how the network works, let us consider a simplified example.
Suppose we have an FFNN model with three input neurons, two hidden layers of five neurons,
and an output layer with two possible classes (for instance, distinguishing whether a text belongs
to cipher A or cipher B, so a binary classification).

As starting data, we take a small batch consisting of four vectors, each with three numerical
features:

model = FFNN(input_size=3, hidden_size=5, output_size=2, num_hidden_layers=2)

Input:

tensor ([[ 0.1000, 0.2000, 0.3000],
[ 1.0000, -1.0000, 0.5000],
[ 0.0000, 0.0000, 0.0000],
[ 2.0000, 1.0000, -1.0000]11)

Listing 3.3: Example of input

At this stage, the input is multiplied by the weight matrix of the first layer and added to a bias
term. The resultis a linear transformation that projects the data into the space of the hidden layer:
tensor ([[ 0.0317, 0.2515, -0.1857, 0.0923, -0.0142],

[ 0.6049, -0.7834, 0.1521, -0.4418, 0.2357],

[ 0.0005, 0.0003, -0.0007, 0.0002, -0.0001],
[ 0.3672, 0.8550, -0.6538, 0.3214, -0.1579]])

Listing 3.4: First linear layer (Linear input — hidden)

ReLU (see section 2.3) replaces negative values with zero:

tensor ([[0.0317, 0.2515, 0.0000, 0.0923, 0.0000],
[0.6049, 0.0000, 0.1521, 0.0000, 0.2357],
[0.0005, 0.0003, 0.0000, 0.0002, 0.0000],
[0.3672, 0.8550, 0.0000, 0.3214, 0.000011)

Listing 3.5: ReLU activation function

The linear transformation and the ReLU are then applied again until the final output state is
obtained. The last layer maps the data into a vector that has as many entries as the number of
classes:

tensor ([[-0.1613, 0.0144],

[ 0.0568, -0.1409],
[-0.1585, 0.0267],
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[-0.0652, -0.0819]1)
Listing 3.6: Example of output

These values are not probabilities, but logits. In other words, they are the ’raw” outputs produced
by the last linear layer of your FFNN before any transformation that normalizes them between
0 and 1. Each row corresponds to a batch example, and each column corresponds to a class.
These logits can be positive or negative and are not constrained to sum to 1. When you apply the
softmax function to each row, you obtain a probability vector that sums to 1, which is useful for
interpreting the model and for computing the cross-entropy loss (in PyTorch, cross-entropy loss
can accept logits directly, see section 2.3).

This simple example demonstrates how an initial set of numerical data, through a sequence of
linear and non-linear transformations, is projected into a space that allows separation between
different types of ciphers. In practice, the same logic is extended to more complex features and
a larger number of classes, enabling NCID to recognize a wide range of ciphers.

An important aspect of the network implementation concerns the construction of the sequence
of layers. In the code, the various layers of the network are initially stored in a Python list called
layers. This list contains, in order: the linear transformation from the input to the hidden layer,
the ReLLU activation function, any additional pairs of linear layer and ReLLU, and finally the output
layer.

To transform this list into a proper PyTorch model, the nn.Sequential class is used, which
allows multiple modules (nn.Module) to be concatenated into a single structure. In this way, the
object self .net represents the entire neural network as an ordered sequence of operations.

The *layers syntax serves to “unpack” the list and pass its individual elements as arguments to
nn.Sequential.

Forexample, if layers = [A, B, C],thenthestatementnn.Sequential (¥layers) isequiv-
alent to nn.Sequential (A, B, C).

3.3.3 FFNN train function

In this section, we will dive into the analysis of the lines of code that allow the neural network to
learn, starting from setting the optimizer and the loss function, up to performing an evaluation.

Setting optimizer and loss function Let’s go through a detailed examination:

def train_torch_ffnn(model, args, train_ds):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

optimizer = optim.Adam(

model .parameters (),
lr=config.learning_rate,
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betas=(config.beta_1, config.beta_2),
eps=config.epsilon,
amsgrad=config.amsgrad

)

criterion = nn.CrossEntropyLoss ()

Listing 3.7: Adam optimizer and Loss function

After defining the optimizer and the loss function (see section 2.3), the code sets the model to
training mode using the command model .train().

This instruction is crucial because it tells PyTorch that the model should behave as it does during
training: in particular, certain layers such as Dropout (see the following paragraph) and Batch
Normalization (see chapter 4) behave differently depending on whether the model is in training
or validation/testing mode.

Dropout for example randomly deactivates, with a given probability (for example 50%), certain
neurons at each forward pass during training to reduce overfitting. This prevents the network
from relying too heavily on specific connections.

Without the model . train () call, the model would use the parameters fixed for evaluation mode,
which could compromise the training process.

Immediately before the training loops, several control variables are also initialized:

* best_val_acc = 0: stores the highest accuracy achieved on the validation set so far,
necessary for implementing early stopping (we will see it later in this section).

* patience_counter = O and patience_limit = 250: used to count how many con-
secutive iterations do not improve performance. If the limit is exceeded, training is stopped
to avoid wasting computational resources.

* train_iter = 0: keeps track of the total number of samples processed during training.
* train_epoch = 0: counts the number of completed epochs.

* start_time = time.time(): allows measuring the total duration of the training pro-
cess.

* val_data_created = False together with x_val and y_val: ensures that the valida-
tion dataset is created only once, at the first iteration, and then reused without generating
random splits at each cycle.

These assignments therefore serve to initialize the training state, so that the model can be trained,
monitored, and evaluated correctly.
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Training loop The code then enters the actual training phase (see listing 3.8). The outer loop
for epoch in range(args.epochs) iterates over the number of epochs (see section 2.3).
Inside, the loop while train_ds.iteration < args.max_iter ensures that training con-
tinues until the maximum number of iterations is reached.

The command training batches = next(train_ds) retrieves a new batch of data from
the generator train_ds. Each batch is organized as pairs of (statistics, labels), where
statistics contains the numerical features extracted from the ciphered texts i.e., the values
that will be fed as input to the model while 1abels represents the corresponding class labels.

The statement statistics, labels = training batch.items() separates the data from
the labels. With stats_np = statistics.numpy() and labels_np = labels.numpy(),
the PyTorch tensors are converted into NumPy arrays, which is useful for later splitting the dataset
into training and validation sets using train_test_split.

For clarification, consider a numerical example: suppose the generator train_ds provides a
batch with 4 samples, each described by 3 statistical features, along with their respective class
labels. We would then have:

02 05 07
statistics = 0.104°0.3 , labels =

0.9 0.8 0.6
0.0 0.2 0.1

—_—N O =

After conversion with .numpy (), we obtain the arrays

02 05 0.7
0.1 04 03
09 0.8 0.6]°
0.0 0.2 0.1

stats_np = labels_np =

1
0
2
1

Although they appear identical, these arrays can now be used either to create the PyTorch tensors
required for training or to be split into a training set and a validation set.

In this way, the model receives as input the statistics and the corresponding labels, which allows
the loss function to be computed and the weights to be updated via backpropagation.

for epoch in range(args.epochs):
while train_ds.iteration < args.max_iter:
training_batches = next(train_ds)
for training_batch in training_batches:
statistics, labels = training_batch.items ()
stats_np = statistics.numpy ()
labels_np = labels.numpy ()

Listing 3.8: Loop structure, code lines from train.py, see appendix from 155 to 161

30



[ Y N T N

1

S

N o »n AW

3 Implementation

Splitting dataset In the following lines of train.py, the division of data into training and
validation sets is handled. At the first pass, the variable val_data_created is set to False,
so the function train_test_split(stats_np, labels_np, test_size=0.3) isexecuted,
which splits the data into two parts: 70% for training (x_train_np, y_train_np) and 30% for
validation (x_val_np, y_val_np).

Subsequently, the validation data are converted into PyTorch tensors and moved to the selected
device (CPU or GPU).

After this initial split, the variable val_data_created is set to True, so in subsequent itera-
tions the split is not repeated and the validation data remain fixed, while the set x_train_np,
y_train_np is updated with the next batches provided by the dataset.

Suppose that the initial batch consists of four samples, each with three features, along with their
corresponding labels:

stats_np = [[0.2, 0.5, 0.7],
[0.1, 0.4, 0.3],
[0.9, 0.8, 0.6],
[0.0, 0.2, 0.1]]

labels_np =[1, 0, 2, 1]
Listing 3.9: Batches before being splitted

By splitting with test_size=0.3, a possible outcome could be:

X_train_np = [[0.2, 0.5, 0.7],

[0.1, 0.4, 0.3],

(0.0, 0.2, 0.1]]
y_train_np = [1, 0, 1]
x_val_np = [[0.9, 0.8, 0.6]]
y_val_np = [2]

Listing 3.10: Batches after being splitted

In this example, three samples are used for training and one for validation. After conversion to
PyTorch tensors, x_val and y_val will remain unchanged until the end of training, ensuring that
the model’s performance is always evaluated on the same reference data.

if not val_data_created:
x_train_np, x_val_np, y_train_np, y_val_np = train_test_split(stats_np,
< labels_np, test_size=0.3)
x_val = torch.tensor(x_val_np, dtype=torch.float32).to(device)
y_val = torch.tensor(y_val_np, dtype=torch.long).to(device)
val_data_created = True
else:
x_train_np = stats_np
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y_train_np = labels_np

Listing 3.11: Splitting the data between trainin and validation

Optimization of the gradients Now we move on to a very important part of the training, the
optimization of the gradients that is the process of updating the weights of a neural network during
training. The step we are going to analyze was initially implemented differently and produced
poorly performing models, but thanks to the help of Maik Bastian, I was able to solve it. Below
is a snippet of the code I had first implemented in listing 3.12:

optimizer.zero_grad()

outputs = model(x_train)

loss = criterion(outputs, y_train)
loss.backward ()

optimizer.step ()

Listing 3.12: Wrong implementation

The issue with these lines is that, regardless of the dataset size, the optimization is performed
only once, whereas in the Keras implementation it was applied for every batch. The problem of
calling the optimizer only once for the entire dataset (i.e., after processing all the samples of that
batch) instead of after each batch is that the model performs too few weight updates. For example,
if you have a dataset of 10k samples and process it as a single batch, the optimizer is updated only
once every 10,000 samples. In practice, the network executes just one averaged backpropagation
over the whole block, causing the model to learn much more slowly. This problem is known as a
larger effective batch size.

To achieve behavior similar to Keras (mini-batches and more frequent updates), you should manu-
ally split Xrain and yirain into mini-batches of size args . batch_size, as illustrated in listing 3.14.

In listing 3.13 is shown an example of the flow of data with the right implementation where we
have a binary classification task. I need to emphasize to the reader that this example is not meant
to follow precise calculations, but rather to understand the correct way to split the data. For this
reason, the input data are represented by randomly chosen integers, as are the outputs of the loss
function:

X_train_np = [
[1, 21,
[2, 1],
[3, 4],
[4, 3],
[5, 6],
[6, 5]

—

[}
—_
o
o
[N
-
o
-
—_

y_train_np

# Batch 1
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x_batchl = [[2, 1], [4, 3]1]
y_batchl = [0, 1]
# Batch 2

x_batch2 = [[5, 6], [1, 2]]
y_batch2 = [0, 0]

# Batch 3
x_batch3 = [[3, 4], [6, 5]]
y_batch3 = [1, 1]

outputs_batchl [[1.0, 0.5], [0.2, 1.2]]
outputs_batch2 = [[0.8, 0.4], [1.1, 0.3]]
outputs_batch3 [[0.3, 0.7], [0.1, 1.0]1]

loss_batchil
loss_batch2
loss_batch3

1
o O O
oo

batch_losses = [loss_batchl, loss_batch2, loss_batch3]

epoch_loss = sum(batch_losses) / len(batch_losses)
print ("Average Loss:", epoch_loss) # Output: 0.5

Listing 3.13: Example of right implementation

With the wrong implementation (see listing 3.12, optimizer.step() would update all the
weights only once, using the gradients computed over all 6 samples together. Thus, to achieve this
goal, it is not necessary to change the previous steps where optimization was performed, but sim-
ply to add a for loop that does it for each x_batch and y_batch contained in the train_loader.
The lines before the for loop are used to prepare the data as PyTorch tensors and to create a Py-
Torch dataset that associates each input with its corresponding label:

X_train = torch.tensor(x_train_np, dtype=torch.float32)
y_train = torch.tensor(y_train_np, dtype=torch.long)

train_dataset = TensorDataset(x_train, y_train)
train_loader = Dataloader(train_dataset, batch_size=args.batch_size, shuffle=
<~ True)

batch_losses [1

for x_batch, y_batch in train_loader:
x_batch = x_batch.to(device)
y_batch y_batch.to(device)

optimizer.zero_grad()

outputs = model (x_batch)

loss = criterion(outputs, y_batch)
loss.backward ()

optimizer.step ()
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batch_losses.append(loss.item())
train_iter += len(y_batch)

epoch_loss = sum(batch_losses) / len(batch_losses)

Listing 3.14: Right implementation, see lines from 175 to 194 of the appendix

Evaluation The next step of our training loop consists of computing predictions using the
model that we are training, see listing 3.15

model.eval ()
with torch.no_grad():

val_outputs = model (x_val)

val_loss = criterion(val_outputs, y_val)

val_pred = torch.argmax(val_outputs, dim=1)

val_acc = (val_pred == y_val).float().mean().item()

top3 = torch.topk(val_outputs, k=3, dim=1).indices
y_val_exp = y_val.unsqueeze (1) .expand_as(top3)
val_k3 = (top3 == y_val_exp).any(dim=1) .float () .mean().item()

Listing 3.15: Evaluation 8.1

The command model. eval in PyTorch is used to set the model into evaluation mode. By switch-
ing to model.eval, we inform PyTorch that training is no longer being performed, but rather
validation or testing, and that the learned parameters should be used while disabling stochastic
components. By stochastic components, we refer to mechanisms that introduce randomness dur-
ing training, such as Dropout. In evaluation mode, Dropout is disabled and all neurons remain
active. The context manager torch.no_grad in PyTorch specifies that, within its block of code,
gradients should neither be computed nor stored. During training, PyTorch keeps track of all
operations performed on tensors by building a computational graph, since at the end gradients
are required through the loss.backward () operation. This process, however, consumes mem-
ory and involves additional computations. During validation or inference (that is, when using
model.eval), gradients are not needed, as only the model predictions are of interest.

We can now examine how predictions are computed. For this purpose, we will consider an exam-
ple with train_dataset_size = 10 (see section 2.3), a total of 7 features, and only 5 cipher
classes. The command model(x_val) executes the forward pass, where x_val is the input
batch, a tensor containing the calculated feature values (see section 2.4) of the validation set for
each sample given.

In this example, the input tensor has the shape x_val.shape = (3, 7). It should be empha-
sized, however, that in the actual project a total of 724 feature values are employed. To see where
in the code this is defined, refer to the appendix at line 504. As you can notice, the number 724
is assigned to the variable input_layer_size. This is because each neuron in the input layer
corresponds to one feature.
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An example of x_val and the corresponding val_outputs after the forward pass is shown
below:
x_val =
tensor ([[0.12, 0.05, 0.33, 0.21, 0.08, 0.17, 0.02],
[0.07, 0.18, 0.22, 0.10, 0.14, 0.05, 0.04],

[0.30, 0.11, 0.09, 0.25, 0.16, 0.08, 0.12]])
x_val.shape = torch.Size([3, 7])

The result of the forward pass is a tensor called val_outputs with shape (3, 5), since in this
example 5 ciphers are used, while in the full project there are 61 of which 56 were implemented
in the paper ”A Massive Machine-Learning Approach For Classical Cipher Type Detection Using
Feature Engineering” [15], and the 5 rotor ciphers were later implemented thanks to the contri-
bution of Dalton and Stamp’s paper [3].
val_outputs =
tensor ([[ 0.80, 1.90, -0.30, 0.20, 0.50],

[ 2.20, -0.10, 0.70, 1.50, -0.40],

[-0.20, 0.30, 2.00, 0.10, 1.2011)
val_outputs.shape = torch.Size([3, 5])

This tensor will then be employed to compute both the predictions and the loss. The loss is
calculated by applying the cross-entropy loss function. The result of this computation is a scalar
tensor, val_loss, which when printed outputs a single value representing the loss.

As for the predictions, the val_outputs tensor is used again, this time combined with the
argmax function to obtain the index of the maximum value along dimension 1:

val_pred = temnsor([1, 0, 2])

Once the predictions are obtained, they can be compared with the true labels in order to compute
the accuracy, which is stored in the variable val_acc. This value indicates how well the model
is classifying the validation data. The process is as follows:

1. (val_pred == y_val) compares the predictions with the true labels (y_val), returning
a vector of booleans (True if correct, False if incorrect).

2. .float () .mean() converts the booleans to numerical values (1.0 for correct, 0.0 for in-
correct) and computes the mean.

3. .item() extracts the value as a standard Python number.

For example, if y_val = tensor([1, 3, 2]),thenval_acc will be 0.67, since only 2 out of
3 samples were predicted correctly. Thus, the model achieves an accuracy of 67%.

To compute the top-3 accuracy, which measures the percentage of times the correct class appears
among the three highest predictions (rather than only the top-1), the topk function selects the
three highest logits for each sample, producing a tensor with shape (batch_size, 3), which
contains the indices of the three most probable classes:
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top3 =

[[1, 0, 41,
(o, 3, 21,
[2, 4, 111

After that, the command y_val_exp = y_val.unsqueeze (1) .expand_as(top3) is used to
make the dimensions of the true labels (y_val) and the multiple predictions comparable, since
while y_val has shape (3,), top3 has shape (3, 3). The expansion produces the following tensor:

y_val_exp =

tensor ([[1, 1, 1],
(3, 3, 31,
[2, 2, 21

Finally, similarly to val_acc, the predictions are compared with the true labels using:

val_k3 = (top3 == y_val_exp).any(dim=1) .float () .mean().item()

which results in:

tensor ([[ True, False, False],
[False, True, Falsel],
[ True, False, Falsel])

Therefore, in this example val_k3 = 1, corresponding to 100%.

In this example, one can observe the advantage of PyTorch over Keras. For instance, the line
val_loss = criterion(val_outputs, y_val) shows how PyTorch allows for full flexibil-
ity in defining the loss function (here named criterion), not only by choosing among the stan-
dard implementations (such as CrossEntropyLoss) but also by creating entirely customized
loss functions and directly integrating them into the training loop. This feature makes it possi-
ble to adapt the model to highly specific and complex scenarios, where a traditional error metric
would not be sufficient. In Keras, by contrast, the choice of the loss function is typically limited to
a predefined set of options (such as Poisson, binary_crossentropy for binary classification,
or mean_squared_error for regression problems) or otherwise constrained by the high-level
APIs.

Early stopping check The last addition was simply an early stopping check. In Keras, these
types of checks are already available through the callbacks module, such as EarlyStopping,
which can monitor a specified metric and stop training when it ceases to improve. In PyTorch,
however, we need to implement them manually. This particular check is used to prevent overfit-
ting by stopping the training process once the model’s performance on the validation set stops
improving, thus saving computational resources.
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1 # ——- Early stopping check ---

2 if val_acc > best_val_acc:

3 best_val_acc = val_acc

4 patience_counter = 0

5 else:

6 patience_counter += 1

7 if patience_counter >= patience_limit:

8 print ("Early stopping triggered.")

9 elapsed = time.time() - start_time

10 t = time.gmtime (elapsed)

1 print (f"Finished training in {t.tm_yday - 1} days {t.tm_hour} hours {
<> t.tm_min} minutes {t.tm_sec} seconds with {train_iter}
< iterations.")

12 class DummyEarlyStopping:

13 stop_training = True

14 return DummyEarlyStopping(), train_iter, f"Early stopped at epoch {

<~ epoch+1}"

Listing 3.16: Early stopping check

Although functional, we preferred not to use this check during the runs on the DGX machine
(see chapter 4), in order to assess the model’s true limits. By allowing the training to continue
without early stopping, we could observe the maximum performance the model can achieve and
better understand how it behaves when trained for extended periods.

And with that we end the training loop.

3.3.4 FFNN prediction function

After training and saving a model, we need to evaluate whether it accurately recognizes our
ciphers. To this end, I implemented the prediction function, which evaluates the fully trained
model on a dedicated test dataset, without updating the weights anymore.

Similar to the snippet observed in the evaluation section (see section 3.3.3), this function also
employs model.eval() and with torch.no_grad() to disable dropout and gradient compu-
tation, ensuring stable predictions without additional memory costs. Indeed, this function also
makes use of Cross Entropy Loss (see section 2.3), torch.argmax, torch.topk(), etc.

However, we are now in a different stage, namely the final testing phase which is computed by
the FFNN prediction function (see lines from 355 to 393 of appendix). In the previous case, after
validation, the model was switched back to train() mode to continue learning, while in this
function the model remains in eval () mode for the entire test process.

Moreover, an iterative test dataset (test_ds) is used, which provides batches until args .max_iter
is reached, instead of a fixed validation set created by splitting the training data. In this context,
an essential aspect is that, in addition to loss and metrics, all predictions (all_preds) and all
labels (all_labels) are stored and then returned by the function for subsequent calculations
(e.g., confusion matrix and F1-score, which will be discussed later in chapter 4).
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def predict_torch_ffnn(model, test_ds, args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model.eval ()
model.to(device)
criterion = nn.CrossEntropyLoss ()

all_preds = []
all_labels = []

with torch.no_grad():

while test_ds.iteration < args.max_iter:
testing_batches = next(test_ds)
for testing_batch in testing_batches:

statistics, labels =

testing_batch.items ()

stats_np = statistics.numpy()

X
y

outputs = model (x)

loss = criterion(outputs, y)

pred_topl = torch.argmax(outputs, dim=1)
acc = (pred_topl == y).float().mean().item()

top3 = torch.topk(outputs, k=3, dim=1).indices
y_expanded = y.unsqueeze (1) .expand_as(top3)

3 Implementation

torch.tensor(stats_np, dtype=torch.float32).to(device)
torch.tensor (labels.numpy (), dtype=torch.long).to(device)

k3_acc = (top3 == y_expanded) .any(dim=1).float () .mean().item

= O

print (f"Eval -> Loss: {loss.item():.4f}, Accuracy: {acc:.4f},
<~ Top-3 Accuracy:

{k3_acc:.4f}")

preds = torch.softmax (outputs, dim=1).cpu().numpy ()
all_preds.append(preds)
all_labels.append(labels.numpy ())

all_preds = np.concatenate(all_preds, axis=0)
all_labels = np.concatenate(all_labels, axis=0)

return all_preds, all_labels

Listing 3.17: Custom predict function for FFNN

3.3.5 LSTM PyTorch class

It is now time to discuss our second architecture, namely the LSTM. The main difference between
the two architectures lies in the class definition, that is, how the function maps inputs to outputs.
In fact, the structure of the LSTM class is very different from that of the FFNN, while the training

process, as we will see, is identical for both.
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Let us start by examining the inputs received by the class:

The LSTM class defines a recurrent neural network model based on LSTM. The parameter vocab_size
indicates the size of the vocabulary, i.e., the total number of distinct tokens (see section 2.3)
present in the input data, and it is used to build the initial embedding layer. The embedding di-
mension is specified by embed_dim, which determines how rich the representation of each token
will be: larger embeddings can capture more detailed information but also increase the model’s
complexity. The parameter hidden_size represents the number of hidden units in the LSTM
and defines the network’s capacity to store long-term information. output_size indicates the
number of neurons in the final layer, corresponding to the number of classes in the classification
problem or the desired output dimension. The parameter num_layers establishes the number
of stacked LSTM layers, while dropout specifies the dropout probability between LSTM layers,
useful to reduce overfitting when multiple layers are used.
1 class LSTM(nn.Module):

2 def __init__(self, vocab_size, embed_dim, hidden_size, output_size,
< num_layers=1, dropout=0.0):

3 super () . __init__(Q)

4

5 self .vocab_size = vocab_size

6 self .embed_dim = embed_dim

7 self .hidden_size = hidden_size
8 self .output_size = output_size
9 self .num_layers = num_layers

10 self.dropout = dropout

1

12 self .embedding = nn.Embedding(
13 num_embeddings=vocab_size,
14 embedding_dim=embed_dim,

15 padding_idx=0

16 )

Listing 3.18: Input LSTM class

Within the class, the LSTM layer itself is defined using nn . LSTM. This PyTorch function is used
to define the structure of our architecture, to which the layers and parameters such as dropout are
passed. After the LSTM layer, a linear layer (self.fc) is defined, which takes the hidden state
of the LSTM as input and produces the final output of dimension output_size, corresponding
to the classes of the classification problem or the desired output dimension.

self.lstm = nn.LSTM(
input_size=embed_dim,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True,
dropout=dropout if num_layers > 1 else 0.0
)

self.fc = nn.Linear(hidden_size, output_size)

Listing 3.19: Input LSTM class

® N ;R W N =
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The forward method defines the flow of data through the LSTM model. Initially, the dimension
of the input tensor x is checked. If x has three dimensions and the last dimension is equal to 1, it
is removed using x . squeeze (2) to ensure that the input has the correct shape for the embedding
layer.

Next, the input tokens are converted into dense vectors, that is a vector where every element con-
tains a significant information, through the embedding layer defined as self .embedding(x),
producing the tensor emb. This tensor is then passed to the LSTM layer, self.lstm(emb),
which returns two main values: output, containing the hidden states for each time step, and
hidden, representing the last hidden state of each LSTM layer.

To obtain a compact representation of the entire sequence, the last hidden state of the final layer
is selected, last_hidden = hidden[-1]. This vector summarizes the sequential information
learned by the LSTM. Finally, 1ast_hidden is passed through the linear layer self . fc to obtain
the logits.

def forward(self, x):

if x.dim() == 3 and x.size(2) ==
X = x.squeeze(2)

emb = self.embedding(x)

output, (hidden, _) = self.lstm(emb)
last_hidden = hidden[-1]

logits = self.fc(last_hidden)

return logits

Listing 3.20: Forward method LSTM class

3.3.6 LSTM train function

The LSTM training function in train.py is generic with respect to the type of model: for both
FFNN and LSTM, the training loop handles taking data batches, computing the loss, backprop-
agating the gradient, and updating the weights via the optimizer. In other words, the training
loop does not “know” whether it is working on an FFNN or an LSTM: it applies the same op-
timization procedure. The substantial difference lies in how each model transforms inputs into
outputs, meaning the input to output mapping is architecturally different, but the weight update
mechanism remains the same.

The only note to make is the following. During the conversion of data into Torch tensors, the
LSTM performs the following conversion:

stats_np = statistics.numpy() .astype(int)

Listing 3.21: LSTM tensor conversion

In contrast, as we saw in section 3.3.3 the FFNN simply performs:
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stats_np = statistics.numpy()

Listing 3.22: FFNN tensor conversion

The difference between the two cases is not arbitrary, but depends on the type of data each ar-
chitecture expects as input. In train.py, when working with an FFNN, statistics are al-
ready continuous numerical features (floats), derived from the computation of statistics on the
encrypted text, so it is sufficient to convert them into a float tensor using . numpy (). This is con-
sistent with the linear operations and ReLU activations in the FFNN, which operate on float32
values.

In the case of the LSTM, however, input sequences are often treated as discrete indices or integer
values representing tokens or symbols. For this reason, a different conversion is applied. This
way, the values are integers, which can then be transformed into embeddings or processed as
sequences.

3.3.7 LSTM prediction function
3.3.8 Other changes

Additionally, I introduced two minor but necessary modifications to improve the compatibility
between the legacy script and the newly implemented PyTorch-based architecture. These changes
involve printing a model summary and saving the model with the appropriate file extension.

Model summary To visualize the architecture of the model, I used the torchsummary library.
If the model does not implement its own summary () method, the code falls back to calling
summary () with a predefined input size. This is particularly helpful when debugging or validat-
ing the model structure.

if architecture in ("FFNN", "CNN", "LSTM", "Transformer") and extend_model is
~— None:
if hasattr (model, "summary"):
model . summary ()
else:

summary (model, input_size=(1, 724))

Listing 3.23: Printing the model summary

Here the visualization of the summary for the FFNN architecture:

Layer (type:depth-idx) Output Shape Param #
FFNN [1, 61] -
Sequential: 1-1 [1, 61] -—
Linear: 2-1 [1, 543] 393,675
RelU: 2-2 [1, 543] --
Linear: 2-3 [1, 543] 295,392
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RelU: 2-4 [1, 543] o
Linear: 2-5 [1, 543] 295,392
RelLU: 2-6 [1, 543] -=
Linear: 2-7 [1, 61] 33,184

Total params: 1,017,643

Trainable params: 1,017,643
Non-trainable params: O

Total mult-adds (Units.MEGABYTES): 1.02

Input size (MB): 0.00
Forward/backward pass size (MB): 0.01
Params size (MB): 4.07

Estimated Total Size (MB): 4.09

Listing 3.24: Printing the model summary of FFNN

And here is the summary of LSTM:

Layer (type:depth-idx) Output Shape Param #
SN

Embedding: 1-1 [1, 1000, 64] 3,584

LSTM: 1-2 [1, 1000, 500] 1,132,000

Linear: 1-3 [1, 61] 30,561

Total params: 1,166,145
Trainable params: 1,166,145
Non-trainable params: O
Total mult-adds (G): 1.13

Input size (MB): 0.00
Forward/backward pass size (MB): 4.51
Params size (MB): 4.66

Estimated Total Size (MB): 9.18

Listing 3.25: Printing the model summary of LSTM

Saving model Originally, models were saved using the . h5 extension. However, for the PyTorch-
based models, it was necessary to switch to the . pth format. To avoid overwriting existing files,
the function save_model (see appendix lines from 1218 to 1294) dynamically appends an in-
cremental number to the file name. Moreover, if a specific name is provided via ——-model_name
(see section 2.3).

Another important modification involved the torch . save function. Unlike Keras’ model . save,
which stores both the weights and the architecture (such as input size, output size, and hidden layer
configuration), PyTorch’s torch.save saves only the model’s weights via the state_dict ().
To reproduce the same behavior, it was necessary to manually include the structural parameters
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when saving the model. This was achieved by using the FFNN class of PyTorch (see section 3.3.2)
to pass all required values.

if args.model_name == 'm.hb':
i=1
base_name = args.model_name.split('."') [0]
extension = '.pth' if architecture == "FFNN" else '.h5'

while os.path.exists(os.path.join(args.save_directory, base_name +
< str(i) + extension)):

i+= 1

model_name = base_name + str(i) + extension
else:

model_name = args.model_name

if architecture == "FFNN":

model_name = model_name.replace('.h5', '.pth')
Listing 3.26: Saving the model with correct extension

if architecture in ("FFNN", "LSTM"):

state_dict = {
'model_state_dict': model.state_dict(),

'hidden_size': model.hidden_size,
'output_size': model.output_size,
}
if architecture == "FFNN":
state_dict['input_size'] = model.input_size
state_dict['num_hidden_layers'] = model.num_hidden_layers
elif architecture == "LSTM":
state_dict['vocab_size']l = model.vocab_size
state_dict['embed_dim'] = model.embed_dim
state_dict['num_layers'] = model.num_layers

state_dict['dropout'] = model.dropout

torch.save(state_dict, model_path)

Listing 3.27: Saving the model with correct extension

Input validation Last but not least, the input validation logic was modified. Previously, the
script accepted only filenames with the .h5 extension, consistent with Keras models. However,
as previously discussed, PyTorch models are conventionally saved using the .pth extension.
Therefore, the validation step was updated to enforce this requirement, ensuring that the file
extension matches the framework being used.

1 if os.path.splitext(args.model_name) [1] not in ('.h5', '.pth'):

2

print ('ERROR: The model must have extemnsion ".h5" (for Keras) or ".pth" (
— for PyTorch).',file=sys.stderr)
sys.exit (1)

Listing 3.28: Newer input validation
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3.4 Evaluation code of the model

After porting train. py to PyTorch and successfully training models, I proceeded to adapt the
eval.py script accordingly, see pages 61 and 79. Unlike train. py, I chose to retain the original
function flow already present in eval . py, modifying only the conditional statements responsible
for selecting the correct evaluation logic for the specified architecture.

3.4.1 Benchmark function

The benchmark function was adapted to evaluate PyTorch models using tensors. The evaluation
is now performed as seen in listing 3.29:

if architecture == ("FFNN", "LSTM"):
if hasattr (model, "evaluate"): # Keras model
results.append(model.evaluate(statistics, labels, batch_size=args.
<> batch_size, verbose=1))
else: # PyTorch model
X = torch.tensor(statistics.numpy(), dtype=torch.float32)
y = torch.tensor (labels.numpy(), dtype=torch.long)
with torch.no_grad():
outputs = model(x)

loss = F.cross_entropy(outputs, y)
topl = torch.argmax(outputs, dim=1)
acc = (topl == y).float().mean()

top3 = torch.topk(outputs, k=3, dim=1).indices
y_expanded = y.unsqueeze (1) .expand_as(top3)
k3_acc = (top3 == y_expanded).any(dim=1).float () .mean()

Listing 3.29: New evaluation for FFNN and LSTM architecture

As can be observed, the evaluation method is identical to the one carried out by the predict
function in train.py (see section 3.3.4). This is because the evaluations must be consistent for
both cases, meaning that they should yield more or less the same result.

3.4.2 Model loading

The 1load_model function was updated to support PyTorch . pth models. Parameters previously
saved using torch.save are now correctly reloaded with torch.load. listing 3.30 allow the
checkpoint saved on disk with torch.save() to be restored, and depending on the chosen ar-
chitecture (FFNN or LSTM), the appropriate class is initialized by passing the stored parameters
(input dimensions, hidden size, number of layers, etc.). Subsequently, the model weights are
loaded with model.load_state_dict(...) and the model is set to eval () mode in order to
be used exclusively for prediction, without further training.
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if architecture in ("FFNN", "LSTM") and model_path.endswith(".pth"):

if architecture == "FFNN":
from cipherTypeDetection.train import TorchFFNN
elif architecture == "LSTM":

from cipherTypeDetection.train import TorchLSTM
checkpoint = torch.load(model_path, map_location=torch.device("cpu"))

if architecture == "FFNN":
model = TorchFFNN(
input_size=checkpoint['input_size'],
hidden_size=checkpoint['hidden_size'],
output_size=checkpoint ['output_size'],
num_hidden_layers=checkpoint ['num_hidden_layers']
)
elif architecture == "LSTM":
model = LSTM(
vocab_size=checkpoint['vocab_size'],
embed_dim=checkpoint ['embed_dim'],
hidden_size=checkpoint['hidden_size'],
output_size=checkpoint ['output_size'],
num_layers=checkpoint ['num_layers'],
dropout=checkpoint ['dropout']

model.load_state_dict (checkpoint['model_state_dict'])
model .eval ()

config.FEATURE_ENGINEERING = (architecture == "FFNN")
config.PAD_INPUT = (architecture == "LSTM")

return model

Listing 3.30: Setting model parameters

In addition, in this way, if an FFNN is loaded, FEATURE_ENGINEERING=True and PAD_INPUT=False
are set (see section 2.4 and section 2.3).

Conversely, if an LSTM is loaded, FEATURE_ENGINEERING=False and PAD_INPUT=True, so
that the model receives tokenized ciphertexts instead of numerical features.

In addition, I changed the previous logic that always evaluated models as ensembles. Now, the
model is only wrapped in a RotorDifferentiationEnsemble when rotor ciphers are actually
present. This modification was introduced to avoid unnecessary overhead when evaluating mod-
els that do not involve rotor ciphers, ensuring that the ensemble mechanism is only applied when
it is actually required:

has_rotor_ciphers = any(c in config.ROTOR_CIPHER_TYPES for c in cipher_types)

if has_rotor_ciphers:
rotor_only_model_path = args.rotor_only_model
if not os.path.exists(rotor_only_model_path):
raise FileNotFoundError (f"Rotor-only model is required but not found
< at {rotor_only_model_pathl}")
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with open(rotor_only_model_path, "rb") as f:
rotor_only_model = pickle.load(f)
return RotorDifferentiationEnsemble (architecture, model,

— )

rotor_only_model

return model
Listing 3.31: Changes to Ensemble architecture

3.4.3 Input validation

Finally, the input validation in the main function was extended to support models saved with the
.pth extension:

if os.path.splitext(args.model) [1] not in ('.h5', '.pth'):
print ('ERROR: The model must have extension ".h5" (for Keras) or ".pth" (
— for PyTorch FFNN and LSTM).', file=sys.stderr)
sys.exit (1)

Listing 3.32: Newer input validation
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As I have already discussed in section 3.4, the final part of this work consists of the evaluation
phase, that is, testing the model with new data in order to obtain meaningful results such as
accuracy. In section 3.4, the goal was to correctly implement the code that enables this phase,
whereas in this chapter we will compare the obtained results, aiming to contrast the Keras and
PyTorch implementations.

Before analyzing the content of this chapter, I need to clarify the purpose of these evaluations.
The goal of this thesis is not to improve the performance of the app; therefore, as we will see, I
will generally aim to replicate the results achieved by the previous Keras implementation. This is
because I do not have the exhaustive knowledge required to enhance a learning model like NCID,
but I have worked to make the two implementations as similar as possible.

After implementing our architectures, as discussed in the previous chapter, it is now time to test
the models with large amounts of data. Until now, I had been testing all modifications locally
with parameters that allowed for simple execution, mainly to highlight potential issues in the data
flow. However, these runs had no significance in terms of the actual evaluation of the model and
the study of its accuracy.

To perform more meaningful evaluations, I was able to use a machine at the Universitit der
Bundeswehr Miinchen, namely the NVIDIA DGX H100, with the assistance of Doris Behrendt
and Maik Bastian. For details on the specifications of the machine used, you can consult the
following website [16]. A small clarification: I did not use the full power of the DGX machine;
I was only able to train the model on a single GPU.

In order to run the modifications I implemented, I had to create Dockerfiles which, once un-
packed on the cluster, allowed the execution of the code from my personal GitHub repository. A
Dockerfile is a simple text file that contains the instructions to build a Docker container, that is,
an isolated environment in which to run an application in exactly the same way on any machine.

In listing 4.1 depicts the command line used to run the dockerfile previously built. I won’t share
the build command since it contains reserved informations.

docker run -v $(pwd)/output:/app/ncid/cipherTypeDetection/output -it --gpus
<= all --name ncid-keras-benchmark ncid-keras-benchmark

Listing 4.1: Docker run command

That said, let’s start analyzing the results obtained.
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4.1 First runs
Result from Keras Initially, I used the Keras implementation to perform a small training run
with the following input data (see section 2.3):

e train_dataset_size = 1000
* batch_size = 256

* dataset_workers = 4

* min_train_len = 100
* max_train_len = 1000
* min_test_len = 100

* max_test_len = 1000

* max_iter = 10000

The results training the FFNN were the following:

Accuracy: 0.1984 k3-accuracy: 0.3783

Here, accuracy indicates the probability that the cipher was correctly identified, and k3-accuracy
represents the probability that the correct cipher was among the top 3 most probable predictions.

So now we have a clear goal: to get as close as possible to the results of the Keras implementation.

Result from PyTorch The code has undergone several modifications over the months; indeed,
the first training run with the same inputs yielded these results.

Accuracy: 0.042523, k3-accuracy: 0.075315

Obviously, we were still far from a good implementation. For example, at the beginning I added
an unnecessary data normalization step. This happened because I initially thought that the archi-
tecture class did not receive already normalized inputs. In fact, as we have seen in section 3.2,
the data were already normalized, and therefore performing this operation a second time signif-
icantly worsened the model’s accuracy. In listing 4.2 depicts the redundant normalization step
that was added.

| mean = stats_np.mean(axis=0)

2 std = stats_np.std(axis=0) + 1le-8
3 stats_np = (stats_np - mean) / std

Listing 4.2: Redundant normalization
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So, after discussing it with Maik Bastian, I removed the redundant normalization. Then I obtained
the following results:

Accuracy: 0.076720, k3-accuracy: 0.151515

As can be seen, both the single accuracy and the k3 accuracy improved, although only slightly.
This is where the modification I mentioned in the implementation chapter, which Maik Bastian
pointed out to me (see section 3.3.3), comes into play. After fixing the implementation as dis-
cussed earlier, I finally obtained results similar to those of Keras:

Accuracy: 0.165479, k3-accuracy: 0.364742

Target acquired!

4.2 DGX runs

It was then time to test our models on a large scale using the DGX machine. Below are the
command line hyperparameters:

* train_dataset_size = 976
* batch_size = 64
* dataset_workers = 16

* min_train_len = 100

* max_train_len = 1000
* min_test_len = 100
* max_test_len = 1000

* max_iter = 10000000

To compare the two implementations, I prepared two shell scripts. The one shown in listing 4.3
is the script used on the DGX machine to test the PyTorch implementation. Of course, I also
created a similar one for Keras that I won’t add here:
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BASE_DIR=output

2 mkdir -p "$BASE_DIR"

3
4
5
6

33
34
35
36
37
38
39
40

DATE=$(date "+%Y%m%d")

COMMON_ARGS="--download_dataset=False \
--plaintext_input_directory=../data/gutenberg_en \
--rotor_input_directory=../data/rotor_ciphertexts \
--train_dataset_size=976 \

--dataset_workers=16 \
--batch_size=64 \
--max_iter=10000000 \
--min_train_len=100 \
--max_train_len=1000 \
--min_test_len=100 \
--max_test_len=1000 \
--epochs=1 \
--ciphers=all"

run_benchmark () {
ARCH=$1
for i in {1..3}; do
RUN_DIR="$BASE_DIR/${ARCH} run_ $i"
mkdir -p "$RUN_DIR"
echo "Launching $ARCH run $i..."
python train.py \
--architecture=$ARCH \
$COMMON_ARGS \
--save_directory="$RUN_DIR" \
--model_name="${ARCH}_run_$i.pth" \
> "$RUN_DIR/${ARCH} _var_10000000_run_${i}_${DATE}.txt" \
2> "$RUN_DIR/err_${ARCH}_var_10000000_run_${i}_${DATE}. txt"
done

}

# FFNN
run_benchmark FFNN

# LSTM
run_benchmark LSTM

Listing 4.3: Shell script for PyTorch

The goal is to test the FFNN architecture implementation three times and the LSTM implemen-
tation three times, for both frameworks. This process was carried out using the machine reserved
for these tests, in order to ensure the most accurate results possible.

Several tests were performed to verify whether the implementation was correct, whether the
models were being saved properly, and to address other potential issues. From this point on, I
will report only the results of one result for both Keras and PyTorch. A quick note: the PyTorch
results date back to the test performed on August 8, while the Keras results refer to the test
conducted on October 6. The Keras results were repeated later because some anomalies had
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been found in the model saving process, which prevented a correct evaluation.

4.2.1 Results from Keras

Once again, we will use the results obtained as a benchmark to assess whether we have success-
fully implemented our architectures. Moreover, it is fundamental introducing a the concept of
Precision, Recall and FI-score. Precision indicates the percentage of correct positive predic-
tions, that is, how often the model is right when it predicts a positive class. Recall measures
the model’s ability to identify all actual positive instances, that is, how many of the real positive
classes have been correctly recognized. Precision and recall differ in focus: precision empha-
sizes the accuracy of positive predictions, while recall emphasizes the completeness of capturing
all positive instances. The F1-score is a metric used to evaluate the performance of a classifica-
tion model, especially in cases where the data are imbalanced, meaning that some classes have
significantly more samples than others.

.. TP
Precision = ——— 4.1
TP+ FP
TP
Recall = ——— 4.2)
TP+ FN

where TP stands for true positive, F P for false positive and FN for false negative. All three
variables (T P, F P and F'N) are non-negative integer counts that represent the number of samples
in each category. The F1 score is defined as the harmonic mean between precision and recall:

Flen. Prec.is.ion - Recall 43)
Precision + Recall

This value ranges from O to 1, where 1 indicates perfect performance (both precision and recall
are equals to 1), and O indicates the worst performance.

Now we will discuss the numerical results of the training sessions. To provide a direct reference,
I include a list of the ciphers in their order of appearance, sorted alphabetically. This is the same
order that appears when we obtain the results during the model evaluation.

1. amsco 2. autokey 3. baconian 4. bazeries 5. beaufort 6. bifid

7. cadenus 8. checkerboard 9. columnar_transposition 10. condi 11. cmbifid 12. digrafid

13. foursquare  14. fractionated_morse  15. grandpre 16. grille 17. gromark 18. gronsfeld

19. headlines ~ 20. homophonic 21. key_phrase 22. monome_dinome 23. morbit 24. myszkowski

25. nicodemus  26. nihilist_substitution ~27. nihilist_transposition  28. null 29. numbered_key 30. periodic_gromark
31. phillips 32. phillips_rc 33. plaintext 34. playfair 35. pollux 36. porta

37. portax 38. progressive_key 39. quagmirel 40. quagmire2 41. quagmire3 42. quagmire4

43. ragbaby 44. railfence 45. redefence 46. route_transposition  47. running_key 48. seriated_playfair
49. slidefair 50. swagman 51. tridigital 52. trifid 53. tri_square 54. two_square

55. variant 56. vigenere 57. enigma 58. m209 59. purple 60. sigaba

61. typex

If you wish to skip directly to the comparison, see section 4.3.
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FFNN results With the input hyperparameter specified in section 4.2, we obtained the follow-
ing results for the Keras FFNN:

Total accuracy: 0.7427164374276443

Total k3: 0.9042634659180658

precision: [0.84247601 0.70099323 1. 0.99434685 0.23120063 0.76061568
0.87966872 0.95546632 0.93239781 0.88377353 0.80099023 0.77054351
0.93703211 0.99554579 0.94213309 0.9879969 0.89974178 0.7988629
0.99993887 0.8506699 0.99640551 0.99546737 0.92647763 0.63775634
0.85385154 0.99027014 0.73630802 1. 0.99939062 0.97517683
0.86251165 0.7487211 0.99750623 0.96016622 0.98180602 0.47141996
0.99668019 0.39556921 0.16037532 0.20766575 0.22230205 0.19764465
1. 0.41750766 0.43044917 0.99993903 0.49032965 0.84550003
0.48359369 0.99441375 0.77116174 0.8177442 0.95524203 0.89872368
0.2066785 0.20256524 0.31359946 0.46392964 0.34882021 0.29313037
0.32087629]

recall: [0.92615854 0.78323171 1. 0.99743902 0.23378049 0.86176829
0.66605189 0.9720122 0.97640244 0.73859756 0.75957317 0.83420732
0.81664634 0.99487805 0.99969512 0.93353659 0.97731707 0.97670732
0.99743902 0.98335366 0.9972561 0.7097561 0.94432927 0.4797561
0.96719512 0.99914634 0.92469512 1. 1. 0.89109756
0.73329268 0.89243902 1. 0.98621951 0.895 0.71560976
0.98853659 0.73817073 0.09067073 0.18335366 0.09432927 0.14121951
0.99963415 0.34054878 0.57908537 1. 0.76365854 0.8552439
0.75128049 0.97689024 0.87103659 0.74579268 0.95780488 0.85871951
0.11359756 0.22341463 0.16957317 0.6979878 0.20371951 0.2747561
0.12146341]

f1: [0.88233756 0.73983412 1. 0.99589054 0.2324834 0.80803865
0.7580995 0.96366824 0.95389289 0.80469009 0.7797321 0.80111258
0.87270713 0.99521181 0.97006094 0.95999498 0.9369264 0.87887849
0.99868738 0.91221223 0.99683062 0.82867618 0.93531828 0.54758673
0.90699603 0.99468844 0.81981836 1. 0.99969521 0.93124323
0.79267047 0.8142873 0.99875156 0.9730185 0.93639553 0.56839811
0.99259169 0.5151051 0.11584606 0.19475389 0.1324543 0.16473433
0.99981704 0.37512174 0.49382523 0.99996951 0.59720566 0.85034405
0.58842352 0.98557411 0.81806208 0.78011289 0.95652174 0.87826629
0.1466121 0.2124797 0.22012031 0.55738423 0.25721765 0.28364598
0.17622081]

LSTM results In this paragraph the Keras LSTM results are shown:

Total accuracy: 0.699571922430185
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Total k3: 0.8750897243388391

precision:

0

recall:
0.

O O O OO OO oo

O O O OO OO OO O

0
1
0
0
0.
0
0
0
0

.73410459
.920568659

.66583541
.60972544
93694264
.99939036

.1938861
.24711656]

47924598
.90335366
.99695122
.71634146
.76914634
.9929878
.99957317
.88682927
.33878049
.18420732]

(o

0
0
0
0
0
0
0

.7126617 O.
.21226216

0
0

0
0
0
0
0
0
0
0

.87641498
.84212268
.97330374
.99115871
.9971741

.62101725
.30687831
.40662154

96941424

0.
0.98609756
0.95890244
0.98689024
0.
0
0
0
0

.65051067
.6456672

.985661677
.94371099
.65088876
.9995122

.16879706
.37781341
.96679606
.25221621

[0.91585366 0.65634146 1.
.77603659
.98926829
.97067073
.9897561

.51817073
.51280488
.43585366
.95664634
.24487805

74054878

9995122

.06878049
.37359756
.98713415
.19603659

O OO OO+ OO OO

O OO OO+ O OO

.99993903
.32411558
.99636811
.99415133

.62416934
.22280193
.99993902
. 76808586
.42009865

O OO OO OO OO

.97511339
.62267438
.99944673
.98101886

.97185539
.20307135
.53409208
.T7763496
.21202813

O OO O OO O O oo
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.23158169 0.62077346
.79025262

.85276796

.63922907

.99129173

.61542203

.18400538

.6180449

. 76023877

.21203855

0.99628049 0.21658537 0.5295122

.36591463
.98695122
.98463415

.86481707
.14060976
.99987805
. 78981707
.65432927

0.
0.99134146
0.97695122
0.99987805
0.
0
0
0
0

54487805

99170732

.12981707
.6295122

.70091463
.15993902

0

0
0
0
0
0
0
0
0

. 75536585
.97121951
. 38829268
.9995122

.84871951
.08347561
.5404878

.83871951
.07109756

[0.8957004 0.65341306 0.99996951 0.9855833 0.22383263 0.57152259

.57990935
.91188871
.99847328
.69016567
.68022002
.96415145
.99948175
.79026299
.24662642
.21107424]

0

0
0
0
0
0
0
0
0

.80773014
.98122108
.98080774
.99345125
.56495147
.38397443
.42073045
.96298797
.22740657

0.
0.98585711
0.95124607
0.78442301
0.9995122
0.
0
0
0

68986083

08719642

.37569366
.97685925
.22060589

4.2.2 Results from PyTorch

0.
.99163731
.98936985

3437491

0
0
1.
0.72504665
0.
0
0
0

17241121

.99990853
.7787999
.51168224

0

0
0
0
0.
0
0
0
0

.58118435
.9953776

.97898081
.99993902

981681

.15838417
.57788973
. 73728433
.18233638

0

0
0
0
0
0
0
0
0

.77241551
.90814756
.48311964
.995638499
.71348387
.11484899
.57667035
.79755313
.10648888

Now we present the PyTorch results, after which we will draw some conclusions.

FFNN results

Total accuracy: 0.7313708694494867

Starting with the FFNN:
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Total k3: 0.9020696031909635

precision: [0.77108553 0.64081574 1. 0.99379977 0.22407726 0.77174341
0.94204352 0.99584505 0.88031958 0.75089452 0.83762434 0.80873805
0.89755428 0.9911354 0.92796322 0.99900431 0.88510873 0.80968893
0.99987772 0.64407725 0.9967045 0.90825141 0.86191933 0.46486261
0.95426792 0.98740129 0.69856062 1. 0.99266889 0.97904397
0.76588775 0.86504006 0.99350689 0.96091244 1. 0.31089329
0.99572101 0.3690516 0.16369407 0.19653499 0.20846609 0.16659684
1. 0.35294118 0.43524855 1. 0.57956381 0.83109792
0.67200429 0.99152857 0.86308309 0.79863337 0.9533808 0.82372935
0.19591978 0.19693404 0.32494279 0.53625992 0.43583976 0.27847226
0.31505273]

recall: [0.9486084 0.8170166 1. 0.99786377 0.16711426 0.83782959
0.57701757 0.9508667 0.98858643 0.90942383 0.69897461 0.78973389
0.87805176 0.99633789 0.9977417 0.9185791 0.98132324 0.98339844
0.99816895 0.91595459 0.99682617 0.93048096 0.94561768 0.47601318
0.95391846 0.99975586 0.97454834 1. 1. 0.87255859
0.85620117 0.72491455 0.99926758 0.98730469 0.49353027 0.73370361
0.99420166 0.80847168 0.06610107 0.19525146 0.0838623 0.14562988
0.99981689 0.02783203 0.70648193 1. 0.70068359 0.85473633
0.53533936 0.97869873 0.74871826 0.80609131 0.95611572 0.94665527
0.1729126 0.18896484 0.09533691 0.65985107 0.24835205 0.29504395
0.10028076]

f1: [0.85068418 0.71826792 1. 0.99582762 0.19144845 0.80342981
0.71567321 0.97283627 0.93131702 0.82259089 0.76204418 0.799123
0.88769592 0.99372984 0.96158824 0.95710515 0.93073606 0.88812943
0.9990226 0.75632497 0.99676533 0.91923181 0.90183067 0.47037182
0.95409316 0.99354017 0.8137917 1. 0.99632096 0.9227393
0.80853026 0.78880255 0.99637891 0.9739298 0.66089089 0.43673025
0.99496075 0.50677175 0.09417391 0.19589112 0.11960827 0.15540937
0.99990844 0.05159538 0.53864768 1. 0.63439434 0.8427514
0.59593695 0.98507188 0.80184332 0.80234501 0.95474631 0.88092466
0.18369861 0.19286715 0.14742107 0.59167032 0.31640747 0.28651869
0.15213667]

LSTM results

Total accuracy: 0.7012079733647427

Total k3: 0.8742761016214723

precision: [0.85796652 0.65652963 0.99987794 0.99353659 0.19896735 0.68323991
0.56204133 0.85257582 0.8650025 0.27295937 0.64737512 0.83648348

0 0

0 0
0.85027119 0.98911391 0.99039579 0.99307159 0.99993889 0.90409117
0.99993883 0.99721172 0.91260593 0.99652397 0.98542363 0.71317752
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recall:
0.
.94726562
.99768066
.84283447
.76220703
.98016357
.99981689
.86663818
.22814941
.19873047]

O OO OO OO oo

O O O OO OO OO O

O OO O OO

.48079802
.67685637
.97486797

.76714031
.20497916
.28153913]

41035906

0

0
0
0
0
0
0
0
0

.99211117
.63413706
.32358401
.35910812
.92055668
.19357802

0.
.98815918
.94647217
.88311768
.99926758
.06585693
.33087158
.98852539
.22399902

O O O O OO oo

.58891286
.99987786
.13672073
.356320563
.995688022
.23506053

[0.94458008 0.66278076 1.
.82525635
.99267578
.9822998
.99786377
.60998535
.43621826
.52099609
.96893311
.32159424

52874756

O OO OO+ O OO

.99987794 0.
.8504757 0.
.19156903 0.
.99993895 0.
.71154232 0.
.4480726 O.

99993897
98306821
18345945
52338435
72936094
22592295

O O O O OO
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.99871982
.68676212
.18534671
.66906094
.81924149
.201594

0.99450684 0.16699219 0.51330566

.45025635
.99731445
.99737549

.80749512
.19360352
.99969482
.8661499

.58459473

0.
.99865723
.99029541

0
0
1
0
0
0
0
0

55847168

.99578857
.08435059
.60107422
.8449707

.13745117

0

0
0
0
0
0
0
0
0

.6428833

.94415283
.43768311
.99993896
.83435059
.02593994
.69360352
.87939453
.07873535

[0.89919238 0.65964038 0.99993897 0.99402147 0.18158288 0.58620569

.47436993
.89615151
.99880847
.61230462
.71700063
.9775086
.99990844
.81385951
.21594454
.23299581]

0

0
0
0
0
0
0
0
0

.83869367
.99089164
.9896996

.99497916
.62182678
.3715526

.42516312
.94412561
.24168062

4.3 Comparison

0.
.98927622
.92923058
.7066149

.99957262
.08889438
.34167402
.99218918
.22939651

0
0
0
0
0
0
0
0

65631274

0.

0
0
0
0
0
0
0
0

3398756 0.
.9951885 0.
.99694955 0.
.99993897 0.
.8284283 O.
.1925809 O.
.99981687 0.
.78127065 0.
.50730932 0.

59964611
99929765
98785351
99996948
98938751
11556633
55954545
78292097
17091682

0

0
0
0
0
0
0
0
0

.72701546
.92368782
.54245622
.99932902
.75339635
.04551052
.68111121
.84825292
.11324233

The reported evaluations show very satisfactory results regarding the achievement of our goal,
which, I would like to recall once again, was not to improve our previous implementation in
terms of model accuracy, but rather to obtain results with PyTorch that were consistent with those
achieved using Keras. At first glance, the two implementations behave in a very similar way, as
can be seen in table 4.1 and table 4.2. It should also be reminded that both implementations were
trained with identical hyperparameters, in order to ensure a fair evaluation.

Starting from the FFNN results, the Keras model achieved a total accuracy of 74.27% and a top-3
accuracy of 90.04%. The same architecture implemented in PyTorch reached a total accuracy of
73.13% and a top-3 accuracy of 90.02%. The total accuracy result is perfectly in line with our
expectations, while the total accuracy is slightly lower. These discrepancies are not concerning,
but they often result from differences between the two frameworks, which use slightly different
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Keras  PyTorch Keras  PyTorch

FFNN  74.27% 73.13% FFENN  90.04%. 90.02%

LSTM 69.95% 70.12% LSTM 87.50%  87.42%
Table 4.1: Table of total accuracies Table 4.2: Table of top 3 accuracies

weight initialization or floating-point rounding mechanisms, leading to minor variations in the
results.

Similarly, for the LSTM architecture, the Keras implementation achieved a total accuracy of
69.95% and a top-3 accuracy of 87.50%, while the PyTorch version obtained a total accuracy of
70.12% and a top-3 accuracy of 87.42%. As with the FFNN, these small discrepancies are due
to operational differences between the frameworks.

Let’s now take a look to the evaluation metrics. A more detailed analysis of these highlights
that both implementations perform consistently across most classes, with minor variations in
Precision, Recall, and F1-score. Overall, the Keras model shows slightly higher values for these
metrics.

The Precision values indicate that both models are generally reliable when predicting a positive
class, although Keras tends to produce fewer false positives in several cipher categories. The
Recall values are also comparable, suggesting that both models are capable of identifying the
majority of the true instances. However, in a few specific classes, PyTorch shows lower Recall,
meaning it occasionally fails to recognize some correct samples that Keras is able to detect.

The F1-score, which combines Precision and Recall into a single measure, reflects this balance.
The Keras implementation achieves slightly higher F1-scores overall, confirming its better equi-
librium between accurate and complete predictions.

56



5 Conclusion

As we have seen, the project aimed at the development and evaluation of FFNN and LSTM archi-
tectures, now familiar to you, for the automatic classification of classical ciphers, with particular
attention to the comparison between implementations in Keras and PyTorch.

We started from the NCID application, analyzing what it is, how it works, its connections with
cryptography, and the technologies it relies on. This provided the necessary foundation for un-
derstanding the work carried out. We began by reviewing the fundamentals of Machine Learning,
including the concept of statistical features, and comparing the two frameworks Keras and Py-
Torch.

All of this served as preparation for the core part of the project: the implementation. In this
phase, we analyzed the data flow within the NCID app and examined each stage: the extraction
of plaintexts and their encryption, the preprocessing of texts and the calculation of statistical
features, the training and validation of the models, and finally their evaluation. We highlighted
the technical differences between the two frameworks and solved some technical issues. The
most significant issues encountered were the incorrect implementation of data normalization and
the improper optimization of gradients during model training, which, however, were resolved as
discussed in chapter 3.

We concluded the work by comparing the results obtained from the Keras and PyTorch imple-
mentations. As already mentioned, the goal was not to outperform the previous implementation,
but to replicate it accurately, thus providing a solid starting point for anyone working on this
project. As shown in chapter 4, this goal was successfully achieved for both the FFNN and
LSTM architectures.

Looking ahead, the work could be extended by implementing in PyTorch the remaining architec-
tures, such as Transformer and Naive Bayes, as well as by making more in-depth modifications
to the training and evaluation cycles. I hope that the project has provided a concrete contribution
to the development of the NCID app, offering both significant experimental results and a useful
foundation for future developments.
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8 Appendix: Full Python code

Here is listed all the code I wrote during the internship.

8.1 Full listing of train.py

import multiprocessing
from pathlib import Path

import argparse

import sys

import time

import shutil

from sklearn.model_selection import train_test_split
import os

import math

import pickle

import functools

# PyTorch
import torch

import torch.nn as nn

import torch.optim as optim

from torchinfo import summary

import numpy as np

from torch.utils.data import TensorDataset, DataLoader

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.tree import DecisionTreeClassifier , plot_tree

from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.naive_bayes import MultinomialNB

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

import matplotlib.pyplot as plt

from datetime import datetime

# This environ variable must be set before all tensorflow imports!

os.environ[ TF_CPP_MIN_LOG_LEVEL’] = '3~

import tensorflow as tf

from tensorflow.keras.metrics import SparseTopKCategoricalAccuracy

from tensorflow.keras.optimizers import Adam # , Adamax

import tensorflow_datasets as tfds

sys.path.append(”../7)

from cipherTypeDetection.nullDistributionStrategy import NullDistributionStrategy

import cipherTypeDetection.config as config

from cipherTypeDetection.trainingBatch import TrainingBatch

from cipherTypeDetection.cipherStatisticsDataset import RotorCiphertextsDatasetParameters ,
< CipherStatisticsDataset

from cipherTypeDetection.predictionPerformanceMetrics import PredictionPerformanceMetrics

from cipherTypeDetection. miniBatchEarlyStoppingCallback import MiniBatchEarlyStopping

from cipherTypeDetection.transformer import TransformerBlock , TokenAndPositionEmbedding

from cipherTypeDetection.learningRateSchedulers import TimeBasedDecayLearningRateScheduler ,

tf .debugging.set_log_device_placement(enabled=False)

PlaintextPathsDatasetParameters ,

CustomStepDecayLearningRateScheduler

# always flush after print as some architectures like RF need very long time before printing anything.

print = functools.partial (print, flush=True)
for device in tf.config.list_physical_devices( GPU’):
tf.config.experimental .set_memory_growth(device , True)

class FFNN(nn.Module) :
def __init__(self, input_size , hidden_size , output_size , num_hidden_layers):

super (). __init__()

# saves parameters so that they can be saved and loaded later

self . input_size = input_size
self.hidden_size = hidden_size
self . output_size = output_size

self .num_hidden_layers = num_hidden_layers
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109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

layers = [nn.Linear(input_size ,
for _ in range(num_hidden_layers — 1):
layers += [nn.Linear(hidden_size ,
layers.append(nn.Linear (hidden_size ,
self.net = nn.Sequential (xlayers)

e
®
@

forward (self , x):
return self.net(x)

class LSTM(nn.Module) :

hidden_size), nn.ReLU() ]

hidden_size), nn.ReLU() |
output_size))

output_size ,

def __init__(self, vocab_size, embed_dim, hidden_size ,
super (). __init__ ()
# saves parameters so that they can be saved and loaded later
self . vocab_size = vocab_size
self.embed_dim = embed_dim
self.hidden_size = hidden_size
self . output_size = output_size

self .num_layers = num_layers
self.dropout = dropout

# Layers
self.embedding = nn.Embedding (
num_embeddings=vocab_size ,
embedding_dim=embed_dim ,
padding_idx=0
)
self.Istm = nn.LSTM(
input_size=embed_dim,
hidden_size=hidden_size ,
num_layers=num_layers ,
batch_first=True,
dropout=dropout if num_layers > 1 else 0.0
)
self.fc = nn.Linear(hidden_size , output_size)
# B: Batch
# L: Sequence length —
# D: Embedding dimension —
# H: Hidden size —
# C: Number of classes —

size —
number of time steps

number of features in

def forward(self, x):
# x: LongTensor of shape [B, L] or [B, L, I]
if x.dim() 3 and x.size(2) == 1:

X = X.squeeze (2)

emb = self.embedding(x)

# LSTM returns:
# — outpur:
# — hidden: final hidden
# not used as we only need the last hidden state,
output, (hidden, _) = self.lstm(emb)
# hidden[—1] selects the final hidden state
# at the last time step — [B, H]
last_hidden = hidden[-1]

# apply the fully—connected layer to get
logits = self.fc(last_hidden)

logits

return logits

def train_torch_ffnn (model, args,
device = torch.device("cuda”™

train_ds):
model . to (device)

optimizer = optim .Adam(
model . parameters () ,
Ir=config.learning_rate ,
betas=(config.beta_1, config.beta_2),
eps=config.epsilon ,
amsgrad=config . amsgrad

)

criterion = nn.CrossEntropyLoss ()

model . train ()

best_val_acc = 0
patience_counter = 0
patience_limit = 250

train_iter = 0
train_epoch = 0
start_time = time.time ()

number of sequences processed in parallel
(tokens)
size of each ’tokens embedding vector

the LSTM hidden state
dimensionality of the output

in each sequence

logits

# remove channel dimension — [B, L]

# embeddings — [B, L, D]

hidden state at each time step — [B, L, H]
state for each layer — [num_layers, B, H]

but can be useful for debugging

of the top (last) layer

- [B, C]

if torch.cuda.is_available () else “cpu”)
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152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

227
228
229
230
231
232
233
234
235
236
237
238
239

val_data_created = False
x_val = y_val = None

for epoch in range(args.epochs):
while train_ds.iteration < args.max_iter:
training_batches = next(train_ds)
for training_batch in training_batches:

statistics , labels = training_batch.items ()

stats_np = statistics.numpy ()
labels_np = labels.numpy ()

if not val_data_created:

X_train_np , x_val_np, y_train_np,
stats_np , labels_np, test_size=0.3

)
x_val = torch.tensor(x_val_np, dtype=torch.
y_val = torch.tensor(y_val_np, dtype=torch.
val_data_created = True

else:
X_train_np = stats_np
y_train_np = labels_np

# Use DataLoader for creating minibatch
X_train = torch.tensor(x_train_np, dtype=torch
y_train = torch.tensor(y_train_np, dtype=torch

train_dataset = TensorDataset(x_train ,
train_loader = DataLoader(train_dataset ,

batch_losses = []

for x_batch, y_batch in train_loader:

x_batch = x_batch.to(device)
y_batch = y_batch.to(device)

optimizer. zero_grad ()
outputs = model (x_batch)

loss = criterion (outputs, y_batch)

loss .backward ()
optimizer.step ()

batch_losses .append(loss.item())
train_iter += len(y_batch)

epoch_loss = sum(batch_losses) / len(batch_losses)

# —— Validation step —

model . eval ()

with torch.no_grad():
val_outputs = model(x_val)

val_loss = criterion (val_outputs ,
val_pred = torch.argmax(val_outputs ,
val_acc = (val_pred == y_val).float().mean().item ()

top3 = torch.topk(val_outputs, k=3, dim=1).indices
y_val_exp = y_val.unsqueeze (1).expand_as(top3)
y_val_exp).any(dim=1). float () .mean() .item ()

val_k3 = (top3

print (f”Epoch: {epoch+1}, Iteration:

f7Train Loss: {epoch_loss:.4f}, Val Loss:
f”Val Acc: {val_acc:.4f}, Val Top-3 Acc:

model. train ()

# Early stopping check -——

if val_acc > best_val_acc:
best_val_acc = val_acc
patience_counter = 0

else:

patience_counter += 1

if patience_counter >= patience_limit:
print(”Early stopping triggered.”)
elapsed = time.time() — start_time

t = time.gmtime(elapsed)

train_test_split(

float32).to(device)

batch_size=args.batch_size ,

{val_loss.item():.4f},

8 Appendix: Full Python code

shuffle=True)

print (f”Finished training in {t.tm_yday - 1} days {t.tm_hour} hours {t.tm_min} minutes {t.tm_sec} seconds with {
! B

train_iter} iterations.
class DummyEarlyStopping: stop_training

return DummyEarlyStopping () ,

if train_iter >= args.max_iter:
break
if train_iter >= args.max_iter:
break
train_epoch += 1

elapsed = time.time () - start_time
t = time.gmtime(elapsed)

{epoch+1}"

print (f”Finished training in {t.tm_yday - 1} days {t.tm_hour} hours {t.tm_min} minutes {t.tm_sec} seconds with {train_iter} iterations.
< 7)



240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

318
319
320
321
322
323

328

def

class DummyEarlyStopping: stop_training = False

return DummyEarlyStopping (), train_iter , f”Trained for {train_epoch} epochs”

train_torch_
device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)

Istm (model , args, train_ds):

model . to(device)

optimizer =

optim . Adam(

model . parameters () ,
Ir=config.learning_rate ,
betas=(config.beta_1, config.beta_2),
eps=config.epsilon ,

amsgrad=

)

criterion =

config.amsgrad

nn.CrossEntropyLoss ()

model. train ()

best_val_acc

=0

patience_counter = 0
patience_limit = 250

train_iter
train_epoch
start_time

=0

=0
time . time ()

val_data_created = False

x_val = y_val = None

for epoch in range(args.epochs):
while train_ds.iteration < args.max_iter:
training_batches = next(train_ds)

for

training_batch in training_batches:
statistics , labels = training_batch.items ()
stats_np = statistics.numpy().astype(int)
labels_np = labels.numpy ()

if not val_data_created:

8 Appendix: Full Python code

X_train_np , x_val_np . y_train_np, y_val_np = train_test_split(stats_np, labels_np, test_size=0.3)
x_val = torch.tensor(x_val_np, dtype=torch.long).to(device)
y_val = torch.tensor(y_val_np, dtype=torch.long).to(device)
val_data_created = True
else:
X_train_np = stats_np

y_train_np = labels_np

X_train = torch.tensor(x_train_np, dtype=torch.long)
y_train = torch.tensor(y_train_np, dtype=torch.long)
train_dataset = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_dataset ,

batch_losses = []

for x_batch, y_batch in train_loader:
x_batch = x_batch.to(device)
y_batch = y_batch. to(device)

optimizer.zero_grad ()
outputs = model(x_batch)
loss = criterion (outputs ,
loss . backward ()
optimizer.step ()

y_batch)

batch_losses.append(loss.item())
train_iter += len(y_batch)

epoch_loss = sum(batch_losses) / len(batch_losses)
# —— Validation step —

model . eval ()
with torch.no_grad():

val_outputs = model (x_val)

val_loss = criterion(val_outputs, y_val)

val_pred = torch.argmax(val_outputs, dim=1)

val_acc = (val_pred == y_val).float().mean().item()

top3 = torch.topk(val_outputs, k=3, dim=1).indices
y_val_exp = y_val.unsqueeze(1).expand_as(top3)

val_k3 = (top3 == y_val_exp).any(dim=1).float ().mean().item ()

print (f”Epoch: {epoch+1}, Iteration: {train_iter},

batch_size=args.batch_size ,

shuffle=True)

f”Train Loss: {epoch_loss:.4f}, Val Loss: {val_loss.item():.4f}, 7

£7Val Acc: {val_acc:.4f}, Val Top-3 Acc: {val_k3:.4f}”)

model . train ()

# ——— Early stopping check ———
if val_acc > best_val_acc:
best_val_acc = val_acc
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de

de

=%

=%

if

patience_counter = 0
else:
patience_counter += 1
if patience_counter >= patience_limit:
print(”Early stopping triggered.”)
elapsed = time.time() - start_time
t = time.gmtime(elapsed)

8 Appendix: Full Python code

print (f”Finished training in {t.tm_yday - 1} days {t.tm_hour} hours {t.tm_min} minutes {t.tm_sec} seconds with {
f B

train_iter} iterations.
class DummyEarlyStopping: stop_training = True

return DummyEarlyStopping (), train_iter , f”Early stopped at epoch {epoch+1}”

if train_iter >= args.max_iter:
break

train_iter >= args.max_iter:

break

train_epoch += 1

elapsed =
t = time.g
print (f”Fi

class Dum

return DummyEarlyStopping (), train_iter , f”Trained for {train_epoch} epochs”

predict_to
device =t
model . eval

time.time () - start_time
mtime (elapsed)

nished {train_epoch} epochs in {t.tm_hour}h {t.tm_min}m {t.tm_sec}s”)

myEarlyStopping: stop_training = False

rch_ffnn (model, test_ds, args):
orch.device(”cuda” if torch.cuda.is_available () else “cpu”)

O

model . to (device)

criterion

all_preds
all_labels

with torch
while

te

fo

all_preds
all_labels

return all_preds ,

= nn.CrossEntropyLoss ()

=1
S Ul

.no_grad () :

test_ds.iteration < args.max_iter:

sting_batches = next(test_ds)

r testing_batch in testing_batches:
statistics , labels = testing_batch.items ()
stats_np = statistics .numpy ()

x = torch. tensor (stats_np , dtype=torch.float32).to(device)
y = torch.tensor(labels.numpy(), dtype=torch.long).to(device)

outputs = model(x)

loss = criterion (outputs, y)
pred_topl = torch.argmax(outputs , dim=1)
acc = (pred_topl == y).float().mean().item ()

top3 = torch.topk(outputs, k=3, dim=1).indices
y_expanded = y.unsqueeze (1).expand_as(top3)
k3_acc = (top3 == y_expanded).any(dim=1).float ().mean().item ()

print(f”Eval — Loss: {loss.item():.4f},
preds = torch.softmax (outputs, dim=1).cpu().numpy ()
all_preds .append(preds)

all_labels .append(labels .numpy())

= np.concatenate (all_preds , axis=0)
= np.concatenate (all_labels , axis=0)

all_labels

predict_torch_lstm (model, test_ds, args):

device = t
model . eval

orch.device(”cuda” if torch.cuda.is_available () else “cpu”)

O

model . to (device)

criterion

all_preds
all_labels

with torch
while

te

fo

= nn.CrossEntropyLoss ()

= ()

=1l

.no_grad () :

test_ds.iteration < args.max_iter:

sting_batches = next(test_ds)

r testing_batch in testing_batches:
statistics , labels = testing_batch.items ()

stats_np = statistics.numpy().astype(int) # input tokenizzati
X = torch.tensor(stats_np, dtype=torch.long).to(device)
y = torch.tensor(labels.numpy(), dtype=torch.long).to(device)

outputs = model(x)

65

Accuracy: {acc:.4f}, Top-3 Accuracy:

{k3_acc:.4f}")



8 Appendix: Full Python code

418 loss = criterion (outputs, y)

419

420 preds = torch.softmax (outputs, dim=1).cpu().numpy()

421 all_preds.append(preds)

422 all_labels.append(labels . numpy ())

423

424 all_preds = np.concatenate (all_preds , axis=0)

425 all_labels = np.concatenate(all_labels , axis=0)

426

427 return all_preds , all_labels

428

429

430

431 def str2bool(v):

432 return v.lower() in (“yes”, "true”, "t”, 717)

433

434

435 def create_model_with_distribution_strategy (architecture , extend_model, output_layer_size , max_train_len):
436 ”””Creates models depending on the GPU count and on extend_model”””

437 print(’Creating model ... ")

438

439 strategy = None

440 gpu_count = (len(tf.config.list_physical_devices('GPU")) +

441 len(tf.config.list_physical_devices('XLA_GPU')))

442 if gpu_count > I:

443 print (”Multiple GPUs found.”)

444 strategy = tf.distribute.MirroredStrategy ()

445 print (f”Number of mirrored devices: {strategy.num_replicas_in_sync}.”)

446 with strategy .scope():

447 if extend_model is not None:

448 extend_model = tf.keras.models.load_model(extend_model, compile=False)
449 model = create_model(architecture , extend_model, output_layer_size , max_train_len)
450 if architecture in (”FENN”, "CNN”, "LSTM”, "Transformer”) and extend_model is None:
451 if hasattr (model, “summary”):

452 model . summary ()

453 else:

454 # for LSTM use a LongTensor dummy input of shape (I, max_train_len)
455 if architecture == "LSTM":

456 summary (model , input_size=(1, max_train_len), dtypes=[torch.long])
457 else:

458 summary (model , input_size=(1, 724))

459

460 else:

461 print(”Only one GPU found.”)

462 strategy = NullDistributionStrategy ()

463 if extend_model is not None:

464 extend_model = tf.keras.models.load_model(extend_model , compile=False)
465 model = create_model (architecture , extend_model, output_layer_size , max_train_len)
466 if architecture im (”FFNN”, "CNN”, "LSTM”, ”"Transformer”) and extend_model is None:
467 if hasattr (model, “summary”):

468 model . summary ()

469 else:

470 # for LSTM use a LongTensor dummy input of shape (I, max_train_len)
471 if architecture == "LSTM”:

472 summary (model , input_size=(1, max_train_len), dtypes=[torch.long])
473 else:

474 summary (model , input_size=(1, 724))

475

476

477 print ("Model created .\n")

478 return model, strategy

479

480 def create_model(architecture , extend_model, output_layer_size , max_train_len):

481

482 Creates an un—trained model to use in the training process.

483

484 The kind of model that is returned, depends on the provided architecture and

485 the ‘extend_model © flag.

486

487 Parameters

488 e

489 architecture : str

490 The architecture of the model to create.

491 extend_model

492 When ‘extend_model © is not None and architecure in ('FFNN’, 'CNN’, 'LSTM’),
493 the ‘extend_model ©* will be further trained.

494 output_layer_size : int

495 Defines the size of the output layer of the neural networks

496

497

498 optimizer = Adam(

499 learning_rate=config.learning_rate , beta_l=config.beta_1, beta_2=config.beta_2,
500 epsilon=config.epsilon, amsgrad=config.amsgrad)

501

502 # Depends on the number of features returned by ‘calculate_statistics ()" in

503 # ‘featureCalculations.py *.

504 input_layer_size = 724

505 hidden_layer_size = int(2 * (input_layer_size / 3) + output_layer_size)

506
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# Create a model based on an existing one for further trainings
if extend_model is not None:

# remove the last

layer

model = tf.keras.Sequential ()
for layer in extend_model.layers[:-1]:
model . add (layer)
model . add (tf.keras.layers.Dense(output_layer_size , activation="softmax’, name="output™))
model . compile (optimizer=optimizer , loss="sparse_categorical_crossentropy”,
metrics=["accuracy”, SparseTopKCategoricalAccuracy(k=3, name="k3_accuracy”)])
return model

# Create new model based on architecture
if architecture == "FFNN”:
# Use PyTorch for FFNN
model = FENN(
input_size=input_layer_size ,
hidden_size=hidden_layer_size ,
output_size=output_layer_size ,
num_hidden_layers=config.hidden_layers
)

return model

elif architecture == "CNN”:
config .FEATURE_ENGINEERING = False
config .PAD_INPUT = True
model = tf.keras.Sequential ()
model . add (tf . keras.layers.ConvlD(
filters=config. filters , kernel_size=config.kernel_size ,
input_shape=(max_train_len, 1), activation="relu’))
for _ in range(config.layers - 1):
model . add (tf . keras.layers.ConvID(filters=config. filters ,
# model_.add(tf.keras.layers.Dropout(0.2))
model . add (tf . keras.layers.MaxPoolingID(pool_size=2))
model.add (tf.keras.layers. Flatten ())
model . add (tf.keras.layers.Dense(output_layer_size , activation="softmax’))
model . compile (optimizer=optimizer, loss="sparse_categorical_crossentropy”,
metrics=["accuracy”, SparseTopKCategoricalAccuracy (k=3, name="k3_accuracy”)])
return model

kernel_size=config.kernel_size ,

elif architecture == "LSTM”:

config .FEATURE_ENGINEERING = False

config .PAD_INPUT = True

model = LSTM(
vocab_size=56,
embed_dim=64,
hidden_size=config.lstm_units ,
output_size=output_layer_size ,
num_layers=1,
dropout=0.0

)

return model

DT ¢

elif architecture 8
return DecisionTreeClassifier(criterion=config.criterion ,

ccp_alpha=config.ccp_alpha)

elif architecture == "NB”:
return MultinomialNB (alpha=config.alpha, fit_prior=config.fit_prior)

"RF”:

return RandomForestClassifier (n_estimators=config.n_estimators , criterion=config.criterion ,
bootstrap=config.bootstrap , n_jobs=30,
max_features=config. max_features , max_depth=30,
min_samples_split=config.min_samples_split ,
min_samples_leaf=config . min_samples_leaf)

elif architecture

elif architecture == "ET”:
return ExtraTreesClassifier (n_estimators=config.n_estimators , criterion=config.criterion ,
bootstrap=config.bootstrap , n_jobs=30,
max_features=config. max_features , max_depth=30,
min_samples_split=config.min_samples_split ,
min_samples_leaf=config.min_samples_leaf)

elif architecture == "Transformer”:
config . FEATURE_ENGINEERING = False
config .PAD_INPUT = True
vocab_size = config.vocab_size
maxlen = max_train_len
embed_dim = config.embed_dim # Embedding size for each token
num_heads = config.num_heads # Number of attention heads
ff_dim = config.ff_dim # Hidden layer size in feed forward network inside transformer
inputs = tf.keras.layers.Input(shape=(maxlen,))
embedding_layer = TokenAndPositionEmbedding (maxlen ,
x = embedding_layer(inputs)
transformer_block = TransformerBlock (embed_dim, num_heads,
x = transformer_block (x)
x = tf.keras.layers.GlobalAveragePoolingID () (x)
outputs = tf.keras.layers.Dense(output_layer_size ,

vocab_size , embed_dim)

ff_dim)

activation="softmax”) (x)
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596

597 model = tf.keras.Model(inputs=inputs , outputs=outputs)

598 model . compile (optimizer=optimizer , loss="sparse_categorical_crossentropy”,

599 metrics=["accuracy”, SparseTopKCategoricalAccuracy (k=3, name="k3_accuracy”)])
600 return model

601

602 elif architecture == "SVM”:

603 return SVC(probability=True, C=1, gamma=0.001, kernel="linear”)

604

605 elif architecture == "SVM-Rotor”:

606 pipe = Pipeline ([

607 (scale’, StandardScaler()),

608 (’clf’, SVC(probability=True, C=10, gamma=0.001, kernel="rbf”))])

609

610 return pipe

611

612 elif architecture == "KNN":

613 return KNeighborsClassifier (90, weights="distance”, metric="euclidean™)

614

615 elif architecture == "[FENN,NB]”:

616 model_ffan = tf.keras.Sequential ()

617 model_ffnn.add(tf.keras.layers.Input(shape=(input_layer_size ,)))

618 for _ in range(config.hidden_layers):

619 model_ffnn.add (tf.keras.layers.Dense(hidden_layer_size , activation="relu’, use_bias=True))
620 model_ffnn.add(tf.keras.layers.Dense(output_layer_size , activation="softmax’))

621 model_ffnn.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy”,

622 metrics=["accuracy”, SparseTopKCategoricalAccuracy(k=3, name="k3 _accuracy”)])
623 model_nb = MultinomialNB (alpha=config.alpha, fit_prior=config.fit_prior)

624 return [model_ffnn, model_nb]

625

626 elif architecture == ”[DT,ET,RF,SVM,kNN]”:

627 dt = DecisionTreeClassifier(criterio onfig.criterion , ccp_alpha=config.ccp_alpha)

628 et = ExtraTreesClassifier (n_estimators=config.n_estimators , criterion=config.criterion ,
629 bootstrap=config.bootstrap , n_jobs=30,

630 max_features=config. max_features , max_depth=30,

631 min_samples_split=config. min_samples_split ,

632 min_samples_leaf=config. min_samples_leaf)

633 rf = RandomForestClassifier (n_estimators=config.n_estimators, criterion=config.criterion ,
634 bootstrap=config.bootstrap , n_jobs=30,

635 max_features=config.max_features , max_depth=30,

636 min_samples_split=config. min_samples_split ,

637 min_samples_leaf=config. min_samples_leaf)

638 svm = SVC(probability=True, C=1, gamma=0.001, kernel="linear”)

639 knn = KNeighborsClassifier (90, weights="distance”, metric="euclidean”)

640 return [dt, et, rf, svm, knn]

641

642 else:

643 raise Exception(f”Could not create model. Unknown architecture ’{architecture}’.”)

644

645 def parse_arguments () :

646 parser = argparse.ArgumentParser(

647 description="CANN Ciphertype Detection Neuronal Network Training Script’,

648 formatter_class=argparse . RawTextHelpFormatter)

649 parser.add_argument('-—batch_size ', default=128, type=int,

650 help="Batch size for training.’)

651 parser.add_argument(’—train_dataset_size ', default=16000, type=int,

652 help="Dataset size per fit. This argument should be dividable \n’

653 'by the amount of —-ciphers.’)

654 parser.add_argument(’-—dataset_workers’, default=1, type=int,

655 help="The number of parallel workers for reading the \ninput files.’)
656 parser.add_argument(’——epochs’, default=1, type=int,

657 help="Defines how many times the same data is used to fit the model.")
658 parser.add_argument(’-—plaintext_input_directory’, default="../data/gutenberg_en’, type=str,
659 help="1Input directory of the plaintexts for training the aca ciphers.’)
660 parser.add_argument(’——rotor_input_directory’, default="../data/rotor_ciphertexts’, type=str,
661 help="1Input directory of the rotor ciphertexts.’)

662 parser.add_argument(’—-—download_dataset’, default=True, type=str2bool ,

663 help="Download the dataset automatically.’)

664 parser.add_argument(’—-save_directory’, default="../data/models/",

665 help="Directory for saving generated models. \n’

666 'When interrupting , the current model is \n’

667 *saved as interrupted_...")

668 parser.add_argument(’—-model_name’, default="m.h5", type=str,

669 help="Name of the output model file. The file must \nhave the .hS extension.’)
670 parser.add_argument(’--ciphers’, default="all’, type=str,

671 help="A comma seperated list of the ciphers to be created.\n’

672 "Be careful to not use spaces or use \’ to define the string.\n’
673 "Possible values are:\n’

674 '~ mtc3 (contains the ciphers Monoalphabetic Substitution , Vigenere ,\n’
675 ’ Columnar Transposition , Plaifair and Hill)\n’

676 '~ aca (contains all currently implemented ciphers from \n’

677 ’ https ://www.cryptogram.org/resource —area/cipher—types/)\n’
678 '— rotor (contains Enigma, M209, Purple, Sigaba and Typex ciphers)’
679 ’— all (contains aca and rotor ciphers)’

680 ’~ all aca ciphers in lower case’

681 '~ simple_substitution\n’

682 ’— vigenere\n’

683 '~ columnar_transposition\n’

684 ’— playfair\n’

68
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685 "= hill\n")

686 parser.add_argument(’--keep_unknown_symbols’, default=False, type=str2bool,

687 help="Keep unknown symbols in the plaintexts. Known \n’

688 *symbols are defined in the alphabet of the cipher.’)

689 parser.add_argument(’—-max_iter’, default=1000000, type=int,

690 help="the maximal number of iterations before stopping training.’)

691 parser.add_argument(’--min_train_len’, default=50, type=int,

692 help="The minimum length of a plaintext to be encrypted in training. \n’
693 *If this argument is set to -1 no lower limit is used.’)

694 parser.add_argument(’——min_test_len’, default=50, type=int

695 help="The minimum length of a plaintext to be encrypted in testing. \n’
696 *If this argument is set to -1 no lower limit is used.’)

697 parser.add_argument(’——max_train_len’, default=-1, type=int,

698 help="The maximum length of a plaintext to be encrypted in training. \n’
699 *If this argument is set to -1 no upper limit is used.’)

700 parser.add_argument(’——max_test_len’, default=-1, type=int,

701 help="The maximum length of a plaintext to be encrypted in testing. \n’
702 »If this argument is set to -1 no upper limit is used.’)

703 parser.add_argument('—-architecture’, default="FFNN', type=str,

704 choices=['FFNN’, 'CNN’, °LSTM’, 'DT’, 'NB’, 'RF’, ’ET’, ’Transformer’,
705 SVM’, 'kNN’, ’[FENN,NB]’, ’[DT.ET,RF,SVM.kKNN]’, ’SVM-Rotor’],
706 help="The architecture to be used for training. \n’

707 "Possible values are:\n’

708 ’— FFNN\n’

709 ’= CNN\n’

710 = LSTM\n’

711 ’— DT\n’

712 '~ NB\n’

713 '~ RF\n’

714 ’— ET\n’

715 '~ Transformer\n’

716 = SVM\n’

717 "= kKNN\n’

718 '~ [FFNN,NB]\n’

719 '~ [DT,ET,RF,SVM,kNN] *

720 '~ SVM-Rotor’

721 )

722 parser.add_argument(’--extend_model’, default=None, type=str,

723 help="Load a trained model from a file and use it as basis for the new training.’)
724

725 return parser.parse_args ()

726

727 def should_download_plaintext_datasets (args):

728 ”?”Determines if the plaintext datasets should be loaded”””

729 return (args.download_dataset and

730 not os.path.exists(args.plaintext_input_directory) and

731 args.plaintext_input_directory == os.path.abspath(’../data/gutenberg_en’))

732

733 def download_plaintext_datasets (args):

734 »""Downloads plaintexts and saves them in the plaintext_input_directory”””

735 print ("Downloading Datsets ... ")

736 checksums_dir = ’../data/checksums/’

737 if not Path(checksums_dir).exists ():

738 os . mkdir (checksums_dir)

739 tfds .download.add_checksums_dir(checksums_dir)

740

741 download_manager = tfds.download.download_manager.DownloadManager(download_dir="../data/’,
742 extract_dir=args.plaintext_input_directory)
743 data_url = ( https ://drive.google.com/uc?id=1bF5sSVjxTxa3DB-P5wxn87nxWndRhK_V&export=download’ +
744 ‘&confirm=t&uuid=afbc362d -9d52-472a-832b-c2af331a8d5b ")

745 try:

746 download_manager.download_and_extract(data_url)

747 except Exception as e:

748 print ("Download of datasets failed. If this issues persists, try downloading the dataset yourself ”
749 »from: https:// drive.google.com/ file /d/1bF5sSVjxTxa3DB—-P5wxn87nxWndRhK_V/view .”
750 ”(For more information see the README.md of this project.)”)

751 print(”Underlying error:”)

752 print(e)

753 sys.exit (1)

754

755 path = os.path.join(args.plaintext_input_directory ,

756 "ZIP . ucid_1bF5sSVjxTx -P5wxn87nxWn_V_export_downloadR9Cwhunev5Cv] -ic__~
757 *HawxhTtGOISdcCrro4fxfEISA ",

758 os.path.basename (args.plaintext_input_directory))

759 dir_name = os.listdir (path)

760 for name in dir_name:

761 p = Path(os.path.join(path, name))

762 parent_dir = p.parents[2]

763 p.rename (parent_dir / p.name)

764 os.rmdir(path)

765 os.rmdir (os. path.dirname (path))

766 print(”Datasets Downloaded.”)

767

768 def load_rotor_ciphertext_datasets_from_disk (args, batch_size):

769 nr

770 Load ciphertext input data for rotor ciphertexts from disk.

771

772 This method (in contrast to ‘load_plaintext_datasets_from_disk *) loads the data

773 immediately from disk. Currently this does not take too long, since the input files
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774 and the number of ciphers that need ciphertexts as input for the feature extraction
775 are limited. (If this method should lazily load ciphertexts, ‘RotorCiphertextsDataset *
776 needs to be adapted.)

777

778 Parameters

779 e

780 args

781 The arguments parsed by the ‘ArgumentParser
782 batch_size : int

783 The number of samples and labels per batch.

784

785 Returns

786 e

787 tuple[list , RotorCiphertextsDatasetParameters , list , RotorCiphertextsDatasetParameters]
788 A tuple with the training and testing ciphertexts as well as their

789 ‘RotorCiphertextsDatasetParameters * that are both provided to the

790 ‘CipherStatisticsDataset ‘s for training and testing.

791

792

793 def validate_ciphertext_path(ciphertext_path, cipher_types):

794 »””Check if the filename of the file at ‘ciphertext_path ° matches the

795 names inside ‘cipher_types *.”””

796 file_name = Path(ciphertext_path).stem.lower ()

797 if not file_name in cipher_types:

798 raise Exception(f”Filename must equal one of the expected cipher types.

799 f”Expected cipher types are: {cipher_types}. Current ”

800 f*filename is ’{file_name}’.")

801

802

803 # Filter cipher_types to exclude non—ciphertext ciphers

804

805 # Filter cipher_types to exclude non—ciphertext ciphers

806 rotor_cipher_types = [config.CIPHER_TYPES[i] for i in range(56, 61)]

807

808 # Load all ciphertexts in the train and dev folders in ‘args.rotor_input_directory
809 rotor_cipher_dir = args.rotor_input_directory

810

811 def find_ciphertext_paths_in_dir(folder_path):

812 ”””Loads all .txt files in the given folder and checks that their names match the
813 known cipher types.”””

814 file_names = os.listdir (folder_path)

815 result = []

816 for name in file_names:

817 path = os.path.join(folder_path, name)

818 file_name, file_type = os.path.splitext(name)

819 if os.path.isfile (path) and file_name.lower() in rotor_cipher_types and file_type ==
820 validate_ciphertext_path (path, config.ROTOR_CIPHER_TYPES)

821

822 result.append(path)

823 return result

824

825 train_dir os.path.join(rotor_cipher_dir, "train”)

826 test_dir = os.path.join(rotor_cipher_dir, “dev”)

827 train_rotor_ciphertext_paths = find_ciphertext_paths_in_dir(train_dir)

828 test_rotor_cipherext_paths = find_ciphertext_paths_in_dir(test_dir)

See ‘parse_arguments () ‘.

Ltxt

831 # Return empty lists and parameters if no requested ciphers were found on disk

832 if len(train_rotor_ciphertext_paths) == 0 or len(test_rotor_cipherext_paths) ==

833 empty_params = RotorCiphertextsDatasetParameters (config .ROTOR_CIPHER_TYPES,

834 0,

835 args.dataset_workers ,

836 args.min_train_len ,

837 args . max_train_len ,

838 generate_evalutation_data=False)
839 return ([], empty_params, [], empty_params)

841 # Create dataset parameters, which will be used for creating a ‘CipherStatisticsDataset *
842 # This class will provide an iterator in ‘train_model * to convert the plaintext files
843 # (applying the provided options) into statistics (features) used for training.

844 train_rotor_ciphertexts_parameters = RotorCiphertextsDatasetParameters (config .ROTOR_CIPHER_TYPES,
845 batch_size ,

846 args.dataset_workers ,

847 args.min_train_len ,

848 args.max_train_len ,

849 generate_evalutation_data=False)
850 test_rotor_ciphertexts_parameters = RotorCiphertextsDatasetParameters (config.ROTOR_CIPHER_TYPES,
851 batch_size ,

852 args . dataset_workers ,

853 args.min_test_len ,

854 args . max_test_len ,

855 generate_evalutation_data=False)
856

857 # Return the tuples of training and testing rotor_ciphertexts as well as the parameter
858 # for initializing the ‘CipherStatisticsDataset ‘s.

859 return (train_rotor_ciphertext_paths , train_rotor_ciphertexts_parameters ,

860 test_rotor_cipherext_paths , test_rotor_ciphertexts_parameters)

861

862 def load_plaintext_datasets_from_disk (args, requested_cipher_types , batch_size):
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863

864 Gets all plaintext paths found in ‘args.plaintext_input_directory °, and converts

865 them into training and testing list and parameters, used to create

866 ‘CipherStatisticsDataset ‘s.

867

868 This method does not load the contents of the plaintext files. This is done

869 lazily by the ‘CipherStatisticsDataset .

870

871 Parameters

872

873 args

874 The arguments parsed by the ‘ArgumentParser ‘. See ‘parse_arguments() ‘.

875 requested_cipher_types : list

876 A list of cipher types to provide as parameters to the ‘CipherStatisticsDataset *
877 The list is filtered and only ACA ciphers are used as parameters, since the features
878 of rotor ciphers currently have to be extracted from ciphertext files.

879 batch_size : int

880 The number of samples and labels per batch.

881

882 Returns

883 -

884 tuple[list , PlaintextPathsDatasetParameters , list, PlaintextPathsDatasetParameters]
885 A tuple with the training and testing plaintext paths as well as their

886 ‘PlaintextPathsDatasetParameters * that are both provided to the

887 ‘CipherStatisticsDataset ‘s for training and testing.

888

889 # Filter cipher_types to exclude non—plaintext ciphers

890 aca_cipher_types = [config.CIPHER_TYPES[i] for i in range(56)]

891 cipher_types = [type for type in requested_cipher_types if type in aca_cipher_types]
892

893 # Get all paths to plaintext files in the ‘plaintext_input_directory '

894 plaintext_files = []

895 dir_name = os.listdir (args.plaintext_input_directory)

896 for name in dir_name:

897 path = os.path.join(args.plaintext_input_directory , name)

898 if os.path.isfile (path):

899 plaintext_files .append(path)

900

901 # Use some plaintext for training and others for testing

902 train_plaintexts , test_plaintexts = train_test_split(plaintext_files , test_size=0.05,
903 random_state=42, shuffle=True)
904

905 # Create dataset parameters, which will be used for creating a ‘CipherStatisticsDataset *.
906 # This class will provide an iterator in ‘train_model * to convert the plaintext files
907 # (applying the provided options) into statistics (features) used for training.

908 train_plaintext_parameters = PlaintextPathsDatasetParameters (cipher_types , batch_size ,
909 args.min_train_len , args.max_train_len ,
910 args.keep_unknown_symbols, args.dataset_workers)
911 test_plaintext_parameters = PlaintextPathsDatasetParameters (cipher_types, batch_size ,
912 args.min_test_len, args.max_test_len

913 args . keep_unknown_symbols, args.dataset_workers)
914

915 # Return the training and testing plaintexts as well as their parameters

916 return (train_plaintexts , train_plaintext_parameters , test_plaintexts , test_plaintext_parameters)
917

918 def load_datasets_from_disk (args, requested_cipher_types):

919

920 Loads training and testing data from the file system.

921

922 In case of the ACA ciphers the datasets are plaintext files that need to be

923 encrypted before the features can be extracted. In case of the rotor ciphers

924 there are already encrypted ciphertext files that can directly be used to

925 extract the features.

926 To simplify the training code, both kinds of input data are returned in

927 ‘CipherStatisticsDataset ‘s that provide an iterator interface, returning

928 ‘TrainingBatch ‘es of the requested size on each ‘next()‘ call.

929 Plaintext input is loaded lazily , while ciphertexts currently are loaded

930 immediately .

931

932 Parameters

O I

934 args

935 The parsed commandline arguments. See also ‘parse_arguments() °.

936 requested_cipher_types : list

937 A list of the requested cipher types. These are provided as parameters to

938 the returned ‘CipherStatisticsDataset ‘s as well as for selection of input

939 files .

940 max_rotor_lines : int

941 Limits the amount of input lines loaded from ciphertext files.

942

943 Returns

944

945 tuple [ CipherStatisticsDataset ]

946 Training and testing ‘CipherStatisticsDataset * that lazily calculate the

947 features for the input data on ‘next()‘ calls.

948

949

950 print(”Loading Datasets .

951

71



8 Appendix: Full Python code

952 # Filter cipher_types to exclude non—ciphertext ciphers

953 rotor_cipher_types = [config.CIPHER_TYPES[i] for i in range(56, 61)]

954 non_rotor_ciphers = [type for type in requested_cipher_types if type mot in rotor_cipher_types]

955 rotor_cipher_types = [type for type in requested_cipher_types if type in rotor_cipher_types]

956

957 # Calculate batch size for rotor ciphers. If both aca and rotor ciphers are requested

958 # the amount of samples of each rotor cipher per batch should be equal to the

959 # amount of samples of each aca cipher per loaded batch.

960 number_of_rotor_ciphers = len(rotor_cipher_types)

961 number_of_aca_ciphers = len(non_rotor_ciphers)

962 if number_of_aca_ciphers <= 0:

963 rotor_dataset_batch_size = args.train_dataset_size

964 aca_dataset_batch_size = 0

965 else:

966 amount_of_samples_per_cipher = args.train_dataset_size // (number_of_aca_ciphers + number_of_rotor_ciphers)

967 rotor_dataset_batch_size = amount_of_samples_per_cipher # number_of_rotor_ciphers

968 aca_dataset_batch_size = amount_of_samples_per_cipher % number_of_aca_ciphers

969

970 # Load the plaintext file paths and the rotor ciphertexts from disk.

971 (train_plaintexts ,

972 train_plaintext_parameters ,

973 test_plaintexts ,

974 test_plaintext_parameters) = load_plaintext_datasets_from_disk (args,

975 requested_cipher_types ,

976 aca_dataset_batch_size)

977 (train_rotor_ciphertext_paths ,

978 train_rotor_ciphertexts_parameters ,

979 test_rotor_ciphertext_paths ,

980 test_rotor_ciphertexts_parameters) = load_rotor_ciphertext_datasets_from_disk (args ,

981 rotor_dataset_batch_size)

982

983 # Convert the training and testing ciphertexts and plaintexts , as well as

984 # their parameters into ‘CipherStatisticsDataset ‘s.

985 train_ds = CipherStatisticsDataset(train_plaintexts , train_plaintext_parameters , train_rotor_ciphertext_paths ,
< train_rotor_ciphertexts_parameters)

986 test_ds = CipherStatisticsDataset(test_plaintexts , test_plaintext_parameters , test_rotor_ciphertext_paths ,
< test_rotor_ciphertexts_parameters)

987

988 if train_ds.key_lengths_count > 0 and args.train_dataset_size % train_ds.key_lengths_count != 0:

989 print ("WARNING: the ——train_dataset_size parameter must be dividable by the amount of —-ciphers and the length configured ”

990 "KEY_LENGTHS in config.py. The current key_lengths_count is %d” %

991 train_ds.key_lengths_count, file=sys.stderr)

992

993 print(”Datasets loaded .\n")

994

995 # Return ‘CipherStatisticsDataset ‘s for training and testing.

996 return train_ds, test_ds

997

998 def train_model (model, strategy , args, train_ds):

999

1000 Trains the model with the given training dataset.

1001

1002 Depending on the value of ‘args.architecture * a different approach is

1003 taken to train the model. Some architectures need to be trained in one

1004 iteration , while others can be trained with multiple input batches.

1005 While the training is in progress, status messages are logged to

1006 stdout to indicate the amount of seen input data as well as the current

1007 accuracy of the trained model.

1008

1009 Parameters

1010

1011 model

1012 The model that will be trained. Needs to match ‘args.architecture ‘.

1013 strategy

1014 A distribution strategy (of the ‘Tensorflow * library) to distribute

1015 the ‘fit* calls to multiple devices. Could also be a ‘NullStrategy *

1016 if no GPU devices are found on the system.

1017 args

1018 Commandline arguments entered by the user. See also: ‘parse_arguments() ‘.

1019 train_ds

1020 A ‘CipherStatisticsDataset * providing the features to use for training.

1021

1022 Returns

1023 -

1024 tuple

1025

1026

1027 checkpoints_dir = Path(’../data/checkpoints’)

1028 def delete_previous_checkpoints () :

1029 shutil .rmtree (checkpoints_dir)

1030

1031 def create_checkpoint_callback () :

1032 "””Provides a ‘keras ° ‘ModelCheckpoint ° used to periodically save a model in training”””

1033 if not checkpoints_dir.exists():

1034 os. mkdir(checkpoints_dir)

1035 checkpoint_file_path = os.path.join(checkpoints_dir,

1036 ”epoch_{epoch:02d}-"

1037 "acc_{accuracy:.2f}.h5”)

1038

1039 return tf.keras.callbacks.ModelCheckpoint(
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filepath=checkpoint_file_path ,
save_weights_only=False ,
monitor="val_accuracy’,
mode="max ",
save_best_only=False ,
save_freq=100)

print(’Training model...")
delete_previous_checkpoints ()

# Create callbacks for tensorflow models
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="../data/logs’,
update_freq="epoch’)

early_stopping_callback = MiniBatchEarlyStopping (min_delta=le-5,

patience =250,

monitor="accuracy ’,

mode="max "’ ,

restore_best_weights=True)
custom_step_decay_lrate_callback = CustomStepDecayLearningRateScheduler(early_stopping_callback)
checkpoint_callback = create_checkpoint_callback ()

# Initialize variables

architecture = args.architecture

start_time = time.time ()

train_iter = 0

train_epoch = 0

val_data = None

val_labels = None

training_batches = None

combined_batch = TrainingBatch (”mixed”, [], [])
classes = list(range(len(config.CIPHER_TYPES)))
should_create_validation_data = True

if args.architecture == "FFNN” and isinstance (model, FFNN):
return train_torch_ffnn (model, args, train_ds)

elif args.architecture == "LSTM” and isinstance (model, LSTM):
return train_torch_Istm (model, args, train_ds)

# Perform main training loop while the iterations don’t exceed the user provided max_iter
while train_ds.iteration < args.max_iter:
training_batches = next(train_ds)

# For architectures that only support one fit call: Sample all batches into one large batch.
if architecture in (”DT”, "RF”, "ET”, "SVM”, “KNN”, "SVM-Rotor”, ”[DT,ET,RF,SVM,kNN]"):
for training_batch in training_batches:
combined_batch.extend (training_batch)
if train_ds.iteration < args.max_iter:
print ("Loaded %d ciphertexts.” % train_ds.iteration)
continue
train_ds .stop_outstanding_tasks ()
print("Loaded %d ciphertexts.” % train_ds.iteration)
training_batches = [combined_batch]

for index, training_batch in enumerate(training_batches):
statistics , labels = training_batch.items ()
train_iter = train_ds.iteration - len(training_batch) * (len(training_batches) - index - 1)

# Create small validation dataset on first iteration
if should_create_validation_data:
statistics , val_data, labels, val_labels = train_test_split(statistics.numpy() ,
labels .numpy () .
test_size=0.3)

statistics = tf.convert_to_tensor(statistics)
val_data = tf.convert_to_tensor(val_data)
labels = tf.convert_to_tensor(labels)
val_labels = tf.convert_to_tensor(val_labels)
should_create_validation_data = False
train_iter —= len(training_batch) = 0.3

# scikit—learn architectures:

if architecture in (”DT”, "RF”, "ET”, "SVM”, “kKNN”, "SVM-Rotor™):
train_iter = len(labels) % 0.7
print(f”Start training the {architecture}.”)

if architecture == "KNN”:
history = model. fit(statistics , labels)
elif architecture == "SVM-Rotor™:

history = model. fit(list(statistics), list(labels))
# print(f"RFE=support: \n{list(model.support_)}\n")
# print(f"RFE=rank: \n{list(model.ranking_)}\n”)

# print()
else:

history = model. fit(statistics , labels)
if architecture == "DT”:

plt.gef().set_size_inches (25, 25 / math.sqrt(2))
print("Plotting tree.”)
plot_tree (model, max_depth=3, fontsize=6, filled=True)
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1129 plt.savefig (args.model_name.split(*. )[0] + ' _decision_tree.svg’ .
1130 dpi=200, bbox_inches="tight’, pad_inches=0.1)

1131

1132 # Naive Bayes training

1133 elif architecture == "NB”:

1134 history = model.partial_fit(statistics ,

1135 labels ,

1136 classes=classes)

1137

1138 # Ensemble: [FFNN,NB]

1139 elif architecture == "[FFNN,NB]”:

1140 with strategy .scope():

1141 history = model[0]. fit(statistics ,

1142 labels ,

1143 batch_size=args.batch_size ,

1144 validation_data=(val_data, val_labels),
1145 epochs=args.epochs ,

1146 callbacks=[early_stopping_callback ,

1147 tensorboard_callback ,

1148 custom_step_decay_lrate_callback ,
1149 checkpoint_callback])

1150 history = model[1].partial_fit(statistics ,

1151 labels ,

1152 classes=classes)

1153

1154 # Ensemble: [DT,ET,RF,SVM,kNN]

1155 elif architecture = [DT,ET,RF,SVM,kNN]”:

1156 print(f”Start training the {architecture}.”)

1157 dt, et, rf, svm, knn = model

1158 for index, m in enumerate([dt, et, rf, svm]):

1159 m. fit(statistics , labels)

1160 print(f"Trained model {index + 1} of {len(model)}™)

1161 knn. fit(statistics , labels)

1162 print (f”Trained model {len(model)} of {len(model)}™)

1163

1164 else:

1165 with strategy .scope():

1166 history = model. fit(statistics , labels ,

1167 batch_size=args . batch_size ,

1168 validation_data=(val_data, val_labels),

1169 epochs=args . epochs ,

1170 callbacks =[early_stopping_callback ,

1171 tensorboard_callback ,

1172 custom_step_decay_lrate_callback ,

1173 checkpoint_callback])

1174

1175 # print for Decision Tree, Naive Bayes and Random Forests

1176 if architecture in (”DT”, "NB”, "RF”, “ET”, "SVM”, “kNN”, "SVM-Rotor”):
1177 val_score = model.score(val_data, val_labels)

1178 train_score = model.score(statistics , labels)

1179 print(”train accuracy: %f, validation accuracy: %f” % (train_score , val_score))
1180

1181 if architecture == "[FFNN,NB]”:

1182 val_score = model [1].score(val_data, val_labels)

1183 train_score = model[1].score(statistics , labels)

1184 print(”train accuracy: %f, validation accuracy: %f” % (train_score , val_score))
1185

1186 if architecture == ”[DT,ET,RF,SVM,kNN]”:

1187 for m in model:

1188 val_score = m.score(val_data, val_labels)

1189 train_score = m.score(statistics , labels)

1190 print (f”{type(m).__name__}: train accuracy: {train_score}, ”
1191 f”validation accuracy: {val_score}”)

1192

1193 if train_ds.epoch > 0:

1194 train_epoch = (train_ds.iteration

1195 // ((train_iter + train_ds.batch_size % train_ds.dataset_workers)
1196 /1 train_ds .epoch))

1197

1198 print ("Epoch: %d, Iteration: %d” % (train_epoch, train_iter))

1199 if train_iter >= args.max_iter or ecarly_stopping_callback.stop_training:
1200 break

1201

1202 if train_ds.iteration >= args.max_iter or early_stopping_callback.stop_training:
1203 train_ds.stop_outstanding_tasks ()

1204 break

1205

1206 elapsed_training_time = datetime.fromtimestamp (time.time()) - datetime.fromtimestamp (start_time)
1207 training_stats = (”Finished training in %d days %d hours %d minutes %d seconds ”
1208 "with %d iterations and %d epochs.\n”

1209 % (elapsed_training_time .days,

1210 elapsed_training_time.seconds // 3600,

1211 (elapsed_training_time.seconds // 60) % 60,

1212 elapsed_training_time .seconds % 60,

1213 train_iter ,

1214 train_epoch))

1215 print(training_stats)

1216 return early_stopping_callback , train_iter , training_stats

1217
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1218 def save_model (model, args):

1219 Writes the model and the commandline arguments to disk

1220 print(’Saving model ... ")

1221 architecture = args.architecture

1222

1223 if not os.path.exists(args.save_directory):

1224 os.mkdir(args.save_directory)

1225

1226 # Gestione nome modello

1227 if args.model_name == 'm.h5’:

1228 i=1

1229 base_name = args.model_name.split(’.”)[0]

1230 extension = ’.pth’ if architecture == "FFNN” else ’.hS’

1231 while os.path.exists(os.path.join(args.save_directory , base_name + str(i) + extension)):
1232 i+= 1

1233 model_name = base_name + str(i) + extension

1234 else:

1235 model_name = args.model_name

1236 if architecture == "FFNN”:

1237 model_name = model_name.replace(’.h5’, ’.pth’)

1238

1239 model_path = os.path.join(args.save_directory , model_name)

1240

1241 if architecture in (”FENN", "LSTM”):

1242 state_dict = {

1243 *model_state_dict’: model.state_dict ().

1244 *hidden_size ': model.hidden_size ,

1245 ‘output_size’: model.output_size ,

1246 }

1247

1248 if architecture == "FFNN":

1249 state_dict[ input_size’] = model.input_size

1250 state_dict[ num_hidden_layers’] = model.num_hidden_layers

1251 elif architecture == "LSTM”:

1252 state_dict[’vocab_size’] = model.vocab_size

1253 state_dict[ embed_dim’] = model.embed_dim

1254 state_dict[ num_layers'] = model.num_layers

1255 state_dict[ dropout’] = model.dropout

1256

1257 torch.save(state_dict , model_path)

1258

1259

1260 elif architecture in (”"CNN”, “Transformer”):

1261 model . save (model_path)

1262

1263 elif architecture in (”DT”, "NB”, "RF”, "ET”, "SVM”, "kNN”, "SVM-Rotor™):
1264 with open(model_path, “wb”) as f:

1265 pickle . dump(model, f)

1266

1267 elif architecture ”[FFNN,NB]”:

1268 model [0].save( ../ data/models/’ + model_path.split(’. )[0] + "_ffnn.h5")
1269 with open(’../data/models/’ + model_path.split( .’ )[0] + ”_nb.h5”, “wb”) as f:
1270 pickle .dump(model [1], )

1271

1272 elif architecture " [DT,ET,RF,SVM,kNN]” :

1273 for index, name in enumerate([”dt”, “et”, “rf”, “svm”, “knn”]):

1274 with open(’../data/models/’ + model_path.split( .’ )[0] + f”_{name}.h5”, “wb”) as f:
1275 pickle .dump(model[index ], f)

1276

1277

1278 ESAYinSpATAHErexs

1279 with open(’../data/’ + model_path.split(’.’)[0] + ’_parameters.txt’, 'w’) as f:
1280 for arg in vars(args):

1281 f.write (”{:23s}= {:s}\n”.format(arg, str(getattr(args, arg))))
1282

1283 # Managing logs

1284 if architecture in (”FFNN”, "CNN”, "LSTM”, ”Transformer”):

1285 logs_destination = '../data/ + model_name.split('.")[0] + '_tensorboard_logs"
1286 try:

1287 if os.path.exists (’../data/logs’):

1288 if os.path.exists(logs_destination):

1289 shutil.rmtree(logs_destination)

1290 shutil .move( ’../data/logs’, logs_destination)

1291 except Exception:

1292 print (f”Could not move logs from °../data/logs’ to '{logs_destination}’.”)
1293

1294 print ( Model saved.\n’)

1295

1296

1297

1298 def predict_test_data(test_ds, model, args, early_stopping_callback , train_iter):
1299

1300 Testing the predictions of the model.

1301

1302 The trained model is used to predict the data in ‘test_ds * and the results
1303 are evaluated in regard to accuracy, precision, recall, etc. The calculated
1304 metrics are printed to stdout.

1305

1306 Parameters
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1307 -

1308 test_ds : CipherStatisticsDataset

1309 The dataset used for prediction.

1310 model

1311 The trained model to evaluate.

1312 args

1313 The commandline arguments provided by the user.

1314 early_stopping_callback

1315 Indicates whether the training was stopped before ‘args.max_iter‘ was

1316 reached. Used together with ‘train_iter * and ‘args.max_iter * to control

1317 the number of prediction iterations.

1318 train_iter : int

1319 The number of iterations used until the model converged. Used together with
1320 ‘early_stopping_callback * and ‘args.max_iter * to control the number of

1321 prediction iterations.

1322

1323 Returns

1324 -

1325 str

1326 The statistics of this prediction run.

1327

1328

1329 print (' Predicting test data...\n')

1330

1331 architecture = args.architecture

1332 start_time = time.time ()

1333 total_len_prediction = 0

1334 cntr = 0

1335 test_iter = 0

1336 test_epoch = 0

1337

1338 # Determine the number of iterations to use for evaluating the model

1339 prediction_dataset_factor = 10

1340 if early_stopping_callback.stop_training:

1341 while test_ds.dataset_workers # test_ds.batch_size > train_iter / prediction_dataset_factor and prediction_dataset_factor > 1:
1342 prediction_dataset_factor —= 1

1343 args.max_iter = int(train_iter / prediction_dataset_factor)

1344 else:

1345 while test_ds.dataset_workers # test_ds.batch_size > args.max_iter / prediction_dataset_factor and prediction_dataset_factor > 1:
1346 prediction_dataset_factor —-= 1

1347 args.max_iter /= prediction_dataset_factor

1348

1349 # Initialize ‘PredictionPerformanceMetrics * instances for all classifiers. These
1350 # are used to save and evaluate the batched prediction results of the models.

1351 prediction_metrics = {}

1352 if architecture == "[FFNN,NB]":

1353 prediction_metrics = {”"FFNN”: PredictionPerformanceMetrics (model_name="FFNN") ,
1354 ”"NB”: PredictionPerformanceMetrics (model_name="NB")}
1355 elif architecture ” [DT,ET,RF,SVM,kNN]” :

1356 prediction_metrics = {"DT”: PredictionPerformanceMetrics (model_name="DT”),
1357 "ET”: PredictionPerformanceMetrics (model_name="ET”),
1358 "RF”: PredictionPerformanceMetrics (model_name="RF”) ,
1359 ”"SVM”: PredictionPerformanceMetrics (model_name="SVM”) ,
1360 "KNN”: PredictionPerformanceMetrics (model_name="kNN") ,}
1361 else:

1362 prediction_metrics = {architecture: PredictionPerformanceMetrics(model_name=architecture)}
1363

1364 combined_batch = TrainingBatch (”mixed”, [], [])

1365 while test_ds.iteration < args.max_iter:

1366 testing_batches = next(test_ds)

1367

1368 # For architectures that only support one fit call: Sample all batches into one large batch.
1369 if architecture in (7DT”, "RF”, "ET”, "SVM”, "KNN”, "SVM-Rotor”, ”[DT,ET,RF,SVM,kNN]"):
1370 for testing_batch in testing_batches:

1371 combined_batch.extend (testing_batch)

1372 if test_ds.iteration < args.max_iter:

1373 print (”Loaded %d ciphertexts.” % test_ds.iteration)

1374 continue

1375 test_ds.stop_outstanding_tasks ()

1376 print(”Loaded %d ciphertexts.” % test_ds.iteration)

1377 testing_batches = [combined_batch]

1378

1379 for testing_batch in testing_batches:

1380 statistics , labels = testing_batch.items ()

1381

1382 # Decision Tree, Naive Bayes prediction

1383 if architecture in ("DT”, "NB”, "RE”, "ET”, "SVM”, "KNN"):

1384 prediction = model.predict_proba(statistics)

1385 prediction_metrics[architecture ]. add_predictions (labels, prediction)
1386 elif architecture == "SVM-Rotor”:

1387 prediction = model. predict_proba(statistics)

1388 # add probability 0 to all aca labels that are missing in the prediction
1389 padded_prediction = []

1390 for p in list(prediction):

1391 padded = [0] # 56 + list(p)

1392 padded_prediction . append (padded)

1393 prediction_metrics [architecture |. add_predictions (labels , padded_prediction)
1394 elif architecture == "[FFNN,NB]”:

1395 prediction = model [0]. predict(statistics , batch_size=args.batch_size , verbose=1)
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1396 nb_prediction = model[1].predict_proba(statistics)

1397 prediction_metrics ["FFNN” ]. add_predictions (labels , prediction)

1398 prediction_metrics ["NB”]. add_predictions (labels , nb_prediction)

1399 elif architecture == ”[DT,ET,RF,SVM,kKNN]”:

1400 prediction = model [0].predict_proba(statistics)

1401 prediction_metrics [”DT”]. add_predictions (labels , prediction)

1402 prediction_metrics ["ET”]. add_predictions (labels , model[1].predict_proba(statistics))
1403 prediction_metrics ["RF”]. add_predictions (labels , model[2]. predict_proba(statistics))
1404 prediction_metrics ["SVM”]. add_predictions (labels , model[3]. predict_proba(statistics))
1405 prediction_metrics [’kNN”]. add_predictions (labels , model [4]. predict_proba(statistics))
1406

1407 elif architecture == “FFNN” and isinstance (model, FFNN):

1408 preds, labels = predict_torch_ffnn (model, test_ds, args)

1409 # You may want to adapt this to your PredictionPerformanceMetrics usage:

1410 prediction_metrics = {architecture: PredictionPerformanceMetrics(model_name=architecture)}
1411 prediction_metrics [architecture ]. add_predictions (labels , preds)

1412 for metrics in prediction_metrics.values():

1413 metrics . print_evaluation ()

1414 elapsed_prediction_time = datetime.fromtimestamp (time.time()) - datetime.fromtimestamp(start_time)
1415 prediction_stats = ’Prediction time: %d days %d hours %d minutes %d seconds.’ % (
1416 elapsed_prediction_time .days, elapsed_prediction_time.seconds // 3600,

1417 (elapsed_prediction_time.seconds // 60) % 60,

1418 elapsed_prediction_time . seconds % 60)

1419 return prediction_stats

1420

1421 elif architecture == "LSTM” and isinstance (model, LSTM):

1422 preds, labels = predict_torch_lstm (model, test_ds, args)

1423 prediction_metrics = {architecture: PredictionPerformanceMetrics(model_name=architecture)}
1424 prediction_metrics[architecture |. add_predictions (labels , preds)

1425 for metrics in prediction_metrics.values():

1426 metrics. print_evaluation ()

1427 elapsed_prediction_time = datetime.fromtimestamp (time.time()) - datetime.fromtimestamp(start_time)
1428 prediction_stats = ’Prediction time: %d days %d hours %d minutes %d seconds.’ % (
1429 elapsed_prediction_time.days, elapsed_prediction_time.seconds // 3600,

1430 (elapsed_prediction_time.seconds // 60) % 60,

1431 elapsed_prediction_time . seconds % 60)

1432 return prediction_stats

1433 else:

1434 prediction = model.predict(statistics , batch_size=args.batch_size , verbose=1)

1435 prediction_metrics [architecture |. add_predictions (labels , prediction)

1436

1437 total_len_prediction += len(prediction)

1438 cntr += 1

1439 test_iter = args.train_dataset_size % cntr

1440 test_epoch = test_ds.epoch

1441 if test_epoch > 0:

1442 test_epoch = test_iter // ((test_ds.iteration + test_ds.batch_size % test_ds.dataset_workers) // test_ds.epoch)
1443 print(”Prediction Epoch: %d, Iteration: %d / %d” % (test_epoch, test_iter , args.max_iter))
1444 if test_iter >= args.max_iter:

1445 break

1446 if test_ds.iteration >= args.max_iter:

1447 break

1448

1449 test_ds.stop_outstanding_tasks ()

1450 elapsed_prediction_time = datetime.fromtimestamp (time.time()) - datetime.fromtimestamp(start_time)
1451

1452 if total_len_prediction > args.train_dataset_size:

1453 total_len_prediction -= total_len_prediction % args.train_dataset_size

1454 print(’\ntest data predicted: %d ciphertexts’ % total_len_prediction)

1455

1456 # print prediction metrics

1457 for metrics in prediction_metrics.values():

1458 metrics. print_evaluation ()

1459

1460 # print selected feature again

1461 if architecture == "SVM-Rotor”:

1462 # print(f RFE-support: \n{ list(model.support_)j\n”)

1463 # print(f”Support names: {convert_rfe_suppori_to_names(model.support_)}”)

1464 # print(f"RFE-rank: \n{ list(model.ranking_)\n”)

1465 print ()

1466

1467 # print(”GridSearchCV:")

1468 # print(f”Best score: [model.best_score_]")

1469 # print(f”Best params: {model.best_params_}")

1470

1471 prediction_stats = ’Prediction time: %d days %d hours %d minutes %d seconds with %d iterations and %d epochs.’ % (
1472 elapsed_prediction_time .days, elapsed_prediction_time.seconds // 3600,

1473 (elapsed_prediction_time.seconds // 60) % 60,

1474 elapsed_prediction_time .seconds % 60, test_iter , test_epoch)

1475

1476 return prediction_stats

1477

1478 def expand_cipher_groups (cipher_types):

1479 ”?”Turn cipher group identifiers (ACA, MTC3, ROTOR, ALL) into a list of their ciphers.”””

1480 expanded = cipher_types

1481 if config .MTC3 in expanded:

1482 del expanded[expanded.index (config .MTC3)]

1483 for i in range(5):

1484 expanded . append (config.CIPHER_TYPES[i ])
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def

elif config .ACA in expanded:
del expanded[expanded.index (config.ACA)]
for i in range(56):
expanded . append (config . CIPHER_TYPES[i )
elif config .ROTOR in expanded:
del expanded[expanded.index (config .ROTOR) ]
for i in range(56., 61):
expanded . append (config . CIPHER_TYPES[ i ])
elif config .ALL in expanded:
del expanded[expanded.index (config.ALL)]
for i in range(61):
expanded . append (config .CIPHER_TYPES[i ])
return expanded

main () :
# Don’t fork processes to keep memory footprint low.
multiprocessing . set_start_method (”spawn™)

args = parse_arguments ()

cpu_count = os.cpu_count()
if cpu_count and cpu_count < args.dataset_workers:

print ("WARNING: More dataset_workers set than CPUs available.”)

# Print arguments
for arg in vars(args):

print (7 {:23s}= {:s}”.format(arg, str(getattr(args,

args.plaintext_input_directory = os.path.abspath(args.plaintext_input_directory)

args.rotor_input_directory = os.path.abspath(args.rotor_input_directory)
args.ciphers = args.ciphers.lower()

cipher_types = args.ciphers.split(’,”)

architecture = args.architecture

extend_model = args.extend_model

# Validate inputs

if os.path.splitext(args.model_name)[1] mot in (’.h5",
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print (’ERROR: The model must have extension ”.h5” (for Keras) or ”.pth” (for PyTorch FFNN).’, file=sys.stderr)

sys.exit (1)

if extend_model is not None:
if architecture mot in ('FFNN', 'CNN’', 'LSTM’):

print (’ERROR: Models with the architecture %s can not be extended!’ % architecture ,

file=sys.stderr)
sys.exit (1)

if len(os.path.splitext(extend_model)) != 2 or os.path.splitext(extend_model)[I]
print ('ERROR: The extended model name must have the

sys.exit(1)

if architecture == "SVM-Rotor” and cipher_types[0] !=

print (f"When training rotor-only model, the argument
f”should equal 'rotor . Selected ciphers are:

sys.exit (1)

‘ciphers
*{cipher_types}’.”)

’ extension!’

if args.train_dataset_size = args.dataset_workers > args.max_iter:

print ("ERROR: —-train_dataset_size * —-dataset_workers must not be bigger than --max_iter.

“In this case it was %d > %d” %

(args.train_dataset_size # args.dataset_workers ,

file=sys.stderr)
sys.exit(1)

# Convert commandline cipher argument (all, aca, mic3,
# all ciphers contained in the provided group. E.g. ’rotor’

# into ’enigma’, 'm209°, etc.
cipher_types = expand_cipher_groups(cipher_types)

# Ensure plaintext dataset is available at ‘args.plaintext_input_directory

if should_download_plaintext_datasets(args):
download_plaintext_datasets (args)

# Load the datasets for the requested cipher types. If aca and rotor
# are contained in ‘cipher_types ‘, both plaintext and ciphertext
train_ds , test_ds = load_datasets_from_disk (args, cipher_types)

# Get the number of cipher classes to predict. Since

# enough nodes upto the higest wanted class label.

output_layer_size = max([config.CIPHER_TYPES. index (type) for type in cipher_types]) + 1

# Create a model and allow for distributed training on multi—GPU machines
model, strategy = create_model_with_distribution_strategy (
architecture , extend_model, output_layer_size=output_layer_size ,

early_stopping_callback , train_iter , training_stats =

save_model (model , args)
prediction_stats = predict_test_data(test_ds, model,

args.max_iter) ,

etc.) to
expanded

datasets are loaded.

numbers are fixed ,
# it must be ensured that the output_layer_size of the neural networks contain

Lh57:
file=sys.stderr)

max_train_len=args.max_train_len)

train_model (model ,
args ,

early_stopping_callback ,
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print(training_stats)

print(prediction_stats)
if __name__ == 7_ T
main ()

_main__

8.2 Full listing of eval.py

import multiprocessing

from pathlib import Path
import argparse

import random

import sys

import os

import pickle

import functools

import numpy as np

from datetime import datetime

import torch
import torch.nn.functional as F
import torch.optim as optim

# This environ variable must be set before all tensorflow imports!

os.environ [ TF_CPP_MIN_LOG_LEVEL’] = 3
import tensorflow as tf

import tensorflow_datasets as tfds

from tensorflow .keras.optimizers import Adam

from tensorflow.keras.metrics import SparseTopKCategoricalAccuracy

sys.path.append(”../")

from util.utils import map_text_into_numberspace
from util.utils import print_progress

import cipherTypeDetection.config as config

from cipherTypeDetection.cipherStatisticsDataset import CipherStatisticsDataset ,
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PlaintextPathsDatasetParameters ,

< RotorCiphertextsDatasetParameters ,
from cipherTypeDetection.
from cipherTypeDetection .

calculate_statistics ,
predictionPerformanceMetrics import PredictionPerformanceMetrics

pad_sequences

rotorDifferentiationEnsemble import RotorDifferentiationEnsemble

from cipherTypeDetection.ensembleModel import EnsembleModel

from cipherTypeDetection.transformer import MultiHeadSelfAttention ,

from util.utils import get_model_input_length

from cipherImplementations.cipher import OUTPUT_ALPHABET, UNKNOWN_SYMBOL_NUMBER

tf.debugging. set_log_device_placement (enabled=False)

TransformerBlock , TokenAndPositionEmbedding

# always flush after print as some architectures like RF need very long time before printing anything.

print = functools.partial (print, flush=True)

for device in tf.config.list_physical_devices( GPU’):
tf.config.experimental.set_memory_growth(device, True)

def str2bool(v):
return v.lower() in ("yes”, "true”, 7

de

=

benchmark (args , model, architecture):
cipher_types = args.ciphers

args . plaintext_folder = os.path.abspath(args.plaintext_folder)

if args.dataset_size # args.dataset_workers > args.max_iter:

print ("ERROR: --dataset_size % ——dataset_workers must not be bigger than —--max_iter. In this case it was %d > %d” % (
args.dataset_size # args.dataset_workers, args.max_iter), file=sys.stderr)
sys.exit (1)
if args.download_dataset and not os.path.exists(args.plaintext_folder) and args.plaintext_folder == os.path.abspath(

../ data/gutenberg_en’):
print ("Downloading Datsets ...”)
tfds .download.add_checksums_dir(’ ../ data/checksums/")

download_manager = tfds.download.download_manager.DownloadManager(download_dir="../data/’,

download_manager.download_and_extract (

extract_dir=args.plaintext_folder)

“https :// drive . google.com/uc?id=1bF5sSVjxTxa3DB-P5wxn87nxWndRhK_V&export=download”)
path = os.path.join(args.plaintext_folder , 'ZIP.ucid_1bF5sSVjxTx-P5wxn87nxWn_V_export_downloadR9Cwhunev5CvJ—ic__

"HawxhTtGOISdcCrro4fxfEISA

dir_nam = os.listdir (path)

for name in dir_nam:
p = Path(os.path.join(path, name))
parent_dir = p.parents[2]
p.rename(parent_dir / p.name)

os.rmdir (path)

os.rmdir (os.path.dirname (path))

print (”Datasets Downloaded.”)

print(”Loading Datasets ...”)

def validate_ciphertext_path(ciphertext_path, cipher_types):
file_name = Path(ciphertext_path).stem.lower()
if not file_name in cipher_types:

os.path.basename(args.plaintext_folder))

raise Exception(f”Filename must equal one of the expected cipher types. Expected cipher types are: {cipher_types}. Current

< filename is ’{file_name}’.”)

plaintext_files = []
dir_nam = os.listdir (args.plaintext_folder)
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115
116
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123
124
125
126
127
128
129
130
131
132
133
134
135
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137
138
139
140
141
142
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144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

path =

o

name in dir_nam:

s.path.join (args.plaintext_folder , name)

if os.path.isfile (path):
plaintext_files .append(path)

file_names =

result

find_ciphertext_paths_in_dir (folder_path):
7””Loads all
known cipher types.

files that their names match the

Ltxt in the given folder and checks

os.listdir (folder_path)
[1

for name in file_names:

pat

file_name ,
if os.path.isfile (path) and file_name.lower()

h

= os.path.join(folder_path , name)

file_type = os.path.splitext(name)

in cipher_types and file_type == "
validate_ciphertext_path(path, config.ROTOR_CIPHER_TYPES)

result.append (path)

return result

eval_rotor_ciphertext_paths =

# Calculate batch

# equal to

number_of_rotor_ciphers =
number_of_aca_ciphers =
amount_of_samples_per_cipher =
rotor_train_dataset_size =

plaintext_dataset_params =

rotor_dataset_params =

find_ciphertext_paths_in_dir (args.rotor_ciphertext_folder)

size for rotor ciphers.

the amount of samples per aca cipher.

len (config .ROTOR_CIPHER_TYPES)

len (config .CIPHER_TYPES) - number_of_rotor_ciphers
args.dataset_size // number_of_aca_ciphers
amount_of_samples_per_cipher # number_of_rotor_ciphers

PlaintextPathsDatasetParameters (cipher_types[:56],
args.dataset_size ,
args.min_text_len ,
args.max_text_len ,
args . keep_unknown_symbols ,
args.dataset_workers ,
generate_evaluation_data=True)
RotorCiphertextsDatasetParameters (config .ROTOR_CIPHER_TYPES,
rotor_train_dataset_size ,
args.dataset_workers ,
args.min_text_len ,
args.max_text_len ,
generate_evalutation_data=True)

dataset = CipherStatisticsDataset(plaintext_files , plaintext_dataset_params ,
rotor_dataset_params , generate_evaluation_data=True)
if args.dataset_size % dataset.key_lengths_count != 0:

8 Appendix: Full Python code

o UR(E™8

The amount of samples per rotor cipher should be

eval_rotor_ciphertext_paths ,

print ("WARNING: the --dataset_size parameter must be dividable by the amount of —-ciphers and the length configured KEY_LENGTHS in
oy

print(”Datasets

config.py. The current
loaded .\n")

key_lengths_count is %d” % dataset.key_lengths_count ,

print(’Evaluating model ... ")

import time
start_time

iteration =
epoch = 0
results = [

prediction_metrics =

time . time ()

0

1

PredictionPerformanceMetrics (model_name=architecture )

while dataset.iteration < args.max_iter:
= next(dataset)

batches

for

statistics ,

if

elif architecture

index ,

a

batch in enumerate(batches):

labels , ciphertexts = batch.items ()

rchitecture == "FENN”:
if hasattr (model, # Keras model
results .append(model.evaluate (statistics ,

“evaluate™):
labels ,

else: # PyTorch model
stats_np = statistics .numpy()
X = torch.tensor(stats_np, dtype=torch.float32)
y = torch.tensor(labels .numpy ()., dtype=torch.long)

with torch.no_grad():
outputs = model(x)
loss = F.cross_entropy (outputs , y)

topl = torch.argmax(outputs, dim=1)

acc = (topl == y).float().mean()

# Calc top-3

top3 = torch.topk(outputs, k=3, dim=1).indices
y_expanded = y.unsqueeze(1).expand_as(top3)

k3_acc = (top3 == y_expanded).any(dim=1).float () .mean()

results .append ((loss.item (), acc.item(), k3_acc.item()))

in ("CNN”, "LSTM”,
results .append(model.evaluate (ciphertexts ,

”Transformer”) :
labels ,
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batch_size=args . batch_size ,

batch_size=args.batch_size ,

file=sys.stderr)

verbose=1))

verbose=1))
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215
216
217

253
254

de
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elif architecture in ("DT”, "NB”, "RF”, "ET”, "SVM”, "kNN"):

results .append(model.score(statistics , labels))

print(Taccuracy: %f” % (results[-1]))
elif architecture = Ensemble”:

results .append(model.evaluate (statistics , ciphertexts , labels ,
iteration = dataset.iteration — len(batch) % (len(batches) - index - 1)
epoch = dataset.epoch
if epoch > 0:

epoch = iteration // (dataset.iteration // dataset.epoch)

print("Epoch: %d, Iteration: %d” % (epoch,
if iteration >= args.max_iter:
break

iteration))

if dataset.iteration >= args.max_iter:
break

elapsed_evaluation_time =
print(’Finished evaluation
elapsed_evaluation_time . days ,
elapsed_evaluation_time.seconds % 60,

in %d days %d hours %d minutes %d seconds with %d
elapsed_evaluation_time.seconds // 3600,
iteration , epoch))

if architecture

in ("FFNN", "CNN”, "LSTM”, "Transformer”):

avg_loss = 0

avg_acc = 0
avg_k3_acc = 0
for loss, acc_pred, k3_acc in results:

avg_loss += loss

avg_acc += acc_pred

avg_k3_acc += k3_acc
avg_loss avg_loss / len(results)
avg_acc / len(results)
avg_k3_acc / len(results)
results: loss: %f,
"RF”, "ET”, “Ensemble”,

avg_acc =
avg_k3_acc =
print (" Average evaluation
elif architecture in (”DT”, "NB”,
avg_test_acc = 0
avg_k3_acc = 0
for acc, k3_acc in results:
avg_test_acc += acc
avg_k3_ace += k3_acc
avg_test_acc =
avg_k3_acc = avg_k3_acc /
print(”Average evaluation

accuracy: %f,
"SVM”, "KNN”):

avg_test_acc / len(results)
len(results)
results from %d

iterations: avg_test_acc=%f,

print(”Detailed results:”)
prediction_metrics . print_evaluation ()

evaluate (args, model, architecture):
results_list = []

dir_name = os.listdir(args.data_folder)
dir_name.sort ()

cntr = 0

iterations = 0
for name in dir_name:
if iterations
break
path = os.path.join(args.data_folder ,
if os.path.isfile (path):
if iterations > args.max_iter:
break
batch = []
batch_ciphertexts = []
labels = []
results = []
dataset_cnt = 0

> args.max_iter:

name )

input_length = get_model_input_length(model, args.architecture)

with open(path, “rb”) as fd:
lines = fd.readlines ()
for line in lines:

# remove newline

line = line.strip(b’\n’).decode ()
if line == *7:

continue
split_line = line.split(’ )

labels.append (int (split_line [0]))

statistics = [float(f) for f in split_line[1].split(’, )]

batch.append(statistics)

ciphertext = [int(j) for j in

if input_length is not None:
if len(ciphertext) < input_length:

split_line [2].split(’,")]

ciphertext = pad_sequences([ciphertext], maxlen=input_length)[0]
# if the length its too high, we need to strip it..
elif len(ciphertext) > input_length:

ciphertext = ciphertext[:input_length]
batch_ciphertexts.append(ciphertext)
iterations += 1
if iterations == args.max_iter:
break

81

args.batch_size ,

k3_accuracy: %f\n” % (avg_loss ,

k3_accuracy: %f\n” % (iteration ,
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prediction_metrics , verbose=1))

datetime . fromtimestamp (time . time () ) - datetime.fromtimestamp (start_time)
iterations
(elapsed_evaluation_time .seconds

and %d epochs .\n" % (
/1 60) % 60,

avg_acc, avg_k3_acc))

avg_test_acc, avg_k3_acc))
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255 if len(labels) == args.dataset_size:

256 if architecture == “FFNN":

257 resulls.app%r;&;l(modeLevaluale(lf.converl,lo,lensor(balch), tf.convert_to_tensor(labels), args.batch_size, verbose
— =

258 elif architecture in ("CNN”, "LSTM”, “Transformer”):

259 results .append(model.evaluate (tf.convert_to_tensor(batch_ciphertexts), tf.convert_to_tensor(labels),

260 args.batch_size , verbose=0))

261 elif architecture == "Ensemble”:

262 results .append(model.evaluate (tf.convert_to_tensor(batch), tf.convert_to_tensor(batch_ciphertexts), tf.
< convert_to_tensor (labels),

263 args.batch_size , verbose=0))

264 elif architecture in (”DT”, "NB”, "RF”, "ET”, "SVM”, "kNN”):

265 results .append(model.score (batch, tf.convert_to_tensor(labels)))

266 batch = []

267 batch_ciphertexts = []

268 labels = []

269 dataset_cnt += 1

270 if len(labels) > 0:

271 if architecture == “FFNN":

272 results .append(model.evaluate (tf.convert_to_tensor(batch). tf.convert_to_tensor(labels), args.batch_size, verbose=0))

273 elif architecture in (”CNN”, "LSTM”, “Transformer”):

274 results .append (

275 model . evaluate (tf.convert_to_tensor(batch_ciphertexts), tf.convert_to_tensor(labels), args.batch_size, verbose=0))

276 elif architecture == "Ensemble”:

277 results .append (

278 model.evaluate (tf.convert_to_tensor(batch), tf.convert_to_tensor(batch_ciphertexts), tf.convert_to_tensor(labels),

279 args.batch_size , verbose=0))

280 elif architecture in (”DT”, "NB”, "RF”, “ET”, "SVM”, "kNN”):

281 results .append(model.score (batch, tf.convert_to_tensor(labels)))

282 if architecture in (”FFNN”, "CNN”, "LSTM”, ”Transformer”):

283 avg_loss = 0

284 avg_acc = 0

285 avg_k3_acc = 0

286 for loss, acc_pred, k3_acc in results:

287 avg_loss += loss

288 avg_acc += acc_pred

289 avg_k3_acc += k3_acc

290 result = [avg_loss / len(results), avg_acc / len(results), avg k3 acc / len(results)]

291 elif architecture in (”DT”, "NB”, "RF”, “ET”, "Ensemble”, "SVM”, "kNN”):

292 avg_test_acc = 0

293 for acc in results:

294 avg_test_acc += acc

295 result = avg_test_acc / len(results)

296 results_list.append(result)

297 cntr 4= 1

298 if args.evaluation_mode == ’per_file :

299 if architecture in (”FFNN”, "CNN”, "LSTM”, "Transformer”):

300 print ("s (%d lines) test_loss: %f, test_accuracy: %f, test_k3_accuracy: %f (progress: %d%d)” % (

301 os.path.basename(path), len(batch) + dataset_cnt * args.dataset_size, result[0], result[1], result[2], max(

302 int(cntr / len(dir_name) * 100), int(iterations / args.max_iter) % 100)))

303 elif architecture in (”DT”, "NB”, "RF”, “ET”, “Ensemble”, "SVM”, "kNN”):

304 print("%s (%d lines) test_accuracy: %f (progress: %d%%)” % (

305 os.path.basename (path), len(batch) + dataset_cnt % args.dataset_size , result,

306 max(int(cntr / len(dir_name) * 100), int(iterations / args.max_iter) % 100)))

307 else:

308 print_progress (”Evaluating files: ”, cntr, len(dir_name), factor=5)

309 if iterations == args.max_iter:

310 break

311

312 if architecture in (”FFNN”, "CNN”, "LSTM”, ”Transformer”):

313 avg_test_loss = 0

314 avg_test_acc = 0

315 avg_test_acc_k3 = 0

316 for loss, acc, acc_k3 in results_list:

317 avg_test_loss += loss

318 avg_test_acc += acc

319 avg_test_acc_k3 += acc_k3

320 avg_test_loss = avg_test_loss / len(results_list)

321 avg_test_acc = avg_test_acc / len(results_list)

322 avg_test_acc_k3 = avg_test_acc_k3 / len(results_list)

323 print(”\n\nAverage evaluation results from %d iterations: avg_test_loss=%f, avg_test_acc=%f, avg_test_acc_k3=%f” % (

324 iterations , avg_test_loss, avg_test_acc, avg_test_acc_k3))

325 elif architecture in (”DT”, ”"NB”, "RF”, "ET”, “Ensemble”, "SVM”, "kNN”):

326 avg_test_acc = 0

327 for acc in results_list:

328 avg_test_acc += acc

329 avg_test_acc = avg_test_acc / len(results_list)

330 print(”\n\nAverage evaluation results from %d iterations: avg_test_acc=%f” % (iterations , avg_test_acc))

331

332

333 def predict_single_line (args, model, architecture):

334 cipher_id_result = *°

335 ciphertexts = []

336 result = []

337 if args.ciphertext is not None:

338 ciphertexts.append(args.ciphertext.encode())

339 else:

340 ciphertexts = open(args.file, ’rb’)

341

342 print ()
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343 for line in ciphertexts:

344 # remove newline

345 line = line.strip(b’\n’)

346 if line == b’’:

347 continue

348 # evaluate aca features file

349 # label = line.split(b’ *)[0]

350 # statistics = ast.literal_eval(line.split(b’ ’)[1].decode())

351 # ciphertext = ast.literal_eval(line.split(b’ ’)[2].decode())

352 # print(config. CIPHER_TYPES[ int(label.decode())], "length: %d” % len(ciphertext))
353

354 # Append ciphertext to itself. This improves the reliablity of the results.

355 while len(line) < 1000:

356 line = line + line

357 # Limit line to at most 1000 characters to limit the execution time

358 line = line[:1000]

359

360 print(line)

361 ciphertext = map_text_into_numberspace(line , OUTPUT_ALPHABET, UNKNOWN_SYMBOL NUMBER)
362 try:

363 statistics = calculate_statistics (ciphertext)

364 except ZeroDivisionError:

365 print(”\n”)

366 continue

367 results = None

368 if architecture == "FFNN":

369 result = model.predict(tf.convert_to_tensor ([ statistics]), args.batch_size, verbose=0)
370 elif architecture in (”CNN”, “LSTM”, ”Transformer”):

371 input_length = get_model_input_length (model, architecture)

372 if len(ciphertext) < input_length:

373 ciphertext = pad_sequences ([ list(ciphertext)], maxlen=input_length)[0]

374 split_ciphertext = [ciphertext[input_length=j:input_length*(j+1)] for j in range(len(ciphertext) // input_length)]
375 results = []

376 if architecture in (”LSTM”, ”Transformer”):

377 for ct in split_ciphertext:

378 results .append(model. predict (tf.convert_to_tensor ([ct]), args.batch_size,
379 elif architecture == "CNN”:

380 for ct in split_ciphertext:

381 results .append (

382 model . predict (tf.reshape(tf.convert_to_tensor([ct]), (1, input_length, 1)), args.batch_size, verbose=0))
383 result = results [0]

384 for res in results [1:]:

385 result = np.add(result, res)

386 result = np.divide(result, len(results))

387 elif architecture in ("DT”, "NB”, "RF”, “ET”, "SVM”, "kNN”):

388 result = model.predict_proba(tf.convert_to_tensor([statistics]))

389 elif architecture == "Ensemble”:

390 result = model.predict(tf.convert_to_tensor([statistics]), [ciphertext], args.batch_size, verbose=0)
391

392 if isinstance(result, list):

393 result_list = list(result[0])

394 else:

395 result_list = result[0].tolist ()

396 if results is not None and architecture not in ( Ensemble’, 'LSTM’, ’Transformer’, 'CNN’):
397 for j in range(len(result_list)):

398 result_list[j] /= len(results)

399 if args.verbose:

400 for cipher in args.ciphers:

401 print(7{:23s} {:f}%”.format(cipher, result_list[config.CIPHER_TYPES.index (cipher)]+100))
402 max_val = max(result_list)

403 cipher = config.CIPHER_TYPES[result_list.index (max_val)]

404 else:

405 max_val = max(result_list)

406 cipher = config.CIPHER_TYPES[result_list.index (max_val)]

407 print(”{:s} {:f}%”.format(cipher, max_val % 100))

408 print ()

409 cipher_id_result += cipher [0].upper ()

410

411 if args.file is not None:

412 ciphertexts.close ()

413

414 # return a list of probabilities (does only return the last one in case a file is used)
415 res_dict = {}

416 if len(result) != 0:

417 for j, val in enumerate(result[0]):

418 res_dict[args.ciphers[j1] = val % 100

419 return res_dict

420

421

422 def load_model (architecture , args, model_path, cipher_types):

423 strategy = args.strategy

424 model_list = args.models

425 architecture_list = args.architectures

426

427 model = None

428

429 if architecture == "FFNN” and model_path.endswith(”.pth”):

430 from cipherTypeDetection.train import FFNN

431
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432 checkpoint = torch.load (model_path, map_location=torch.device(”cpu”))

433

434 model = FENN(

435 input_size=checkpoint[’input_size’],

436 hidden_size=checkpoint[’hidden_size ],

437 output_size=checkpoint[’ output_size’],

438 num_hidden_layers=checkpoint[ num_hidden_layers’]

439 )

440 model . load_state_dict(checkpoint[’model_state_dict’])

441 model . eval ()

442

443 config .FEATURE_ENGINEERING = True

444 config .PAD_INPUT = False

445

446 return model

447

448 elif architecture in (”FENN”, "CNN”, ”"LSTM”, "Transformer”):

449 if architecture == ’Transformer’:

450 if not hasattr(config, “maxlen”):

451 raise ValueError(”maxlen must be defined in the config when loading a Transformer model!”)
452 model = tf.keras.models.load_model(args.model, custom_objects={

453 *TokenAndPositionEmbedding *: TokenAndPositionEmbedding ,

454 *TransformerBlock ’: TransformerBlock })

455 else:

456 model = tf.keras.models.load_model (args.model)

457 if architecture in ("CNN”, "LSTM”, "Transformer™):

458 config .FEATURE_ENGINEERING = False

459 config .PAD_INPUT = True

460 else:

461 config .FEATURE_ENGINEERING = True

462 config .PAD_INPUT = False

463 optimizer = Adam(learning_rate=config.learning_rate , beta_l=config.beta_I, beta_2=config.beta_2, epsilon=config.epsilon,
464 amsgrad=config . amsgrad)

465 model . compile (optimizer=optimizer , loss="sparse_categorical_crossentropy”,
466 metrics=["accuracy”, SparseTopKCategoricalAccuracy (k=3, name="k3_accuracy™)])
467 elif architecture in (”DT”, "NB”, "RF”, “ET”, "SVM”, "kNN"):

468 config .FEATURE_ENGINEERING = True

469 config .PAD_INPUT = False

470 with open(model_path, ”rb”) as f:

471 model = pickle.load(f)

472 elif architecture == ’“Ensemble’:

473 cipher_indices = []

474 for cipher_type in cipher_types:

475 cipher_indices .append(config .CIPHER_TYPES. index (cipher_type))

476 model = EnsembleModel (model_list, architecture_list , strategy , cipher_indices)
477 else:

478 raise ValueError(”Unknown architecture: %s” % architecture)

479

480 # Controlla se ci sono cifrari rotor tra quelli richiesti

481 has_rotor_ciphers = any(c in config .ROTOR_CIPHER_TYPES for c¢ in cipher_types)
482

483 # Se ci sono cifrari rotor, carica anche il modello rotor_only

484 if has_rotor_ciphers:

485 rotor_only_model_path = args.rotor_only_model

486 if not os.path.exists(rotor_only_model_path):

487 raise FileNotFoundError(f”Rotor-only model is required but not found at {rotor_only_model_path}”)
488 with open(rotor_only_model_path, "rb”) as f:

489 rotor_only_model = pickle.load(f)

490 return RotorDifferentiationEnsemble (architecture , model, rotor_only_model)
491

492 # Se non ci sono cifrari rotor:

493 # — se ¢ un ensemble, restituisci direttamente 1’ ensemble

494 # — altrimenti restituisci il modello normale

495 return model

496

497

498 def expand_cipher_groups (cipher_types):

499 “*“Turn cipher group identifiers (ACA, MTC3) into a list of their ciphers™"”
500 expanded = cipher_types

501 if config.MTC3 in expanded:

502 del expanded[expanded.index (config .MTC3)]

503 for i in range(5):

504 expanded . append (config.CIPHER_TYPES[i])

505 elif config.ACA in expanded:

506 del expanded[expanded.index (config .ACA)]

507 for i in range(56):

508 expanded . append (config.CIPHER_TYPES[i])

509 elif “aca+rotor” in expanded:

510 del expanded[expanded.index (”aca+rotor”)]

511 for i in range(61):

512 expanded . append (config.CIPHER_TYPES[i])

513 return expanded

514

515 def parse_arguments():

516 parser = argparse.ArgumentParser (

517 description="CANN Ciphertype Detection Neuronal Network Evaluation Script’, formatter_class=argparse.RawTextHelpFormatter)
518 sp = parser.add_subparsers ()

519 bench_parser = sp.add_parser(’benchmark’,

520 help="Use this argument to create ciphertexts on the fly, \nlike in training mode, and evaluate them with
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p—

521 >the model. \nThis option is optimized for large throughput to test the model.")

522 eval_parser = sp.add_parser(’evaluate’, help="Use this argument to evaluate cipher types for single files or directories.’)

523 single_line_parser = sp.add_parser(’single_line’, help="Use this argument to predict a single line of ciphertext.”)

524

525 parser.add_argument(’--batch_size’, default=128, type=int,

526 help="Batch size for training.’)

527 parser.add_argument(’--max_iter’, default=1000000000, type=int,

528 help="the maximal number of iterations before stopping evaluation.’)

529 parser.add_argument(’--model’, default="../data/models/ml.h5", type=str,

530 help="Path to the model file. The file must have the .h5 extension.’)

531 parser.add_argument(’—-rotor_only_model’, default="../data/models/svm_rotor_only.h5", type=str

532 help="Path to rotor only model. This model is used in conjunction

533 "with the normal model in an ensemble to improve the recogintion

534 ‘of rotor ciphers. The file must have the .hS extension.’)

535 parser.add_argument(’——architecture’, default="FFNN', type=str, choices=[

536 FFNN’, "CNN’, °LSTM’, 'DT’, 'NB’, 'RF’, 'ET’, 'Transformer’, 'SVM’, 'kNN', 'Ensemble’],

537 help="The architecture to be used for training. \n’

538 *Possible values are:\n’

539 *— FFNN\n’

540 ’~ CNN\n’

541 ’~ LSTM\n’

542 ’- DT\n’

543 = NB\n’

544 - RF\n’

545 = ET\n’

546 - Transformer\n’

547 '~ SVM\n’

548 ’~ kKNN\n’

549 ’~ Ensemble )

550 parser.add_argument(’——ciphers’, '——ciphers’, default="aca’, type=str,

551 help="A comma seperated list of the ciphers to be created.\n’

552 "Be careful to not use spaces or use \’ to define the string.\n’

553 "Possible values are:\n’

554 ’— mte3 (contains the ciphers Monoalphabetic Substitution , Vigenere ,\n’

555 ’ Columnar Transposition, Plaifair and Hill)\n’

556 ’— aca (contains all currently implemented ciphers from \n’

557 ’ https ://www.cryptogram .org/resource —area/cipher—types/)\n’

558 '~ aca+rotor\n’

559 '~ simple_substitution\n’

560 ’— vigenere\n’

561 '~ columnar_transposition\n’

562 ’— playfair\n’

563 "= hill\n")

564

565 parser.add_argument(’—-models’, action="append’, default=None,

566 help="A list of models to be used in the ensemble model. The length of the list must be the same like the one in ~

567 "the --architectures argument.’)

568 parser.add_argument(’——architectures’, action="append’, default=None,

569 help="A list of the architectures to be used in the ensemble model. The length of the list must be the same like

570 *the one in the --models argument.’)

571 parser.add_argument(’——strategy ', default="weighted’, type=str, choices=[ mean’, ’weighted’],

572 help="The algorithm used for decisions.\n- Mean voting adds the probabilities from every class and returns the mean
s

573 * value of it. The highest value wins.\n- Weighted voting uses pre—calculated statistics, like for example

574 precision, to weight the output of a specific model for a specific class.’)

575 parser.add_argument(’—-dataset_size’, default=16000, type=int,

576 help="Dataset size per evaluation. This argument should be dividable \nby the amount of —--ciphers.’)

577

578 bench_parser.add_argument (’~—download_dataset’, default=True, type=str2bool)

579 bench_parser.add_argument(’--dataset_workers’, default=1, type=int)

580 bench_parser.add_argument(’——plaintext_folder’, default="../data/gutenberg_en’, type=str)

581 bench_parser.add_argument(’—-rotor_ciphertext_folder’, default="../data/rotor_ciphertexts ', type=str)

582 bench_parser.add_argument (’—-keep_unknown_symbols’, default=Fals type=str2bool)

583 bench_parser.add_argument(’—-min_text_len’, defaul 0, type=int)

584 bench_parser.add_argument(’--max_text_len’, default=-1, type=int)

585

586 bench_group = parser.add_argument_group (’benchmark’)

587 bench_group.add_argument(’-—download_dataset’, help="Download the dataset automatically.’)

588 bench_group . add_argument (*-—dataset_workers ', help="The number of parallel workers for reading the input files.’)

589 bench_group.add_argument(’——plaintext_folder’, help="Input folder of the plaintexts.’)

590 bench_group . add_argument (*~—keep_unknown_symbols*, help="Keep unknown symbols in the plaintexts. Known \n’

591 *symbols are defined in the alphabet of the cipher.’)

592 bench_group . add_argument ("=—min_text_len’, help="The minimum length of a plaintext to be encrypted in the evaluation process.\n’

593 *If this argument is set to -1 no lower limit is used.’)

594 bench_group . add_argument (*=—max_text_len’, help="The maximum length of a plaintext to be encrypted in the evaluation process.\n’

595 *If this argument is set to -1 no upper limit is used.’)

596

597 eval_parser.add_argument(’-—evaluation_mode’, nargs="?", choices=(’summarized’, 'per_file’), default="summarized’, type=str)

598 eval_parser.add_argument('--data_folder’, default="../data/gutenberg_en’, type=str)

599

600 eval_group = parser.add_argument_group (*evaluate ")

601 eval_group.add_argument(’--evaluation_mode’,

602 help="- To create an single evaluation result over all iterated data files use the \’summarized\’ option.’

603 \n  This option is to be preferred over the benchmark option, if the tests should be reproducable.\n’

604 -~ To create an evaluation for every file use \’per_file\’ option. This mode allows the \n’

605 * calculation of the \n - average value of the prediction \n’

606 ° - lower quartile - value at the position of 25 percent of the sorted predictions\n’

607 -~ median - value at the position of 50 percent of the sorted predictions\n’
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def

if

__name__ == "__main__
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— upper quartile — value at the position of 75 percent of the sorted predictions\n’
’  With these statistics an expert can classify a ciphertext document to a specific cipher.’)
eval_group.add_argument(’—-data_folder’, help="Input folder of the data files with labels and calculated features.’)

single_line_parser.add_argument(’—-verbose’, default=True, type=str2bool)
data = single_line_parser.add_mutually_exclusive_group (required=True)
data.add_argument(’--ciphertext’, default=None, type=str)
data.add_argument(’—-file’, default=None, type=str)

single_line_group = parser.add_argument_group(’single_line ")

single_line_group.add_argument(’——ciphertext’, help="A single line of ciphertext to be predicted by the model.")
single_line_group.add_argument(’—-file’, help="A file with lines of ciphertext to be predicted line by line by the model.")
single_line_group.add_argument(’—-verbose’, help="If true all predicted ciphers are printed. \n’

"If false only the most accurate prediction is printed.”)
return parser.parse_args ()

main () :
multiprocessing . set_start_method (”spawn™)

args = parse_arguments ()

for arg in vars(args):
print (7 {:23s}= {:s}”.format(arg, str(getattr(args, arg))))

m = os.path.splitext(args.model)

if os.path.splitext(args.model)[1] not in (’.h5’, ’.pth’):
print (’ERROR: The model must have extension “.h5” (for Keras) or ”.pth” (for PyTorch FFNN).’, file=sys.stderr)
sys.exit (1)

architecture = args.architecture

model_path = args.model

args.ciphers args.ciphers.lower ()

cipher_types = args.ciphers.split(’,”)
args.ciphers = expand_cipher_groups(cipher_types)

if architecture == ’Ensemble’:
if not hasattr(args, ’models’) or not hasattr(args, ’architectures’):
raise ValueError(”Please use the ’ensemble’ subroutine if specifying the ensemble architecture.”)
if len(args.models) != len(args.architectures):
raise ValueError("The length of —--models must be the same like the length of —-—architectures.”)
models = []

for i in range(len(args.models)):
model = args.models[i]
arch = args.architectures[i]
if not os.path.exists(os.path.abspath(model)):
raise ValueError(”Model in %s does not exist.” % os.path.abspath(model))
if arch mot in ('FFNN’, 'CNN’, 'LSTM’, 'DT’, °'NB’, 'RF’, 'ET’, ’Transformer’, ’SVM’, 'kNN’):
raise ValueError(”Unallowed architecture %s™ % arch)
if arch in (CFFNN’, °CNN’, 'LSTM’, ’Transformer’) and not os.path.abspath(model).endswith(’ .h5"):
raise ValueError(”"Model names of the types %s must have the .h5 extension.” % ['FFNN', 'CNN', 'LSTM’, ’Transformer’])
elif args.models is not None or args.architectures is not None:
raise ValueError("It is only allowed to use the —-models and —-architectures with the Ensemble architecture.”)

print(”Loading Model...”)

# There are some problems regarding the loading of models on multiple GPU’s.
# gpu_count = len(tf.config.list_physical_devices('GPU"))

# if gpu_count > I:

# strat = tf.distribute . MirroredStrategy ()

# with strat.scope():

# model = load_model ()

# else:

# model = load_model ()

model = load_model (architecture , args, model_path, cipher_types)

print("Model Loaded.”™)

# Model is now always an ensemble
#architecture = "Ensemble”

# the program was started as in benchmark mode.
if args.download_dataset is not None:
benchmark (args , model, architecture)
# the program was started in single_line mode.
elif args.ciphertext is mot None or args.file is not None:
predict_single_line (args, model, architecture)
# the program was started in prediction mode.
else:
evaluate (args , model, architecture)

main ()
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