

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE E TECNOLOGIE

Application of AI for ciphertext identification

SupervisorProf. Stelvio CIMATOCo-SupervisorProf. Bernhard ESSLINGER

AuthorStefano SALAMatricola12490AAcademic year2024-2025

dedicato a mamma, papà, Francesco e Alice ...

Astratto

In un mondo in cui l'intelligenza artificiale è sempre più in sviluppo, sia nella teoria che nella pratica, questa tesi svolge il compito di introdurvi al progetto NCID di CrypTool, il quale utilizza il Machine Learning per il rilevamento del cifrario dato un testo cifrato.

L'obiettivo della tesi è introdurre i framework Keras e PyTorch, con particolare attenzione alla traduzione dell'attuale implementazione del modello di allenamento e valutazione da Keras a PyTorch. Le differenze tra i due framework vengono analizzate nel dettaglio, insieme alle rispettive caratteristiche e strategie di implementazione.

Infine, la tesi si propone di confrontare i risultati ottenuti dalla nuova implementazione con quelli della versione originale, al fine di analizzarne le differenze e trarre delle conclusioni significative.

Abstract

In a world where artificial intelligence continues to evolve both theoretically and practically, this thesis presents the NCID project by CrypTool, which uses machine learning techniques to identify the type of cipher used in a given ciphertext.

This thesis focuses on the use of the Keras and PyTorch frameworks, with particular attention to the translation of the current model training and evaluation implementation from Keras to PyTorch. The differences between the two frameworks are examined in detail, together with an analysis of their characteristics and implementation strategies.

Finally, the thesis aims to compare the results obtained from the new implementation with those of the original version, in order to analyze the differences and draw meaningful conclusions.

Contents

Li	stings	1		7												
Li	st of 1	Figures		9												
1	Intr	Introduction														
	1.1	NCID	app	. 10												
	1.2	Crypto	ography aspects	. 11												
	1.3	Develo	oper aspects	. 12												
2	The	ory and	Foundations	13												
	2.1	Machin	ne Learning basics	. 13												
	2.2	Machin	ne Learning architectures	. 15												
		2.2.1	FFNN	. 16												
		2.2.2	LSTM	. 17												
	2.3	Trainin	ng process	. 18												
	2.4	Statisti	ical features	. 21												
	2.5	Keras	vs PyTorch	. 22												
3	Implementation															
	3.1 Gutenberg library															
	3.2															
	3.3	Fit and validate model														
		3.3.1	Imports	. 26												
		3.3.2	FFNN PyTorch class	. 26												
		3.3.3	FFNN train function	. 28												
		3.3.4	FFNN prediction function	. 37												
		3.3.5	LSTM PyTorch class													
		3.3.6	LSTM train function	. 40												
		3.3.7	LSTM prediction function	. 41												
		3.3.8	Other changes													
	3.4	Evalua	ation code of the model	. 44												
		3.4.1	Benchmark function	. 44												
		3.4.2	Model loading	. 44												
		3.4.3	Input validation													
4	Eval	uation a	and results	47												
		Firet ru		48												

	4.2 DGX runs	49 51 53 55
5	Conclusion	57
6	Acknowledgments	58
7	Bibliography	59
8	Appendix: Full Python code 8.1 Full listing of train.py	61 61 79

Contents

Listings

2.1	Keras fit implementation
3.1	Imports for PyTorch
3.2	Definition of the TorchFFNN class
3.3	Example of input
3.4	First linear layer (Linear input \rightarrow hidden)
3.5	ReLU activation function
3.6	Example of output
3.7	Adam optimizer and Loss function
3.8	Loop structure, code lines from train.py, see appendix from 155 to 161
3.9	Batches before being splitted
3.10	Batches after being splitted
3.11	Splitting the data between trainin and validation
3.12	Wrong implementation
3.13	Example of right implementation
3.14	Right implementation, see lines from 175 to 194 of the appendix
	Evaluation 8.1
3.16	Early stopping check
3.17	Custom predict function for FFNN
3.18	Input LSTM class
	Input LSTM class
	Forward method LSTM class
	LSTM tensor conversion
	FFNN tensor conversion
3.23	Printing the model summary
3.24	Printing the model summary of FFNN
3.25	Printing the model summary of LSTM
3.26	Saving the model with correct extension
	Saving the model with correct extension
	Newer input validation
	New evaluation for FFNN and LSTM architecture
	Setting model parameters
	Changes to Ensemble architecture
	Newer input validation
4 1	Docker run command

														1	List	ings
Redundant no Shell script fo																
ludes/train.py ludes/eval.py																

List of Figures

1.1	Screenshot of NCID app	11
	Structure of a feedforward neural network with two hidden layers (blue)	
2.2	Internal structure of an LSTM unit	18
3.1	Training process [6]	24

1 Introduction

During my studies, I developed a strong interest in cryptography, and in particular in the breaking of encrypted texts and all the mathematical logic behind it. For this reason, I decided to become part of the CrypTool (CT) team. CrypTool¹ is an international open-source project which develops free e-learning software for illustrating cryptographic and cryptanalytic concepts. One of their outcomes is CrypTool-Online (CTO), a web-based tool that offers knowledge about cryptology and free tools to self-educate and to teach about cryptology. Part of CTO is the Neural Cipher Identifier (NCID) app² which can be found on GitHub [1].

The task assigned to me was to implement modifications to the code base that is used in the **Neural Cipher Identifier (NCID)** app. Specifically, the modifications consisted of implementing two different Machine Learning architectures among the five available, namely FFNN and LSTM (see section 2.2), migrating from the current Keras framework to the new PyTorch framework.

Therefore, in order to better understand the process carried out, we first need to introduce some aspects: What is NCID? How is it related to cryptography? What tools did I use to implement these modifications?

1.1 NCID app

The NCID project started as a master thesis supervised by the University of Applied Sciences Upper Austria, Hagenberg, and the CrypTool project. The NCID project is based on the 2021 paper by Nils Kopal "Of Ciphers and Neurons – Detecting the Type of Ciphers Using Artificial Neural Networks" [2]. Of course, this project has been further developed and improved over the years, and in the theory chapter we will see who implemented the various ciphers and architectures of the project (see section 2.2).

The NCID app, which is shown in fig. 1.1, allows the user to input an encrypted text string of at least 30 characters, and from that identify the cipher used for the encryption. For that, NCID uses several neural networks from which one or more can be selected. By doing so, it removes a part that can be considered complicated for a user who is approaching the world of cryptography for the first time.

¹CrypTool: https://www.cryptool.org/en/

²NCID: https://www.cryptool.org/en/cto/ncid/

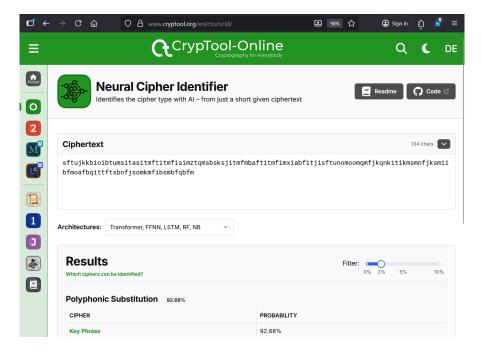


Figure 1.1: Screenshot of NCID app

In fact, in cryptanalysis, the identification of the cipher is the first step required to be able to decrypt an encrypted text. If you do not know which algorithm (cipher) was used to encrypt the text, you can hardly choose the correct attack technique or analysis method. For this reason, decryption often begins with statistical or structural observations on the ciphertext, which serve precisely to hypothesize which cipher has been used. In this regard, we will introduce in the theory chapter what are the statistical features used that allow the model to provide us with an accurate result, that is a correct result in predicting the type of cipher.

1.2 Cryptography aspects

ACA refers to the American Cryptogram Association, an organization founded in 1930 in the United States, dedicated to enthusiasts of classical cryptography and cryptogram puzzles. It is a community of amateur and professional cryptographers that for nearly a century has published the bulletin *The Cryptogram*, where classical ciphers (substitution, transposition, Vigenère, Playfair, etc.) are proposed and solved, using their own notation and standards.

The NCID project initially intended to solve a challenge based on identifying ACA cipher types³. Starting with a paper by Kopal [2] only the 56 ACA ciphers were originally planned. Later, the project was extended to recognize the five rotor ciphers — Enigma, M-209, Purple, SIGABA and Typex — also thanks to the work of Dalton and Stamp [3].

 $^{^3\}mathrm{See}\ \mathrm{https://mysterytwister.org/challenges?search=Cipher+ID}\ \mathrm{for\ more\ background.}$

The NCID app obviously does not aim at detecting modern ciphers, which require enormous computational power to break. First of all the practical problem: modern key spaces are gigantic. For example, a 128-bit key requires up to 2¹²⁸ attempts for a brute-force attack. In addition, modern cryptography is not just simple encryption: it uses modes of operation, authentication, salting, password-iteration schemes, and more. Even if a 'partial' vulnerability was found, the combination of mechanisms often protects the overall communication.

1.3 Developer aspects

For the technical implementation of this project, I used Python, and more specifically I worked closely with the Keras and PyTorch frameworks. Keras is a high-level framework for building ML models, while PyTorch is lower-level and allows the programmer a much broader modification of the data flow (see section 2.5).

All the code provided to me comes from the project's GitHub repository⁴, which I was able to fork and then modify and test on my local machine. In particular, we will discuss two files: train.py and eval.py (see appendices on pages 61 and 79). The first contains all the functions necessary for training the model, while the second includes everything needed for its evaluation. This aspect will then be further explored in the implementation chapter.

⁴ See [1]		

2 Theory and Foundations

This chapter focuses on outlining the foundational concepts necessary to address the topics covered in this thesis. We begin by examining the fundamentals of machine learning (section 2.1), after which we will shift the focus to the architectures that I modified in the project and explain their evolutionary process within it (section 2.2). We will then look at how the model training process works, highlighting some key concepts of Machine Learning and about the NCID project (section 2.3). We will continue by discussing what statistical features are (section 2.4), and finally, we will discuss the differences between the two frameworks adopted, Keras and PyTorch (section 2.5).

2.1 Machine Learning basics

"A computer program is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**."

This is the definition that Tom Mitchell gives of Machine Learning in his book [4]. As we will notice throughout our work, this definition perfectly applies to our case. In fact, our *Task* consists in identifying the cipher, the *Performance* is measured through the accuracy of the trained model in identifying the correct cipher, and the *Experience* is determined by the dataset of pairs (x, y), where x is our input (that is, the strings encrypted with one of the 61 ciphers), and y are the labels, namely the corresponding correct cipher for each x.

But how does my model map the inputs x to our label y? To accomplish this task, a machine learning model can be trained in different ways: supervised, unsupervised, or reinforcement learning.

Supervised learning In supervised learning, the training set (named *D*) is composed of pairs (input, label).

$$D_{\text{supervised}} = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$

The goal is to learn a function f that maps the input x to its label y:

$$f: X \to Y$$
 such that $f(x) \approx y$

Once trained, the model must be able to predict y for new, unseen inputs x.

Unsupervised learning In this case, the dataset contains only inputs, and thus there are no labels *y*:

$$D_{\text{unsupervised}} = \{x_1, x_2, \dots, x_n\}$$

The goal is to discover hidden structures, patterns, or relationships in the data, and in this case the model learns a function *g* that transforms or groups the data:

$$g: X \to Z$$
 where Z is a space of representations, clusters, or rules

Reinforcement learning Reinforcement learning is a type of machine learning in which an agent learns to make decisions by interacting with an environment, aiming to maximize a cumulative reward. It works without explicit labels for each action, but the agent learns through trial and error, observing the consequences of its actions.

An example could be a robot trying to exit a labyrinth, where the environment is the labyrinth, and the actions are moving up, down, left or right. The robot explores the maze randomly (exploration phase) and records what happens after each action. Over time, it learns that some moves lead to higher rewards than others (for example +10 if it exit and -1 for every step done), so it starts to exploit (exploitation phase) what it has learned.

Clearly, our project uses supervised learning, because as anticipated we provide our model with encrypted texts as input, and we also provide the corresponding labels. After sufficiently training the model, we test it with previously unseen encrypted sentences: the better the model performs at this task, the more accurate we consider it to be.

In particular, ours is a multiclass classification problem, that is, a supervised learning task in which each input $x \in X$ belongs to at least one class among a set of k > 2 possible classes. Formally:

$$f: X \rightarrow \{c_1, c_2, \dots, c_k\}$$

where $k \ge 3$ and f(x) returns the correct class c_i for each x.

Now let us focus on how the inputs are mapped, that is, how do we implement our function f?

2.2 Machine Learning architectures

"The choice of architecture inherently constrains the representational capacity of a model, determining not only what it can learn, but how efficiently it can transform inputs into useful outputs" [5]

Just as different vehicles serve distinct functions, a car for daily commuting, a tractor for agricultural work, and a truck for freight transport, different machine learning architectures are designed to address specific computational tasks. Certain models excel at image classification, while others specialize in sequential data prediction or clustering analysis. Some architectures demonstrate versatility across multiple domains, while others are finely tuned for specialized applications. This diversity in design reflects the need for tailored solutions in artificial intelligence, where the choice of architecture fundamentally shapes a model's capabilities and performance. This is precisely where our function lies: each architecture adopts a different way of processing and evaluating the inputs, yet they all share the common goal of mapping them into a meaningful output.

But which architectures does the NCID project employ? And who first introduced them?

The idea originates from the paper by Kopal [6], which employs the **Artificial Neural Network** (ANN) for cipher identification. In the paper Kopal uses the book *Make your own neural network* [7] to provide a good introduction to ANNs: neurons are interconnected through input and output links that carry signals, each associated with a specific weight. A neuron includes an activation function a, which determines its output based on the incoming inputs. Concretely, the neuron combines all incoming signals with their corresponding weights, adds a bias term b, and then applies the activation function to this aggregated result to produce the final output (see section 2.3).

A typical design in artificial neural networks is to arrange neurons into distinct layers. The input data are first provided to an input layer composed of n neurons. This layer is connected to one or more hidden layers, which process the information further. The final hidden layer is then linked to the output layer. In this structure, every neuron in one layer is connected to every neuron in the subsequent layer, this behavior is called fully connected layer. The learning, in general, is performed by adapting the weights of the connections between the neurons.

Subsequently, with the paper *A Massive Machine-Learning Approach for Classical Cipher Type Detection Using Feature Engineering*, architectures that computed features (see section 2.4) were introduced through feature engineering, namely Feedforward Neural Networks, Decision Trees, and Naive Bayes networks. But what does feature engineering actually mean?

In traditional machine learning, feature engineering plays a central role. It consists of manually designing and selecting features that best represent the data, often relying on domain expertise and statistical analysis. While this approach can yield effective results, it is limited by the knowledge and creativity of the researcher, and may not capture complex or hidden patterns in the data.

In contrast, feature learning, automatically extracts representations from raw data. Neural networks, for example, learn hierarchical features directly during the training process, reducing the need for manual intervention. This allows models to discover intricate structures that would be difficult to design by hand. However, feature learning requires larger datasets and higher computational resources compared to traditional feature engineering.

In fact, the paper *Detection of Classical Cipher Types with Feature-Learning Approaches* by Dalton and Stamp served as inspiration for the addition of rotor ciphers in the project, which was introduced by Maik Bastian.

It should be noted that Maik Bastian also had to incorporate an SVM classifier, since the main architectures, although able to distinguish between ACA ciphers and rotor ciphers, were not capable of effectively discriminating among the different types of rotor ciphers. The SVM was therefore specifically trained for this task and integrated as an additional module: whenever the primary model detected a rotor cipher, the final classification was performed by the SVM, resulting in higher accuracy in distinguishing between the five rotor ciphers considered.

To sum up, for cipher identification, NCID uses a combination of five different architectures: FFNN, LSTM, Transformer, RF and NBN. In the work I carried out, I had to translate from Keras to PyTorch the Feedforward Neural Network and Long Short-Term Memory, and we will now examine them in more detail.

2.2.1 FFNN

It is a subclass of ANN, in which the information flows only forward, from the input layer to the output layer, without cycles or connections that send the signal backward. It is the most classical and simple ANN model, sometimes also called MLP (Multilayer Perceptron). Figure 2.1 shows the structure of an FFNN. The aim of the training is to guide f(x) to obtain the probability of belonging to a class (our label, y).

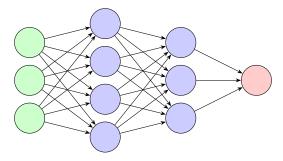


Figure 2.1: Structure of a feedforward neural network with two hidden layers (blue).

We can build deep networks with more than just two hidden layers; in fact, modern architectures often include over a hundred layers, each containing thousands of hidden layers. The term *width* refers to the number of hidden units within a single layer, while *depth* describes the number of hidden layers in the network. The total number of hidden units across all layers serves as an

indicator of the network's overall capacity.

If you are interested in exploring the topic further, I found useful consulting the paper by Goodfellow et al. [5]

2.2.2 LSTM

Long-Short Term Memory (LSTMs) is a recurrent neural network architecture designed by Sepp Hochreiter and Jürgen Schmidhuber in 1997 [8]. In contrast to FFNN, recurrent neural networks incorporate loops, enabling information from later stages of processing to be sent back to earlier stages. The LSTM has proven to be highly effective across a wide range of applications, including unconstrained handwriting recognition, speech recognition, handwriting generation, and many others [5].

To gain a clearer understanding of how the LSTM operates, its internal structure is illustrated in fig. 2.2. This graphic was designed by myself. Similar graphics can be found in Shi Yan's blog post "Understanding LSTM and its Diagrams" (2016) [9].

The LSTM architecture is built around a single core component called the memory unit, or LSTM cell. This unit comprises four neural networks, each containing an input layer and an output layer. Together, these networks form what are called the three gates: the Forget Gate, the Input Gate, and the Output Gate.

The Forget Gate determines how much of the long-term memory should be retained. This information is computed by combining the current input x_t with the previous hidden state h_{t-1} , which represents the short-term memory. A bias is then added, and the result is passed through a sigmoid activation function. The output of the Forget Gate is subsequently multiplied by the previous cell state c_{t-1} , which represents the long-term memory.

The Input Gate computes the candidate long-term memory to be added, along with the proportion of it that should be stored. This process consists of combining the current input x_t with the previous hidden state h_{t-1} , passing the result once through a sigmoid activation and once through a tanh activation. The two outputs are then multiplied element-wise, and the resulting vector is added to the cell state.

Lastly, the Output Gate updates the short-term memory by passing the combination of the current input x_t and the previous hidden state h_{t-1} through a sigmoid activation. This output is then multiplied element-wise with the tanh of the updated cell state, and the result forms the new hidden state h_t .

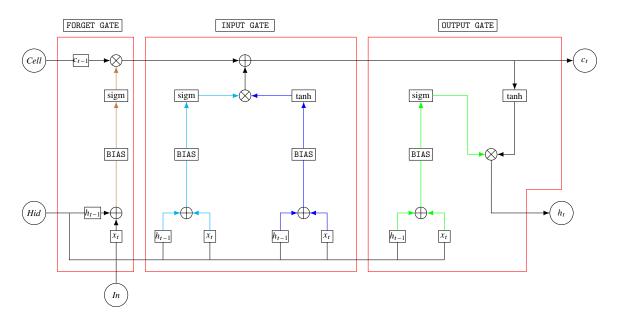


Figure 2.2: Internal structure of an LSTM unit

2.3 Training process

I will take this section to explain some fundamental concepts about ML and the project that will be useful multiple times throughout the work.

The path followed by a training process usually includes data setup, training and validation, and finally a final evaluation. In chapter 3, we will see in detail how this procedure is structured in NCID.

Let's now introduce some common Machine Learning terminology:

Weights The weights in a neural network are numerical parameters that determine how much each input influences the output. You can think of them as knobs that "weigh" the importance of each input. During training, the model searches for weight values that minimize the error between the predictions and the actual data. Therefore, the weights are not fixed: they are learned from the data.

Bias The bias in a neural network is an additional value that allows the model to shift the output independently of the inputs. It is similar to the intercept in a line y = mx + q, where the bias corresponds to that q. Without a bias, the output would always be constrained to pass through the origin (zero), which can limit the model's ability to fit the data. With a bias, even if all inputs are zero, the output can still take a value different from zero.

Linear layer A linear layer is used to transform the inputs into outputs through a linear combination of the values:

$$y = xW^T + b$$

where x is the input vector, i.e., the data entering the layer and W is the weight matrix. In practice, it is the basic building block of many neural networks. It serves to change the representation of the data so that the model can later recognize patterns or make predictions.

Rectified Linear Unit The activation function **ReLU** instead applies a non-linear, elementwise transformation, defined as:

$$ReLU(x) = max(0, x)$$

In other words, negative values are replaced with zero, while positive values remain unchanged. The introduction of non-linearity is essential, as it enables the network to learn complex functions that could not be represented by linear transformations alone.

Optimizer The Adam optimizer (Adaptive Moment Estimation) is a widely used weight update algorithm in neural networks. It is a method based on computing the moments¹ of the gradient: Adam maintains an exponential estimate of the first moments (the mean of the gradients) and the second moments (the mean of the squared gradients), and uses these values to dynamically adjust the learning rate² of each parameter. The combination of these two moments allows for more stable and faster convergence compared to classical methods such as standard gradient descent.

Simply put: when the network makes a prediction, we compare the result with the correct answer and compute an error (loss). The optimizer 'looks' at this error and decides how to adjust the network's weights to reduce it in the next iteration.

Softmax Softmax is a mathematical function widely used in neural networks, particularly in the output layer of multi-class classification models. Its purpose is to transform a vector of real values (i.e., the logits) into a probability vector, meaning numbers between 0 and 1 that sum to 1. Therefore, softmax is used to interpret a network's outputs as probabilities, making it easier to select the most likely class.

¹Momentum is an optimization technique that introduces a form of "inertia" in the weight update process, accumulating part of the past gradients' direction to make the descent more stable and faster.

²The learning rate is a hyperparameter that controls the step size during gradient descent, determining how much the model's parameters are updated in response to the estimated error at each iteration.

Loss function The loss function used in the NCID project is the **Cross-Entropy Loss**, typically employed for multiclass classification problems like ours. Cross-entropy measures the distance between the probability distribution predicted by the network and the true distribution of the labels. It performs the following steps:

- 1. Applies the softmax function to the logits (the raw output of the architectures) to transform them into probabilities.
- 2. Compares these probabilities with the true labels.
- 3. Returns the average log-loss³ across all samples in the batch. The result of this computation is a scalar tensor (a vector that contains a single value), which when printed outputs a single value representing the loss.

Tokens Tokens are the smallest units of text into which a neural network splits a sentence in order to process it. In practice, tokenization transforms raw text into a sequence of numerical elements that the model can interpret. As we will see, these will be used in the LSTM (and more generally in sequential models) because they allow the network to process sequences of elements in order, preserving and learning the temporal or contextual dependencies between tokens.

Padding Padding is a technique that consists of adding values (typically zeros) to sequences of variable length to make them all the same size. This technique is used in LSTMs because each batch of data must have the same length since matrix operations require rectangular tensors.

Hyperparameters Finally, we would like to specify the parameters used as command line inputs. These will be particularly useful during the evaluation phase, since they must remain the same in order to compare the Keras models with the PyTorch ones. A quick reminder: We will talk about samples, but these depend on the context and the architectures used, as well as on the stage of the pipeline in which they are processed. For example, in the preprocessing phase, samples consist of plaintext sentences; after encryption, they become ciphered sentences, and later they are transformed into numerical features or representations suitable for the model.

The parameter --batch_size indicates the batch size, that is, how many samples are used in a single weight update step during training. Larger values make training more stable but more memory-intensive, while smaller values make the model noisier but allow more frequent updates.

--train_dataset_size specifies the total number of samples used in each fitting phase. It is important that this number is divisible by the amount of ciphers chosen with --ciphers, in order to obtain a dataset that has the same number of inputs for each cipher type.

--dataset_workers determines how many parallel processes are used to read the samples. More workers speed up the loading, which is useful with large datasets.

³For a deeper understanding the CrossEntropyLoss section of the PyTorch guide is available here [10]

- --epochs defines how many times the same dataset is presented to the model during training. Increasing the number of epochs improves learning, but beyond a certain point it may lead to overfitting⁴.
- --plaintext_input_directory is the folder that contains the plaintexts used as a basis for creating ciphertexts. These plaintexts are used to generate the training data (see section 3.1).
- --model_name defines the name of the final saved model file, which must have the .h5 extension for Keras and .pth for PyTorch.
- --min_train_len and --max_train_len set the minimum and maximum length, respectively, of plaintexts used for training. If the value is set to -1, no constraint is applied. The same logic applies to --min_test_len and --max_test_len, which refer instead to the data for the evaluation.
- --architecture defines the model architecture to be used. Combinations are also possible, such as [FFNN,NB] or [DT,ET,RF,SVM,kNN], as well as a special case for rotor ciphers (SVM-Rotor).

2.4 Statistical features

Features are numerical measures that can be computed from the ciphertext, highlighting certain regularities. These regularities arise from the fact that the encrypted message retains statistical correlations with the original language (English, Italian, etc.). Essentially, statistical features are tools to quantify how much a ciphertext deviates from random text and how much it "resembles" natural language text. These differences correspond to the known weaknesses of the ACA ciphers and allow them to be identified and attacked.

One of the most widely used features in cryptanalysis is the Index of Coincidence (IoC), which is the probability that two randomly chosen letters from a text are the same. In a natural language like English, where some letters are much more frequent than others, the IoC takes on a characteristic value of around 0.066. In completely random text, the IoC is much lower, approximately 0.038.

Using substitution or transposition ciphers, this value remains unchanged, because the letters are simply rearranged. Consequently, an IoC that remains close to that of natural language is a strong indication that the cipher belongs to one of these families.

In contrast, for ciphers like the Bacon cipher, the frequency distribution changes drastically. Here, the IoC no longer reflects that of the original language and may appear anomalous or much higher. Therefore, if the model observes an IoC value that is particularly high or low compared to the typical English range, it can immediately rule out a simple transposition or substitution. In this sense, the IoC becomes a discriminative feature: it allows distinguishing between cipher families

⁴Overfitting is a phenomenon that occurs when a machine learning model learns the training data too well, memorizing its noise and specific details instead of capturing general patterns.

that preserve the statistical structure of the language and others that alter it significantly. It is through this type of analysis that the model can narrow down the possible ciphers used.

The project, as cited in the paper by Kopal et al. [6], initially implemented 28 statistical features, divided into groups: distribution statistics, frequency statistics, binary features, and cipherspecific features. After a selection phase, not all 28 features proved useful: only 20 were actually used in the final models, because some did not improve accuracy or introduced noise, meaning that a feature adds no new information and is redundant relative to others already present, leading to incorrect classification. If you are interested in seeing all the features used in the project, they can be found in [6].

2.5 Keras vs PyTorch

In the Machine Learning landscape, selecting the right framework is crucial for achieving desired results. Keras [11] and PyTorch [12] are the most popular open-source frameworks (along with TensorFlow, used for large-scale machine learning and deep learning applications; Scikit-learn, used for traditional machine learning algorithms and data preprocessing; and NumPy, used for efficient numerical computations and array manipulation), both used to train and evaluate neural networks. Despite sharing a common goal, they differ in their design, making them suitable for different use cases. This section aims to underline the main differences between Keras (introduced in 2015 by François Chollet) and PyTorch (released in 2016 by Meta AI, formerly Facebook AI Research) by analyzing their principal functionalities and their respective strengths and weaknesses. In the implementation chapter, we examine the actual translation from the Keras version to the PyTorch one.

So, why translating a code from Keras to PyTorch?

There are several reasons that make the conversion of a model from Keras to PyTorch an essential modification. Firstly, there is the desire to experiment with a new framework or the need to adapt to the demands of the job market. In fact, Keras has declined in popularity in the last few years among working environments, since PyTorch offers more flexibility for coding training loops. The key differences between Keras and PyTorch reside in their architectures, how they define and train models, and the level of control they provide to the coder over those processes.

Keras presents itself as a modular library designed for fast training and experimentation with deep neural networks. Its architecture favors quick and easy prototyping, offering straightforward "building blocks". It is considered a "plug-and-play" framework that allows the coder to quickly build, train, and evaluate models, simplifying the development process.

PyTorch, on the contrary, is a low-level framework. It offers a more flexible approach and an imperative programming style, where network behavior is defined directly in Python code.

But how do we train and evaluate a model with those frameworks?

In Keras, training and evaluating a model is fairly easy, since the whole training process is managed by the fit method. For example, in the Keras implementation the FFNN was implemented like this:

```
history = model.fit(statistics, labels,

batch_size=args.batch_size,
validation_data=(val_data, val_labels),
epochs=args.epochs,
callbacks=[early_stopping_callback,
tensorboard_callback,
custom_step_decay_lrate_callback,
checkpoint_callback])
```

Listing 2.1: Keras fit implementation

In PyTorch, instead, the architecture is divided into two parts: the definition of the states and the definition of the path that the data has to follow during the training. Training and evaluation require manual writing of complete training and test loops. This must include the upload of data inside batches, the passage of data through the network, loss calculation, backpropagation, and weight updates. [13]

Without delving into much theory, in pseudo code a neural network training loop looks like this: [14]

```
Algorithm 1 Neural network training loop
```

```
for each epoch do
for each batch do
Load data
Pass data through network
Calculate losses
Calculate gradients
Adjust network weights through backpropagation
end for
end for
```

At this point you are probably wondering: Does PyTorch really expect me to write all that code? The answer is yes, but as we said, it comes with benefits for the programmer who wants to experiment with Machine Learning.

In summary, the decision between Keras and PyTorch should be driven by your project goals and your familiarity with deep-learning concepts. If you need to prototype quickly or teach fundamental models, Keras is likely the better fit; if you require research-grade flexibility, and fine-grained control, PyTorch will better meet those demands. If you are eager to know what can PyTorch accomplish I suggest you to read the implementation section 3.3.3 about the validation steps.

3 Implementation

In this chapter, we examine the code modifications that were introduced, explaining both their purpose and the rationale behind each change. Figure 3.1 shows the training process of the cipher classification model. These are the fundamental steps performed by the code to create a new model, starting from the extraction of texts from the Gutenberg Library and ending with the evaluation of the trained model. In the following paragraphs, each of these steps will be analyzed in detail, with particular emphasis on the fit (i.e., the actual training) and validation stages, as they required the most significant modifications.



Figure 3.1: Training process [6]

3.1 Gutenberg library

The initial step involves extracting plaintext. For this purpose, we utilize the Gutenberg Library, an open-source collection of public domain texts, which provides a diverse set of literary works suitable for training and testing our models. These texts serve as the basis for generating the encrypted input used in our supervised learning tasks.

In the previous Keras-based implementation, the procedure for handling the Gutenberg plaintext dataset was the same as in the PyTorch version. The dataset was downloaded from the same public Google Drive link, automatically extracted into a temporary directory, and then relocated to the project's designated plaintext folder (data/gutenberg_en). After the extraction, auxiliary directories created by the download manager were removed, leaving only the necessary dataset in the target directory.

This design choice was not altered during the transition from Keras to PyTorch because the handling of plaintext data is a preprocessing step independent of the training framework. Both frameworks rely on the same input format: plaintext files are required to generate ciphertext samples through encryption with the implemented classical ciphers, which are then converted into statistical feature vectors or character sequences for model training. Consequently, the data pipeline, from downloading and extracting the Gutenberg texts to splitting them into training and testing subsets, remained unchanged.

3.2 Preprocess texts and calculate statistics

In this phase, the plaintexts are first encrypted using different cryptographic algorithms and then preprocessed to be transformed into a numerical form suitable for training machine learning models. The preprocessing consists of text normalization (for example, converting all letters to lowercase), the removal or replacement of unrecognized symbols, and the conversion of character sequences into numerical vectors. In summary, this phase makes it possible to translate the encrypted texts into standardized numerical representations, making them comparable to one another and enabling the models to learn the distinctive patterns of the different ciphers.

Like the previous plaintext extraction phase, this step did not require any changes, since the data are preprocessed in the same way for both Keras and PyTorch. The only precaution is to provide them, during training, in the appropriate format: tensors for PyTorch and NumPy arrays for Keras.

3.3 Fit and validate model

Let's now move on to the major changes.

Initially, I tried to understand how the GitHub repository was formed [1]. The file that we will examine now is called train.py, so every modification from now on (page 25 to 43) has been

done on that file. I was first focused on understanding how the training sessions worked, which I did by testing and running some basic training scripts on my local machine. These experiments were mainly aimed at grasping the overall workflow of the code.

Once I understood the overall functioning, I began working on the changes related to the training and validation of the model. In order to translate the code from Keras to PyTorch there are several logical steps to follow.

3.3.1 Imports

The first step consisted of importing the PyTorch library along with all the necessary modules required to run the code.

```
import torch
import torch.nn as nn
import torch.optim as optim
from torchinfo import summary
import numpy as np
from torch.utils.data import TensorDataset, DataLoader
```

Listing 3.1: Imports for PyTorch

These include essential components such as torch.nn for defining neural networks, torch.optim for optimization algorithms, and torch.utils.data for managing datasets and data loaders. Additionally, torchinfo was imported to provide a summary of the model's structure, and NumPy was used for numerical operations and compatibility with existing data structures.

We will now delve into the details of the individual architectures.

3.3.2 FFNN PyTorch class

As anticipated in the theory chapter I personally worked on and translated the FFNN and LSTM (see section 2.2), and in the following sections we will examine in detail the code modifications that were introduced in order to use them with the new framework.

Let's start from the FFNN class.

```
class FFNN(nn.Module):
      def __init__(self, input_size, hidden_size, output_size,
2
         → num_hidden_layers):
         super().__init__()
3
4
          self.input_size = input_size
5
          self.hidden_size = hidden_size
6
          self.output_size = output_size
          self.num_hidden_layers = num_hidden_layers
8
          layers = [nn.Linear(input_size, hidden_size), nn.ReLU()]
10
          for _ in range(num_hidden_layers - 1):
```

Listing 3.2: Definition of the TorchFFNN class

To gain an intuitive understanding of how the network works, let us consider a simplified example. Suppose we have an FFNN model with three input neurons, two hidden layers of five neurons, and an output layer with two possible classes (for instance, distinguishing whether a text belongs to cipher A or cipher B, so a binary classification).

As starting data, we take a small batch consisting of four vectors, each with three numerical features:

Listing 3.3: Example of input

At this stage, the input is multiplied by the weight matrix of the first layer and added to a bias term. The result is a linear transformation that projects the data into the space of the hidden layer:

Listing 3.4: First linear layer (Linear input \rightarrow hidden)

ReLU (see section 2.3) replaces negative values with zero:

Listing 3.5: ReLU activation function

The linear transformation and the ReLU are then applied again until the final output state is obtained. The last layer maps the data into a vector that has as many entries as the number of classes:

```
4 [-0.0652, -0.0819]])
```

Listing 3.6: Example of output

These values are not probabilities, but logits. In other words, they are the "raw" outputs produced by the last linear layer of your FFNN before any transformation that normalizes them between 0 and 1. Each row corresponds to a batch example, and each column corresponds to a class. These logits can be positive or negative and are not constrained to sum to 1. When you apply the softmax function to each row, you obtain a probability vector that sums to 1, which is useful for interpreting the model and for computing the cross-entropy loss (in PyTorch, cross-entropy loss can accept logits directly, see section 2.3).

This simple example demonstrates how an initial set of numerical data, through a sequence of linear and non-linear transformations, is projected into a space that allows separation between different types of ciphers. In practice, the same logic is extended to more complex features and a larger number of classes, enabling NCID to recognize a wide range of ciphers.

An important aspect of the network implementation concerns the construction of the sequence of layers. In the code, the various layers of the network are initially stored in a Python list called layers. This list contains, in order: the linear transformation from the input to the hidden layer, the ReLU activation function, any additional pairs of linear layer and ReLU, and finally the output layer.

To transform this list into a proper PyTorch model, the nn.Sequential class is used, which allows multiple modules (nn.Module) to be concatenated into a single structure. In this way, the object self.net represents the entire neural network as an ordered sequence of operations.

The *layers syntax serves to "unpack" the list and pass its individual elements as arguments to nn.Sequential.

For example, if layers = [A, B, C], then the statement nn. Sequential(*layers) is equivalent to nn. Sequential(A, B, C).

3.3.3 FFNN train function

In this section, we will dive into the analysis of the lines of code that allow the neural network to learn, starting from setting the optimizer and the loss function, up to performing an evaluation.

Setting optimizer and loss function Let's go through a detailed examination:

```
def train_torch_ffnn(model, args, train_ds):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)

optimizer = optim.Adam(
    model.parameters(),
    lr=config.learning_rate,
```

```
betas=(config.beta_1, config.beta_2),

eps=config.epsilon,

amsgrad=config.amsgrad

criterion = nn.CrossEntropyLoss()
```

Listing 3.7: Adam optimizer and Loss function

After defining the optimizer and the loss function (see section 2.3), the code sets the model to training mode using the command model.train().

This instruction is crucial because it tells PyTorch that the model should behave as it does during training: in particular, certain layers such as *Dropout* (see the following paragraph) and *Batch Normalization* (see chapter 4) behave differently depending on whether the model is in training or validation/testing mode.

Dropout for example randomly deactivates, with a given probability (for example 50%), certain neurons at each forward pass during training to reduce overfitting. This prevents the network from relying too heavily on specific connections.

Without the model.train() call, the model would use the parameters fixed for evaluation mode, which could compromise the training process.

Immediately before the training loops, several control variables are also initialized:

- best_val_acc = 0: stores the highest accuracy achieved on the validation set so far, necessary for implementing *early stopping* (we will see it later in this section).
- patience_counter = 0 and patience_limit = 250: used to count how many consecutive iterations do not improve performance. If the limit is exceeded, training is stopped to avoid wasting computational resources.
- train_iter = 0: keeps track of the total number of samples processed during training.
- train_epoch = 0: counts the number of completed epochs.
- start_time = time.time(): allows measuring the total duration of the training process.
- val_data_created = False together with x_val and y_val: ensures that the validation dataset is created only once, at the first iteration, and then reused without generating random splits at each cycle.

These assignments therefore serve to initialize the training state, so that the model can be trained, monitored, and evaluated correctly.

Training loop The code then enters the actual training phase (see listing 3.8). The outer loop for epoch in range(args.epochs) iterates over the number of epochs (see section 2.3). Inside, the loop while train_ds.iteration < args.max_iter ensures that training continues until the maximum number of iterations is reached.

The command training_batches = next(train_ds) retrieves a new batch of data from the generator train_ds. Each batch is organized as pairs of (statistics, labels), where statistics contains the numerical features extracted from the ciphered texts i.e., the values that will be fed as input to the model while labels represents the corresponding class labels.

The statement statistics, labels = training_batch.items() separates the data from the labels. With stats_np = statistics.numpy() and labels_np = labels.numpy(), the PyTorch tensors are converted into NumPy arrays, which is useful for later splitting the dataset into training and validation sets using train_test_split.

For clarification, consider a numerical example: suppose the generator train_ds provides a batch with 4 samples, each described by 3 statistical features, along with their respective class labels. We would then have:

$$\mathtt{statistics} = \begin{bmatrix} 0.2 & 0.5 & 0.7 \\ 0.1 & 0.4 & 0.3 \\ 0.9 & 0.8 & 0.6 \\ 0.0 & 0.2 & 0.1 \end{bmatrix}, \quad \mathtt{labels} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$

After conversion with .numpy(), we obtain the arrays

$$\mathtt{stats_np} = \begin{bmatrix} 0.2 & 0.5 & 0.7 \\ 0.1 & 0.4 & 0.3 \\ 0.9 & 0.8 & 0.6 \\ 0.0 & 0.2 & 0.1 \end{bmatrix}, \quad \mathtt{labels_np} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$

Although they appear identical, these arrays can now be used either to create the PyTorch tensors required for training or to be split into a *training set* and a *validation set*.

In this way, the model receives as input the statistics and the corresponding labels, which allows the loss function to be computed and the weights to be updated via backpropagation.

```
for epoch in range(args.epochs):
    while train_ds.iteration < args.max_iter:
        training_batches = next(train_ds)
        for training_batch in training_batches:
            statistics, labels = training_batch.items()
            stats_np = statistics.numpy()
            labels_np = labels.numpy()</pre>
```

Listing 3.8: Loop structure, code lines from train.py, see appendix from 155 to 161

Splitting dataset In the following lines of train.py, the division of data into training and validation sets is handled. At the first pass, the variable val_data_created is set to False, so the function train_test_split(stats_np, labels_np, test_size=0.3) is executed, which splits the data into two parts: 70% for training (x_train_np, y_train_np) and 30% for validation (x_val_np, y_val_np).

Subsequently, the validation data are converted into PyTorch tensors and moved to the selected device (CPU or GPU).

After this initial split, the variable val_data_created is set to True, so in subsequent iterations the split is not repeated and the validation data remain fixed, while the set x_train_np, y_train_np is updated with the next batches provided by the dataset.

Suppose that the initial batch consists of four samples, each with three features, along with their corresponding labels:

Listing 3.9: Batches before being splitted

By splitting with test_size=0.3, a possible outcome could be:

Listing 3.10: Batches after being splitted

In this example, three samples are used for training and one for validation. After conversion to PyTorch tensors, x_val and y_val will remain unchanged until the end of training, ensuring that the model's performance is always evaluated on the same reference data.

```
8     y_train_np = labels_np
```

Listing 3.11: Splitting the data between trainin and validation

Optimization of the gradients Now we move on to a very important part of the training, the optimization of the gradients that is the process of updating the weights of a neural network during training. The step we are going to analyze was initially implemented differently and produced poorly performing models, but thanks to the help of Maik Bastian, I was able to solve it. Below is a snippet of the code I had first implemented in listing 3.12:

```
optimizer.zero_grad()
outputs = model(x_train)
loss = criterion(outputs, y_train)
loss.backward()
optimizer.step()
```

Listing 3.12: Wrong implementation

The issue with these lines is that, regardless of the dataset size, the optimization is performed only once, whereas in the Keras implementation it was applied for every batch. The problem of calling the optimizer only once for the entire dataset (i.e., after processing all the samples of that batch) instead of after each batch is that the model performs too few weight updates. For example, if you have a dataset of 10k samples and process it as a single batch, the optimizer is updated only once every 10,000 samples. In practice, the network executes just one averaged backpropagation over the whole block, causing the model to learn much more slowly. This problem is known as a *larger effective batch size*.

To achieve behavior similar to Keras (mini-batches and more frequent updates), you should manually split x_{train} and y_{train} into mini-batches of size args.batch_size, as illustrated in listing 3.14.

In listing 3.13 is shown an example of the flow of data with the right implementation where we have a binary classification task. I need to emphasize to the reader that this example is not meant to follow precise calculations, but rather to understand the correct way to split the data. For this reason, the input data are represented by randomly chosen integers, as are the outputs of the loss function:

```
x_{batch1} = [[2, 1], [4, 3]]
15 y_batch1 = [0, 1]
17 # Batch 2
x_{batch2} = [[5, 6], [1, 2]]
19 y_batch2 = [0, 0]
21 # Batch 3
x_batch3 = [[3, 4], [6, 5]]
y_batch3 = [1, 1]
25 outputs_batch1 = [[1.0, 0.5], [0.2, 1.2]]
26 outputs_batch2 = [[0.8, 0.4], [1.1, 0.3]]
27 outputs_batch3 = [[0.3, 0.7], [0.1, 1.0]]
_{29} loss_batch1 = 0.6
30 loss_batch2 = 0.5
loss_batch3 = 0.4
33 batch_losses = [loss_batch1, loss_batch2, loss_batch3]
35 epoch_loss = sum(batch_losses) / len(batch_losses)
36 print("Average Loss:", epoch_loss) # Output: 0.5
```

Listing 3.13: Example of right implementation

With the wrong implementation (see listing 3.12, optimizer.step() would update all the weights only once, using the gradients computed over all 6 samples together. Thus, to achieve this goal, it is not necessary to change the previous steps where optimization was performed, but simply to add a for loop that does it for each x_batch and y_batch contained in the train_loader. The lines before the for loop are used to prepare the data as PyTorch tensors and to create a PyTorch dataset that associates each input with its corresponding label:

```
2 x_train = torch.tensor(x_train_np, dtype=torch.float32)
3 y_train = torch.tensor(y_train_np, dtype=torch.long)
5 train_dataset = TensorDataset(x_train, y_train)
6 train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=
     → True)
8 batch_losses = []
for x_batch, y_batch in train_loader:
    x_batch = x_batch.to(device)
11
      y_batch = y_batch.to(device)
12
13
      optimizer.zero_grad()
14
15
      outputs = model(x_batch)
      loss = criterion(outputs, y_batch)
16
      loss.backward()
17
18
      optimizer.step()
```

```
batch_losses.append(loss.item())
train_iter += len(y_batch)

epoch_loss = sum(batch_losses) / len(batch_losses)
```

Listing 3.14: Right implementation, see lines from 175 to 194 of the appendix

Evaluation The next step of our training loop consists of computing predictions using the model that we are training, see listing 3.15

```
199
200 model.eval()
201 with torch.no_grad():
202    val_outputs = model(x_val)
203    val_loss = criterion(val_outputs, y_val)
204    val_pred = torch.argmax(val_outputs, dim=1)
205    val_acc = (val_pred == y_val).float().mean().item()
206
207    top3 = torch.topk(val_outputs, k=3, dim=1).indices
208    y_val_exp = y_val.unsqueeze(1).expand_as(top3)
209    val_k3 = (top3 == y_val_exp).any(dim=1).float().mean().item()
```

Listing 3.15: Evaluation 8.1

The command model.eval in PyTorch is used to set the model into evaluation mode. By switching to model.eval, we inform PyTorch that training is no longer being performed, but rather validation or testing, and that the learned parameters should be used while disabling stochastic components. By stochastic components, we refer to mechanisms that introduce randomness during training, such as Dropout. In evaluation mode, Dropout is disabled and all neurons remain active. The context manager torch.no_grad in PyTorch specifies that, within its block of code, gradients should neither be computed nor stored. During training, PyTorch keeps track of all operations performed on tensors by building a computational graph, since at the end gradients are required through the loss.backward() operation. This process, however, consumes memory and involves additional computations. During validation or inference (that is, when using model.eval), gradients are not needed, as only the model predictions are of interest.

We can now examine how predictions are computed. For this purpose, we will consider an example with train_dataset_size = 10 (see section 2.3), a total of 7 features, and only 5 cipher classes. The command model(x_val) executes the forward pass, where x_val is the input batch, a tensor containing the calculated feature values (see section 2.4) of the validation set for each sample given.

In this example, the input tensor has the shape $x_val.shape = (3, 7)$. It should be emphasized, however, that in the actual project a total of 724 feature values are employed. To see where in the code this is defined, refer to the appendix at line 504. As you can notice, the number 724 is assigned to the variable input_layer_size. This is because each neuron in the input layer corresponds to one feature.

An example of x_val and the corresponding val_outputs after the forward pass is shown below:

The result of the forward pass is a tensor called val_outputs with shape (3, 5), since in this example 5 ciphers are used, while in the full project there are 61 of which 56 were implemented in the paper "A Massive Machine-Learning Approach For Classical Cipher Type Detection Using Feature Engineering" [15], and the 5 rotor ciphers were later implemented thanks to the contribution of Dalton and Stamp's paper [3].

This tensor will then be employed to compute both the predictions and the loss. The loss is calculated by applying the cross-entropy loss function. The result of this computation is a scalar tensor, val_loss, which when printed outputs a single value representing the loss.

As for the predictions, the val_outputs tensor is used again, this time combined with the argmax function to obtain the index of the maximum value along dimension 1:

```
val_pred = tensor([1, 0, 2])
```

Once the predictions are obtained, they can be compared with the true labels in order to compute the accuracy, which is stored in the variable val_acc. This value indicates how well the model is classifying the validation data. The process is as follows:

- 1. (val_pred == y_val) compares the predictions with the true labels (y_val), returning a vector of booleans (True if correct, False if incorrect).
- 2. .float().mean() converts the booleans to numerical values (1.0 for correct, 0.0 for incorrect) and computes the mean.
- 3. .item() extracts the value as a standard Python number.

For example, if $y_{val} = tensor([1, 3, 2])$, then val_{acc} will be 0.67, since only 2 out of 3 samples were predicted correctly. Thus, the model achieves an accuracy of 67%.

To compute the top-3 accuracy, which measures the percentage of times the correct class appears among the three highest predictions (rather than only the top-1), the topk function selects the three highest logits for each sample, producing a tensor with shape (batch_size, 3), which contains the indices of the three most probable classes:

```
1 top3 =
2 [[1, 0, 4],
3 [0, 3, 2],
4 [2, 4, 1]]
```

After that, the command y_val_exp = y_val.unsqueeze(1).expand_as(top3) is used to make the dimensions of the true labels (y_val) and the multiple predictions comparable, since while y_val has shape (3,), top3 has shape (3, 3). The expansion produces the following tensor:

Finally, similarly to val_acc, the predictions are compared with the true labels using:

```
val_k3 = (top3 == y_val_exp).any(dim=1).float().mean().item()
```

which results in:

Therefore, in this example val_k3 = 1, corresponding to 100%.

In this example, one can observe the advantage of PyTorch over Keras. For instance, the line val_loss = criterion(val_outputs, y_val) shows how PyTorch allows for full flexibility in defining the loss function (here named criterion), not only by choosing among the standard implementations (such as CrossEntropyLoss) but also by creating entirely customized loss functions and directly integrating them into the training loop. This feature makes it possible to adapt the model to highly specific and complex scenarios, where a traditional error metric would not be sufficient. In Keras, by contrast, the choice of the loss function is typically limited to a predefined set of options (such as Poisson, binary_crossentropy for binary classification, or mean_squared_error for regression problems) or otherwise constrained by the high-level APIs.

Early stopping check The last addition was simply an early stopping check. In Keras, these types of checks are already available through the callbacks module, such as EarlyStopping, which can monitor a specified metric and stop training when it ceases to improve. In PyTorch, however, we need to implement them manually. This particular check is used to prevent overfitting by stopping the training process once the model's performance on the validation set stops improving, thus saving computational resources.

```
1 # --- Early stopping check ---
2 if val_acc > best_val_acc:
     best_val_acc = val_acc
     patience_counter = 0
4
5 else:
     patience_counter += 1
6
      if patience_counter >= patience_limit:
7
          print("Early stopping triggered.")
8
          elapsed = time.time() - start_time
9
          t = time.gmtime(elapsed)
10
11
          print(f"Finished training in {t.tm_yday - 1} days {t.tm_hour} hours {

    t.tm_min} minutes {t.tm_sec} seconds with {train_iter}

              → iterations.")
12
          class DummyEarlyStopping:
13
              stop_training = True
          return DummyEarlyStopping(), train_iter, f"Early stopped at epoch {
14
             → epoch+1}"
```

Listing 3.16: Early stopping check

Although functional, we preferred not to use this check during the runs on the DGX machine (see chapter 4), in order to assess the model's true limits. By allowing the training to continue without early stopping, we could observe the maximum performance the model can achieve and better understand how it behaves when trained for extended periods.

And with that we end the training loop.

3.3.4 FFNN prediction function

After training and saving a model, we need to evaluate whether it accurately recognizes our ciphers. To this end, I implemented the prediction function, which evaluates the fully trained model on a dedicated test dataset, without updating the weights anymore.

Similar to the snippet observed in the evaluation section (see section 3.3.3), this function also employs model.eval() and with torch.no_grad() to disable dropout and gradient computation, ensuring stable predictions without additional memory costs. Indeed, this function also makes use of Cross Entropy Loss (see section 2.3), torch.argmax, torch.topk(), etc.

However, we are now in a different stage, namely the final testing phase which is computed by the FFNN prediction function (see lines from 355 to 393 of appendix). In the previous case, after validation, the model was switched back to train() mode to continue learning, while in this function the model remains in eval() mode for the entire test process.

Moreover, an iterative test dataset (test_ds) is used, which provides batches until args.max_iter is reached, instead of a fixed validation set created by splitting the training data. In this context, an essential aspect is that, in addition to loss and metrics, all predictions (all_preds) and all labels (all_labels) are stored and then returned by the function for subsequent calculations (e.g., confusion matrix and F1-score, which will be discussed later in chapter 4).

```
def predict_torch_ffnn(model, test_ds, args):
      device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
      model.eval()
      model.to(device)
4
      criterion = nn.CrossEntropyLoss()
5
6
      all_preds = []
7
      all_labels = []
8
9
      with torch.no_grad():
10
11
          while test_ds.iteration < args.max_iter:</pre>
12
              testing_batches = next(test_ds)
13
              for testing_batch in testing_batches:
                   statistics, labels = testing_batch.items()
15
                   stats_np = statistics.numpy()
16
                   x = torch.tensor(stats_np, dtype=torch.float32).to(device)
17
                   y = torch.tensor(labels.numpy(), dtype=torch.long).to(device)
18
19
                   outputs = model(x)
20
                   loss = criterion(outputs, y)
21
22
                   pred_top1 = torch.argmax(outputs, dim=1)
23
                   acc = (pred_top1 == y).float().mean().item()
24
25
                   top3 = torch.topk(outputs, k=3, dim=1).indices
26
27
                   y_expanded = y.unsqueeze(1).expand_as(top3)
                   k3_acc = (top3 == y_expanded).any(dim=1).float().mean().item
28
29
                   print(f"Eval -> Loss: {loss.item():.4f}, Accuracy: {acc:.4f},
30
                       → Top-3 Accuracy: {k3_acc:.4f}")
31
                   preds = torch.softmax(outputs, dim=1).cpu().numpy()
32
                   all_preds.append(preds)
33
                   all_labels.append(labels.numpy())
34
35
      all_preds = np.concatenate(all_preds, axis=0)
36
      all_labels = np.concatenate(all_labels, axis=0)
37
38
      return all_preds, all_labels
```

Listing 3.17: Custom predict function for FFNN

3.3.5 LSTM PyTorch class

It is now time to discuss our second architecture, namely the LSTM. The main difference between the two architectures lies in the class definition, that is, how the function maps inputs to outputs. In fact, the structure of the LSTM class is very different from that of the FFNN, while the training process, as we will see, is identical for both.

Let us start by examining the inputs received by the class:

The LSTM class defines a recurrent neural network model based on LSTM. The parameter vocab_size indicates the size of the vocabulary, i.e., the total number of distinct tokens (see section 2.3) present in the input data, and it is used to build the initial *embedding layer*. The embedding dimension is specified by <code>embed_dim</code>, which determines how rich the representation of each token will be: larger embeddings can capture more detailed information but also increase the model's complexity. The parameter hidden_size represents the number of hidden units in the LSTM and defines the network's capacity to store long-term information. <code>output_size</code> indicates the number of neurons in the final layer, corresponding to the number of classes in the classification problem or the desired output dimension. The parameter <code>num_layers</code> establishes the number of stacked LSTM layers, while <code>dropout</code> specifies the dropout probability between LSTM layers, useful to reduce overfitting when multiple layers are used.

```
class LSTM(nn.Module):
2
      def __init__(self, vocab_size, embed_dim, hidden_size, output_size,
          → num_layers=1, dropout=0.0):
          super().__init__()
3
4
5
          self.vocab_size = vocab_size
          self.embed_dim = embed_dim
6
          self.hidden_size = hidden_size
8
          self.output_size = output_size
9
          self.num_layers = num_layers
10
          self.dropout = dropout
11
          self.embedding = nn.Embedding(
12
              num_embeddings=vocab_size,
13
14
              embedding_dim=embed_dim,
15
              padding_idx=0
16
```

Listing 3.18: Input LSTM class

Within the class, the LSTM layer itself is defined using nn.LSTM. This PyTorch function is used to define the structure of our architecture, to which the layers and parameters such as dropout are passed. After the LSTM layer, a linear layer (self.fc) is defined, which takes the hidden state of the LSTM as input and produces the final output of dimension output_size, corresponding to the classes of the classification problem or the desired output dimension.

```
self.lstm = nn.LSTM(
input_size=embed_dim,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True,
dropout=dropout if num_layers > 1 else 0.0

)
self.fc = nn.Linear(hidden_size, output_size)
```

Listing 3.19: Input LSTM class

The forward method defines the flow of data through the LSTM model. Initially, the dimension of the input tensor x is checked. If x has three dimensions and the last dimension is equal to 1, it is removed using x. squeeze(2) to ensure that the input has the correct shape for the embedding layer.

Next, the input tokens are converted into dense vectors, that is a vector where every element contains a significant information, through the embedding layer defined as self.embedding(x), producing the tensor emb. This tensor is then passed to the LSTM layer, self.lstm(emb), which returns two main values: output, containing the hidden states for each time step, and hidden, representing the last hidden state of each LSTM layer.

To obtain a compact representation of the entire sequence, the last hidden state of the final layer is selected, last_hidden = hidden[-1]. This vector summarizes the sequential information learned by the LSTM. Finally, last_hidden is passed through the linear layer self.fc to obtain the logits.

```
def forward(self, x):
    if x.dim() == 3 and x.size(2) == 1:
        x = x.squeeze(2)

emb = self.embedding(x)
    output, (hidden, _) = self.lstm(emb)
    last_hidden = hidden[-1]
    logits = self.fc(last_hidden)

return logits
```

Listing 3.20: Forward method LSTM class

3.3.6 LSTM train function

The LSTM training function in train.py is generic with respect to the type of model: for both FFNN and LSTM, the training loop handles taking data batches, computing the loss, backpropagating the gradient, and updating the weights via the optimizer. In other words, the training loop does not "know" whether it is working on an FFNN or an LSTM: it applies the same optimization procedure. The substantial difference lies in how each model transforms inputs into outputs, meaning the input to output mapping is architecturally different, but the weight update mechanism remains the same.

The only note to make is the following. During the conversion of data into Torch tensors, the LSTM performs the following conversion:

```
stats_np = statistics.numpy().astype(int)
Listing 3.21: LSTM tensor conversion
```

In contrast, as we saw in section 3.3.3 the FFNN simply performs:

```
stats_np = statistics.numpy()
```

Listing 3.22: FFNN tensor conversion

The difference between the two cases is not arbitrary, but depends on the type of data each architecture expects as input. In train.py, when working with an FFNN, statistics are already continuous numerical features (floats), derived from the computation of statistics on the encrypted text, so it is sufficient to convert them into a float tensor using .numpy(). This is consistent with the linear operations and ReLU activations in the FFNN, which operate on float32 values.

In the case of the LSTM, however, input sequences are often treated as discrete indices or integer values representing tokens or symbols. For this reason, a different conversion is applied. This way, the values are integers, which can then be transformed into embeddings or processed as sequences.

3.3.7 LSTM prediction function

3.3.8 Other changes

Additionally, I introduced two minor but necessary modifications to improve the compatibility between the legacy script and the newly implemented PyTorch-based architecture. These changes involve printing a model summary and saving the model with the appropriate file extension.

Model summary To visualize the architecture of the model, I used the torchsummary library. If the model does not implement its own summary() method, the code falls back to calling summary() with a predefined input size. This is particularly helpful when debugging or validating the model structure.

Listing 3.23: Printing the model summary

Here the visualization of the summary for the FFNN architecture:

```
1 -----
2 Layer (type:depth-idx)
                     Output Shape
3 -----
4 FFNN
                      [1, 61]
5 Sequential: 1-1
                     [1, 61]
6 Linear: 2-1
                     [1, 543]
                                  393,675
  ReLU: 2-2
                    [1, 543]
8 Linear: 2-3
                     [1, 543]
                                  295,392
```

```
9 ReLU: 2-4
                         [1, 543]
  Linear: 2-5
                         [1, 543]
                                         295,392
   ReLU: 2-6
                         [1, 543]
11
   Linear: 2-7
                         [1, 61]
                                          33,184
12
13
14 Total params: 1,017,643
15 Trainable params: 1,017,643
16 Non-trainable params: 0
17 Total mult-adds (Units.MEGABYTES): 1.02
18 -----
19 Input size (MB): 0.00
20 Forward/backward pass size (MB): 0.01
21 Params size (MB): 4.07
22 Estimated Total Size (MB): 4.09
23 -----
```

Listing 3.24: Printing the model summary of FFNN

And here is the summary of LSTM:

```
1 -----
2 Layer (type:depth-idx) Output Shape Param #
3 -----
                      [1, 1000, 64]
4 Embedding: 1-1
                      [1, 1000, 500]
                                    1,132,000
5 LSTM: 1-2
6 Linear: 1-3
                      [1, 61]
                                    30,561
8 Total params: 1,166,145
9 Trainable params: 1,166,145
10 Non-trainable params: 0
11 Total mult-adds (G): 1.13
12 -----
13 Input size (MB): 0.00
14 Forward/backward pass size (MB): 4.51
15 Params size (MB): 4.66
16 Estimated Total Size (MB): 9.18
```

Listing 3.25: Printing the model summary of LSTM

Saving model Originally, models were saved using the .h5 extension. However, for the PyTorch-based models, it was necessary to switch to the .pth format. To avoid overwriting existing files, the function save_model (see appendix lines from 1218 to 1294) dynamically appends an incremental number to the file name. Moreover, if a specific name is provided via --model_name (see section 2.3).

Another important modification involved the torch.save function. Unlike Keras' model.save, which stores both the weights and the architecture (such as input size, output size, and hidden layer configuration), PyTorch's torch.save saves only the model's weights via the state_dict(). To reproduce the same behavior, it was necessary to manually include the structural parameters

when saving the model. This was achieved by using the FFNN class of PyTorch (see section 3.3.2) to pass all required values.

```
if args.model_name == 'm.h5':
2
          i = 1
          base_name = args.model_name.split('.')[0]
3
          extension = '.pth' if architecture == "FFNN" else '.h5'
4
5
          while os.path.exists(os.path.join(args.save_directory, base_name +

    str(i) + extension)):
              i += 1
6
          model_name = base_name + str(i) + extension
7
      else:
8
          model_name = args.model_name
          if architecture == "FFNN":
10
11
              model_name = model_name.replace('.h5', '.pth')
```

Listing 3.26: Saving the model with correct extension

```
1
      if architecture in ("FFNN", "LSTM"):
2
          state_dict = {
3
               'model_state_dict': model.state_dict(),
               'hidden_size': model.hidden_size,
4
               'output_size': model.output_size,
5
          }
6
8
          if architecture == "FFNN":
               state_dict['input_size'] = model.input_size
9
              state_dict['num_hidden_layers'] = model.num_hidden_layers
10
          elif architecture == "LSTM":
11
              state_dict['vocab_size'] = model.vocab_size
12
              state_dict['embed_dim'] = model.embed_dim
13
              state_dict['num_layers'] = model.num_layers
14
15
              state_dict['dropout'] = model.dropout
16
          torch.save(state_dict, model_path)
```

Listing 3.27: Saving the model with correct extension

Input validation Last but not least, the input validation logic was modified. Previously, the script accepted only filenames with the .h5 extension, consistent with Keras models. However, as previously discussed, PyTorch models are conventionally saved using the .pth extension. Therefore, the validation step was updated to enforce this requirement, ensuring that the file extension matches the framework being used.

Listing 3.28: Newer input validation

3.4 Evaluation code of the model

After porting train.py to PyTorch and successfully training models, I proceeded to adapt the eval.py script accordingly, see pages 61 and 79. Unlike train.py, I chose to retain the original function flow already present in eval.py, modifying only the conditional statements responsible for selecting the correct evaluation logic for the specified architecture.

3.4.1 Benchmark function

The benchmark function was adapted to evaluate PyTorch models using tensors. The evaluation is now performed as seen in listing 3.29:

```
if architecture == ("FFNN", "LSTM"):
      if hasattr(model, "evaluate"): # Keras model
2
          results.append(model.evaluate(statistics, labels, batch_size=args.
3
             → batch_size, verbose=1))
      else: # PyTorch model
4
          x = torch.tensor(statistics.numpy(), dtype=torch.float32)
5
          y = torch.tensor(labels.numpy(), dtype=torch.long)
6
          with torch.no_grad():
              outputs = model(x)
              loss = F.cross_entropy(outputs, y)
              top1 = torch.argmax(outputs, dim=1)
10
              acc = (top1 == y).float().mean()
11
12
              top3 = torch.topk(outputs, k=3, dim=1).indices
13
              y_expanded = y.unsqueeze(1).expand_as(top3)
14
              k3_acc = (top3 == y_expanded).any(dim=1).float().mean()
15
```

Listing 3.29: New evaluation for FFNN and LSTM architecture

As can be observed, the evaluation method is identical to the one carried out by the predict function in train.py (see section 3.3.4). This is because the evaluations must be consistent for both cases, meaning that they should yield more or less the same result.

3.4.2 Model loading

The load_model function was updated to support PyTorch .pth models. Parameters previously saved using torch.save are now correctly reloaded with torch.load. listing 3.30 allow the checkpoint saved on disk with torch.save() to be restored, and depending on the chosen architecture (FFNN or LSTM), the appropriate class is initialized by passing the stored parameters (input dimensions, hidden size, number of layers, etc.). Subsequently, the model weights are loaded with model.load_state_dict(...) and the model is set to eval() mode in order to be used exclusively for prediction, without further training.

```
i if architecture in ("FFNN", "LSTM") and model_path.endswith(".pth"):
      if architecture == "FFNN":
          from cipherTypeDetection.train import TorchFFNN
      elif architecture == "LSTM":
4
5
          from cipherTypeDetection.train import TorchLSTM
6
      checkpoint = torch.load(model_path, map_location=torch.device("cpu"))
7
8
      if architecture == "FFNN":
9
          model = TorchFFNN(
10
11
              input_size=checkpoint['input_size'],
12
              hidden_size=checkpoint['hidden_size'],
13
              output_size=checkpoint['output_size'],
              num_hidden_layers=checkpoint['num_hidden_layers']
          )
15
      elif architecture == "LSTM":
16
          model = LSTM(
17
              vocab_size=checkpoint['vocab_size'],
18
              embed_dim=checkpoint['embed_dim'],
19
              hidden_size=checkpoint['hidden_size'],
20
              output_size=checkpoint['output_size'],
21
             num_layers=checkpoint['num_layers'],
              dropout=checkpoint['dropout']
          )
25
      model.load_state_dict(checkpoint['model_state_dict'])
26
27
      model.eval()
28
      config.FEATURE_ENGINEERING = (architecture == "FFNN")
29
      config.PAD_INPUT = (architecture == "LSTM")
30
31
      return model
```

Listing 3.30: Setting model parameters

In addition, in this way, if an FFNN is loaded, FEATURE_ENGINEERING=True and PAD_INPUT=False are set (see section 2.4 and section 2.3).

Conversely, if an LSTM is loaded, FEATURE_ENGINEERING=False and PAD_INPUT=True, so that the model receives tokenized ciphertexts instead of numerical features.

In addition, I changed the previous logic that always evaluated models as ensembles. Now, the model is only wrapped in a RotorDifferentiationEnsemble when rotor ciphers are actually present. This modification was introduced to avoid unnecessary overhead when evaluating models that do not involve rotor ciphers, ensuring that the ensemble mechanism is only applied when it is actually required:

Listing 3.31: Changes to Ensemble architecture

3.4.3 Input validation

Finally, the input validation in the main function was extended to support models saved with the .pth extension:

Listing 3.32: Newer input validation

4 Evaluation and results

As I have already discussed in section 3.4, the final part of this work consists of the evaluation phase, that is, testing the model with new data in order to obtain meaningful results such as accuracy. In section 3.4, the goal was to correctly implement the code that enables this phase, whereas in this chapter we will compare the obtained results, aiming to contrast the Keras and PyTorch implementations.

Before analyzing the content of this chapter, I need to clarify the purpose of these evaluations. The goal of this thesis is not to improve the performance of the app; therefore, as we will see, I will generally aim to replicate the results achieved by the previous Keras implementation. This is because I do not have the exhaustive knowledge required to enhance a learning model like NCID, but I have worked to make the two implementations as similar as possible.

After implementing our architectures, as discussed in the previous chapter, it is now time to test the models with large amounts of data. Until now, I had been testing all modifications locally with parameters that allowed for simple execution, mainly to highlight potential issues in the data flow. However, these runs had no significance in terms of the actual evaluation of the model and the study of its accuracy.

To perform more meaningful evaluations, I was able to use a machine at the Universität der Bundeswehr München, namely the NVIDIA DGX H100, with the assistance of Doris Behrendt and Maik Bastian. For details on the specifications of the machine used, you can consult the following website [16]. A small clarification: I did not use the full power of the DGX machine; I was only able to train the model on a single GPU.

In order to run the modifications I implemented, I had to create Dockerfiles which, once unpacked on the cluster, allowed the execution of the code from my personal GitHub repository. A Dockerfile is a simple text file that contains the instructions to build a Docker container, that is, an isolated environment in which to run an application in exactly the same way on any machine.

In listing 4.1 depicts the command line used to run the dockerfile previously built. I won't share the build command since it contains reserved informations.

```
docker run -v $(pwd)/output:/app/ncid/cipherTypeDetection/output -it --gpus

→ all --name ncid-keras-benchmark ncid-keras-benchmark
```

Listing 4.1: Docker run command

That said, let's start analyzing the results obtained.

4.1 First runs

Result from Keras Initially, I used the Keras implementation to perform a small training run with the following input data (see section 2.3):

```
train_dataset_size = 1000
batch_size = 256
dataset_workers = 4
min_train_len = 100
max_train_len = 1000
min_test_len = 100
max_test_len = 1000
max_iter = 10000
```

The results training the FFNN were the following:

```
Accuracy: 0.1984 k3-accuracy: 0.3783
```

Here, **accuracy** indicates the probability that the cipher was correctly identified, and **k3-accuracy** represents the probability that the correct cipher was among the top 3 most probable predictions.

So now we have a clear goal: to get as close as possible to the results of the Keras implementation.

Result from PyTorch The code has undergone several modifications over the months; indeed, the first training run with the same inputs yielded these results.

```
Accuracy: 0.042523, k3-accuracy: 0.075315
```

Obviously, we were still far from a good implementation. For example, at the beginning I added an unnecessary data normalization step. This happened because I initially thought that the architecture class did not receive already normalized inputs. In fact, as we have seen in section 3.2, the data were already normalized, and therefore performing this operation a second time significantly worsened the model's accuracy. In listing 4.2 depicts the redundant normalization step that was added.

```
1 mean = stats_np.mean(axis=0)
2 std = stats_np.std(axis=0) + 1e-8
3 stats_np = (stats_np - mean) / std
```

Listing 4.2: Redundant normalization

So, after discussing it with Maik Bastian, I removed the redundant normalization. Then I obtained the following results:

```
Accuracy: 0.076720, k3-accuracy: 0.151515
```

As can be seen, both the single accuracy and the k3 accuracy improved, although only slightly. This is where the modification I mentioned in the implementation chapter, which Maik Bastian pointed out to me (see section 3.3.3), comes into play. After fixing the implementation as discussed earlier, I finally obtained results similar to those of Keras:

```
Accuracy: 0.165479, k3-accuracy: 0.364742
```

Target acquired!

4.2 DGX runs

It was then time to test our models on a large scale using the DGX machine. Below are the command line hyperparameters:

```
train_dataset_size = 976
batch_size = 64
dataset_workers = 16
min_train_len = 100
max_train_len = 1000
min_test_len = 100
max_test_len = 1000
max_iter = 10000000
```

To compare the two implementations, I prepared two shell scripts. The one shown in listing 4.3 is the script used on the DGX machine to test the PyTorch implementation. Of course, I also created a similar one for Keras that I won't add here:

```
1 BASE_DIR=output
2 mkdir -p "$BASE_DIR"
4 DATE=$(date "+%Y%m%d")
6 COMMON_ARGS="--download_dataset=False \
     --plaintext_input_directory=../data/gutenberg_en \
      --rotor_input_directory=../data/rotor_ciphertexts \
8
      --train_dataset_size=976 \
9
      --dataset_workers=16 \
10
11
      --batch_size=64 \
12
      --max_iter=10000000 \
13
      --min_train_len=100 \
      --max_train_len=1000 \
      --min_test_len=100 \
15
      --max_test_len=1000 \
16
      --epochs=1 \
17
      --ciphers=all"
18
19
20 run_benchmark () {
21 ARCH=$1
22 for i in {1..3}; do
     RUN_DIR="$BASE_DIR/${ARCH}_run_$i"
     mkdir -p "$RUN_DIR"
     echo "Launching $ARCH run $i..."
    python train.py \
        --architecture=$ARCH \
27
        $COMMON_ARGS \
28
        --save_directory="$RUN_DIR" \
29
        --model_name="${ARCH}_run_$i.pth" \
30
        > "$RUN_DIR/${ARCH}_var_10000000_run_${i}_${DATE}.txt" \
31
        2> "$RUN_DIR/err_${ARCH}_var_10000000_run_${i}_${DATE}.txt"
32
33
34 }
36 # FFNN
37 run_benchmark FFNN
38
39 # LSTM
40 run_benchmark LSTM
```

Listing 4.3: Shell script for PyTorch

The goal is to test the FFNN architecture implementation three times and the LSTM implementation three times, for both frameworks. This process was carried out using the machine reserved for these tests, in order to ensure the most accurate results possible.

Several tests were performed to verify whether the implementation was correct, whether the models were being saved properly, and to address other potential issues. From this point on, I will report only the results of one result for both Keras and PyTorch. A quick note: the PyTorch results date back to the test performed on August 8, while the Keras results refer to the test conducted on October 6. The Keras results were repeated later because some anomalies had

been found in the model saving process, which prevented a correct evaluation.

4.2.1 Results from Keras

Once again, we will use the results obtained as a benchmark to assess whether we have successfully implemented our architectures. Moreover, it is fundamental introducing a the concept of *Precision, Recall* and *F1-score*. Precision indicates the percentage of correct positive predictions, that is, how often the model is right when it predicts a positive class. Recall measures the model's ability to identify all actual positive instances, that is, how many of the real positive classes have been correctly recognized. Precision and recall differ in focus: precision emphasizes the accuracy of positive predictions, while recall emphasizes the completeness of capturing all positive instances. The F1-score is a metric used to evaluate the performance of a classification model, especially in cases where the data are imbalanced, meaning that some classes have significantly more samples than others.

$$Precision = \frac{TP}{TP + FP}$$
 (4.1)

$$Recall = \frac{TP}{TP + FN} \tag{4.2}$$

where TP stands for true positive, FP for false positive and FN for false negative. All three variables (TP, FP and FN) are non-negative integer counts that represent the number of samples in each category. The F1 score is defined as the harmonic mean between precision and recall:

$$F1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$
(4.3)

This value ranges from 0 to 1, where 1 indicates perfect performance (both precision and recall are equals to 1), and 0 indicates the worst performance.

Now we will discuss the numerical results of the training sessions. To provide a direct reference, I include a list of the ciphers in their order of appearance, sorted alphabetically. This is the same order that appears when we obtain the results during the model evaluation.

1. amsco	2. autokey	3. baconian	4. bazeries	5. beaufort	6. bifid
7. cadenus	8. checkerboard	9. columnar_transposition	10. condi	11. cmbifid	12. digrafid
13. foursquare	14. fractionated_morse	15. grandpre	16. grille	17. gromark	18. gronsfeld
19. headlines	20. homophonic	21. key_phrase	22. monome_dinome	23. morbit	24. myszkowski
25. nicodemus	26. nihilist_substitution	27. nihilist_transposition	28. null	29. numbered_key	30. periodic_gromark
phillips	<pre>32. phillips_rc</pre>	33. plaintext	34. playfair	35. pollux	36. porta
37. portax	38. progressive_key	39. quagmire1	40. quagmire2	41. quagmire3	42. quagmire4
43. ragbaby	44. railfence	45. redefence	46. route_transposition	47. running_key	48. seriated_playfair
49. slidefair	50. swagman	51. tridigital	52. trifid	53. tri_square	54. two_square
55. variant	56. vigenere	57. enigma	58. m209	59. purple	60. sigaba
61. typex					

If you wish to skip directly to the comparison, see section 4.3.

FFNN results With the input hyperparameter specified in section 4.2, we obtained the following results for the Keras FFNN:

```
Total accuracy: 0.7427164374276443
Total k3: 0.9042634659180658
precision: [0.84247601 0.70099323 1. 0.99434685 0.23120063 0.76061568
0.87966872\ 0.95546632\ 0.93239781\ 0.88377353\ 0.80099023\ 0.77054351
0.93703211 0.99554579 0.94213309 0.9879969 0.89974178 0.7988629
0.99993887 0.8506699 0.99640551 0.99546737 0.92647763 0.63775634
0.85385154 0.99027014 0.73630802 1. 0.99939062 0.97517683
0.86251165 0.7487211 0.99750623 0.96016622 0.98180602 0.47141996
0.99668019 0.39556921 0.16037532 0.20766575 0.22230205 0.19764465
          0.41750766 0.43044917 0.99993903 0.49032965 0.84550003
0.48359369\ 0.99441375\ 0.77116174\ 0.8177442\ 0.95524203\ 0.89872368
0.320876291
recall: [0.92615854 0.78323171 1.
                                    0.99743902 0.23378049 0.86176829
0.66605189 0.9720122 0.97640244 0.73859756 0.75957317 0.83420732
0.81664634\ 0.99487805\ 0.99969512\ 0.93353659\ 0.97731707\ 0.97670732
0.99743902\ 0.98335366\ 0.9972561\ 0.7097561\ 0.94432927\ 0.4797561
0.96719512 0.99914634 0.92469512 1.
                                        1.
                                                  0.89109756
0.73329268 0.89243902 1. 0.98621951 0.895
                                                 0.71560976
0.98853659\ 0.73817073\ 0.09067073\ 0.18335366\ 0.09432927\ 0.14121951
0.99963415 0.34054878 0.57908537 1. 0.76365854 0.8552439
0.75128049 0.97689024 0.87103659 0.74579268 0.95780488 0.85871951
0.11359756 0.22341463 0.16957317 0.6979878 0.20371951 0.2747561
0.12146341]
f1: [0.88233756 0.73983412 1.
                                 0.99589054 0.2324834 0.80803865
0.87270713 \ 0.99521181 \ 0.97006094 \ 0.95999498 \ 0.9369264 \ 0.87887849
0.99868738\ 0.91221223\ 0.99683062\ 0.82867618\ 0.93531828\ 0.54758673
0.90699603 0.99468844 0.81981836 1. 0.99969521 0.93124323
0.79267047 0.8142873 0.99875156 0.9730185 0.93639553 0.56839811
0.99259169 0.5151051 0.11584606 0.19475389 0.1324543 0.16473433
0.99981704 0.37512174 0.49382523 0.99996951 0.59720566 0.85034405
0.58842352 0.98557411 0.81806208 0.78011289 0.95652174 0.87826629
0.17622081]
```

LSTM results In this paragraph the Keras LSTM results are shown:

Total accuracy: 0.699571922430185

Total k3: 0.8750897243388391

```
precision: [0.87641498 0.65051067 0.99993903 0.97511339 0.23158169 0.62077346
0.73410459 0.84212268 0.6456672 0.32411558 0.62267438 0.79025262
0.92058659 0.97330374 0.98561677 0.99636811 0.99944673 0.85276796
          0.99115871 0.94371099 0.99415133 0.98101886 0.63922907
0.66583541 0.9971741 0.65088876 1.
                                       1.
                                                 0.99129173
0.60972544\ 0.62101725\ 0.9995122\ 0.62416934\ 0.97185539\ 0.61542203
0.93694264 0.30687831 0.16879706 0.22280193 0.20307135 0.18400538
0.99939036 0.40662154 0.37781341 0.99993902 0.53409208 0.6180449
0.24711656]
recall: [0.91585366 0.65634146 1.
                                    0.99628049 0.21658537 0.5295122
0.47924598 0.77603659 0.74054878 0.36591463 0.54487805 0.75536585
0.90335366 0.98926829 0.98609756 0.98695122 0.99134146 0.97121951
0.99695122 0.97067073 0.95890244 0.98463415 0.97695122 0.38829268
0.71634146 0.9897561 0.98689024 1.
                                       0.99987805 0.9995122
0.76914634\ 0.51817073\ 0.9995122\ 0.86481707\ 0.99170732\ 0.84871951
0.99957317 \ 0.43585366 \ 0.37359756 \ 0.99987805 \ 0.6295122 \ 0.5404878
0.88682927 \ 0.95664634 \ 0.98713415 \ 0.78981707 \ 0.70091463 \ 0.83871951
0.33878049\ 0.24487805\ 0.19603659\ 0.65432927\ 0.15993902\ 0.07109756
0.18420732]
0.57990935 0.80773014 0.68986083 0.3437491 0.58118435 0.77241551
0.91188871 0.98122108 0.98585711 0.99163731 0.9953776 0.90814756
0.99847328\ 0.98080774\ 0.95124607\ 0.98936985\ 0.97898081\ 0.48311964
0.69016567 0.99345125 0.78442301 1.
                                       0.99993902 0.99538499
0.68022002 0.56495147 0.9995122 0.72504665 0.981681
0.96415145 0.38397443 0.08719642 0.17241121 0.15838417 0.11484899
0.99948175 \ 0.42073045 \ 0.37569366 \ 0.99990853 \ 0.57788973 \ 0.57667035
0.79026299 0.96298797 0.97685925 0.7787999 0.73728433 0.79755313
0.24662642 0.22740657 0.22060589 0.51168224 0.18233638 0.10648888
0.211074247
```

4.2.2 Results from PyTorch

Now we present the PyTorch results, after which we will draw some conclusions.

FFNN results Starting with the FFNN:

Total accuracy: 0.7313708694494867

Total k3: 0.9020696031909635

```
precision: [0.77108553 0.64081574 1.
                                             0.99379977 0.22407726 0.77174341
 0.94204352 \ 0.99584505 \ 0.88031958 \ 0.75089452 \ 0.83762434 \ 0.80873805
0.89755428 0.9911354 0.92796322 0.99900431 0.88510873 0.80968893
 0.99987772 0.64407725 0.9967045 0.90825141 0.86191933 0.46486261
 0.95426792 0.98740129 0.69856062 1.
                                             0.99266889 0.97904397
 0.76588775 0.86504006 0.99350689 0.96091244 1.
                                                         0.31089329
 0.99572101 \ 0.3690516 \ 0.16369407 \ 0.19653499 \ 0.20846609 \ 0.16659684
            0.35294118 0.43524855 1.
                                             0.57956381 0.83109792
 0.67200429 0.99152857 0.86308309 0.79863337 0.9533808 0.82372935
 0.19591978\ 0.19693404\ 0.32494279\ 0.53625992\ 0.43583976\ 0.27847226
 0.31505273]
recall: [0.9486084 0.8170166 1.
                                         0.99786377 0.16711426 0.83782959
0.57701757 0.9508667 0.98858643 0.90942383 0.69897461 0.78973389
 0.87805176 0.99633789 0.9977417 0.9185791 0.98132324 0.98339844
 0.99816895 0.91595459 0.99682617 0.93048096 0.94561768 0.47601318
 0.95391846 0.99975586 0.97454834 1.
                                                         0.87255859
                                             1.
0.85620117 0.72491455 0.99926758 0.98730469 0.49353027 0.73370361
 0.99420166 0.80847168 0.06610107 0.19525146 0.0838623 0.14562988
0.99981689 0.02783203 0.70648193 1.
                                             0.70068359 0.85473633
0.53533936 0.97869873 0.74871826 0.80609131 0.95611572 0.94665527
 0.1729126 \quad 0.18896484 \ 0.09533691 \ 0.65985107 \ 0.24835205 \ 0.29504395
 0.10028076]
                                      0.99582762 0.19144845 0.80342981
f1: [0.85068418 0.71826792 1.
 0.71567321 0.97283627 0.93131702 0.82259089 0.76204418 0.799123
 0.88769592 0.99372984 0.96158824 0.95710515 0.93073606 0.88812943
 0.9990226 \quad 0.75632497 \ 0.99676533 \ 0.91923181 \ 0.90183067 \ 0.47037182
 0.95409316 0.99354017 0.8137917 1.
                                             0.99632096 0.9227393
 0.80853026 0.78880255 0.99637891 0.9739298 0.66089089 0.43673025
 0.99496075 0.50677175 0.09417391 0.19589112 0.11960827 0.15540937
 0.99990844 0.05159538 0.53864768 1.
                                             0.63439434 0.8427514
0.59593695 0.98507188 0.80184332 0.80234501 0.95474631 0.88092466
 0.18369861 0.19286715 0.14742107 0.59167032 0.31640747 0.28651869
 0.15213667]
```

LSTM results

Total accuracy: 0.7012079733647427

Total k3: 0.8742761016214723

```
precision: [0.85796652 0.65652963 0.99987794 0.99353659 0.19896735 0.68323991 0.56204133 0.85257582 0.8650025 0.27295937 0.64737512 0.83648348 0.85027119 0.98911391 0.99039579 0.99307159 0.99993889 0.90409117 0.99993883 0.99721172 0.91260593 0.99652397 0.98542363 0.71317752
```

```
0.48079802 0.99211117 0.58891286 0.99987794 0.99993897 0.99871982
 0.67685637\ 0.63413706\ 0.99987786\ 0.8504757\ 0.98306821\ 0.68676212
0.97486797 0.32358401 0.13672073 0.19156903 0.18345945 0.18534671
            0.35910812 0.35320563 0.99993895 0.52338435 0.66906094
 0.76714031 0.92055668 0.99588022 0.71154232 0.72936094 0.81924149
 0.20497916 0.19357802 0.23506053 0.4480726 0.22592295 0.201594
 0.28153913]
recall: [0.94458008 0.66278076 1.
                                         0.99450684 0.16699219 0.51330566
 0.41035906 0.82525635 0.52874756 0.45025635 0.55847168 0.6428833
 0.94726562 0.99267578 0.98815918 0.99731445 0.99865723 0.94415283
0.99768066 0.9822998 0.94647217 0.99737549 0.99029541 0.43768311
 0.84283447 0.99786377 0.88311768 1. 1.
 0.76220703 0.60998535 0.99926758 0.80749512 0.99578857 0.83435059
 0.98016357 0.43621826 0.06585693 0.19360352 0.08435059 0.02593994
0.99981689 0.52099609 0.33087158 0.99969482 0.60107422 0.69360352
 0.86663818 0.96893311 0.98852539 0.8661499 0.8449707 0.87939453
 0.22814941 0.32159424 0.22399902 0.58459473 0.13745117 0.07873535
0.19873047]
f1: [0.89919238 0.65964038 0.99993897 0.99402147 0.18158288 0.58620569
 0.47436993 \ 0.83869367 \ 0.65631274 \ 0.3398756 \ 0.59964611 \ 0.72701546
0.89615151 \ 0.99089164 \ 0.98927622 \ 0.9951885 \ \ 0.99929765 \ 0.92368782
0.99880847 0.9896996 0.92923058 0.99694955 0.98785351 0.54245622
 0.61230462 0.99497916 0.7066149 0.99993897 0.99996948 0.99932902
 0.71700063 0.62182678 0.99957262 0.8284283 0.98938751 0.75339635
 0.9775086 \quad 0.3715526 \quad 0.08889438 \ 0.1925809 \quad 0.11556633 \ 0.04551052
 0.99990844 0.42516312 0.34167402 0.99981687 0.55954545 0.68111121
 0.81385951 0.94412561 0.99218918 0.78127065 0.78292097 0.84825292
 0.21594454 0.24168062 0.22939651 0.50730932 0.17091682 0.11324233
 0.23299581]
```

4.3 Comparison

The reported evaluations show very satisfactory results regarding the achievement of our goal, which, I would like to recall once again, was not to improve our previous implementation in terms of model accuracy, but rather to obtain results with PyTorch that were consistent with those achieved using Keras. At first glance, the two implementations behave in a very similar way, as can be seen in table 4.1 and table 4.2. It should also be reminded that both implementations were trained with identical hyperparameters, in order to ensure a fair evaluation.

Starting from the FFNN results, the Keras model achieved a total accuracy of 74.27% and a top-3 accuracy of 90.04%. The same architecture implemented in PyTorch reached a total accuracy of 73.13% and a top-3 accuracy of 90.02%. The total accuracy result is perfectly in line with our expectations, while the total accuracy is slightly lower. These discrepancies are not concerning, but they often result from differences between the two frameworks, which use slightly different

	Keras	PyTorch
FFNN	74.27%	73.13%
LSTM	69.95%	70.12%

	Keras	PyTorch
FFNN	90.04%.	90.02%
LSTM	87.50%	87.42%

Table 4.1: Table of total accuracies

Table 4.2: Table of top 3 accuracies

weight initialization or floating-point rounding mechanisms, leading to minor variations in the results.

Similarly, for the LSTM architecture, the Keras implementation achieved a total accuracy of 69.95% and a top-3 accuracy of 87.50%, while the PyTorch version obtained a total accuracy of 70.12% and a top-3 accuracy of 87.42%. As with the FFNN, these small discrepancies are due to operational differences between the frameworks.

Let's now take a look to the evaluation metrics. A more detailed analysis of these highlights that both implementations perform consistently across most classes, with minor variations in Precision, Recall, and F1-score. Overall, the Keras model shows slightly higher values for these metrics.

The Precision values indicate that both models are generally reliable when predicting a positive class, although Keras tends to produce fewer false positives in several cipher categories. The Recall values are also comparable, suggesting that both models are capable of identifying the majority of the true instances. However, in a few specific classes, PyTorch shows lower Recall, meaning it occasionally fails to recognize some correct samples that Keras is able to detect.

The F1-score, which combines Precision and Recall into a single measure, reflects this balance. The Keras implementation achieves slightly higher F1-scores overall, confirming its better equilibrium between accurate and complete predictions.

5 Conclusion

As we have seen, the project aimed at the development and evaluation of FFNN and LSTM architectures, now familiar to you, for the automatic classification of classical ciphers, with particular attention to the comparison between implementations in Keras and PyTorch.

We started from the NCID application, analyzing what it is, how it works, its connections with cryptography, and the technologies it relies on. This provided the necessary foundation for understanding the work carried out. We began by reviewing the fundamentals of Machine Learning, including the concept of statistical features, and comparing the two frameworks Keras and PyTorch.

All of this served as preparation for the core part of the project: the implementation. In this phase, we analyzed the data flow within the NCID app and examined each stage: the extraction of plaintexts and their encryption, the preprocessing of texts and the calculation of statistical features, the training and validation of the models, and finally their evaluation. We highlighted the technical differences between the two frameworks and solved some technical issues. The most significant issues encountered were the incorrect implementation of data normalization and the improper optimization of gradients during model training, which, however, were resolved as discussed in chapter 3.

We concluded the work by comparing the results obtained from the Keras and PyTorch implementations. As already mentioned, the goal was not to outperform the previous implementation, but to replicate it accurately, thus providing a solid starting point for anyone working on this project. As shown in chapter 4, this goal was successfully achieved for both the FFNN and LSTM architectures.

Looking ahead, the work could be extended by implementing in PyTorch the remaining architectures, such as Transformer and Naive Bayes, as well as by making more in-depth modifications to the training and evaluation cycles. I hope that the project has provided a concrete contribution to the development of the NCID app, offering both significant experimental results and a useful foundation for future developments.

6 Acknowledgments

For the realization of this thesis, I would like to sincerely thank the entire CrypTool team for their support in the development of this work and for guiding me throughout the project. In particular, I would like to thank Dr. Doris Behrendt and Maik Bastian, who were always available to answer my questions and provided valuable guidance with their advice throughout the entire process. I would also like to thank Professor Bernhard Esslinger for giving me the opportunity to work on this project, which I truly appreciated and in which I fully immersed myself, and that has been fundamental in shaping my choice of master's degree.

7 Bibliography

- [1] Ernst Leierzopf. NCID. 2021. URL: https://github.com/ernstleierzopf/ncid.
- [2] Nils Kopal. "Of Ciphers and Neurons Detecting the Type of Ciphers Using Artificial Neural Networks". In: *Proceedings of the 3rd International Conference on Historical Cryptology (HistoCrypt 2020)*. Vol. 171. Linköping University Electronic Press, May 2020, pp. 77–86. DOI: 10.3384/ecp2020171011. URL: https://ep.liu.se/en/conference-article.aspx?series=ecp&issue=171&Article_No=11.
- [3] Brooke Dalton and Mark Stamp. Classifying World War II Era Ciphers with Machine Learning. 2023. arXiv: 2307.00501 [cs.LG]. URL: https://arxiv.org/abs/2307.00501.
- [4] Tom M. Mitchell. Machine Learning. Vol. 1. 9. McGraw-hill New York, 1997.
- [5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. URL: http://www.deeplearningbook.org.
- [6] Ernst Leierzopf et al. "A Massive Machine-Learning Approach For Classical Cipher Type Detection Using Feature Engineering". English. In: *Proceedings of the 4th International Conference on Historical Cryptology*. Aug. 2021, pp. 111–120. DOI: 10.3384/ecp183164.
- [7] Tariq Rashid. *Make Your Own Neural Network*. 1st. North Charleston, SC, USA: CreateSpace Independent Publishing Platform, 2016. ISBN: 1530826608.
- [8] Sepp Hochreiter and Jürgen Schmidhuber. "Long short-term memory". In: *Neural computation* 9.8 (1997), pp. 1735–1780.
- [9] Amrit Singh Bist. Comprehensive Understanding of LSTM Architecture: A Deep Dive into Long Short-Term Memory Networks. Accessed: 2025-07-17. 2023. URL: https://medium.com/@amritsinghbist/comprehensive-understanding-of-lstm-architecture-a-deep-dive-into-long-short-term-memory-networks-5405f97afc6b.
- [10] PyTorch Contributors. torch.nn.CrossEntropyLoss. 2025. url: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html.
- [11] Keras Team. Keras API Reference. 2024. URL: https://keras.io/api/.
- [12] PyTorch Team. PyTorch: An Open Source Machine Learning Framework. 2024. URL: https://pytorch.org/.
- [13] Luca Pietro Giovanni Antiga, Eli Stevens, and Thomas Viehmann. *Deep learning with PyTorch*. Simon and Schuster, 2020.
- [14] Pavan Patel. From Keras to PyTorch. 2020. URL: https://medium.com/analytics-vidhya/from-keras-to-pytorch-722fa3b65cce.

- [15] Ernst Leierzopf et al. "Detection of Classical Cipher Types with Feature-Learning Approaches". In: *Data Mining*. Ed. by Yue Xu et al. Singapore: Springer Singapore, Dec. 2021, pp. 152–164. ISBN: 978-981-16-8531-6. DOI: 10.1007/978-981-16-8531-6_11. URL: https://link.springer.com/chapter/10.1007/978-981-16-8531-6_11.
- [16] NVIDIA Corporation. *Introduction to NVIDIA DGX H100/H200*. 2025. URL: https://docs.nvidia.com/dgx/dgxh100-user-guide/introduction-to-dgxh100.html.

8 Appendix: Full Python code

Here is listed all the code I wrote during the internship.

8.1 Full listing of train.py

```
import multiprocessing from pathlib import Path
                   import argparse
                 import sys
import time
import shutil
                 from sklearn.model_selection import train_test_split
                 import math
                 import pickle
import functools
    12 import fur
13 14 # PyTorch
                 import torch.nn as nn
                 import torch.optim as optim
from torchinfo import summary
                 import numpy as np
from torch.utils.data import TensorDataset, DataLoader
                   from sklearn.pipeline import Pipeline
                 from sklearn, preprocessing import StandardScaler
from sklearn, preprocessing import StandardScaler
from sklearn, tree import DecisionTreeClassifier, plot_tree
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
                import matplotlib.pyplot as plt
from datetime import datetime
                 # This environ variable must be set before all tensorflow imports!
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
34 import tensorflow as if
35 from tensorflow.keras.metrics import SparseTopKCategoricalAccuracy
36 from tensorflow.keras.optimizers import Adam # , Adamax
37 import tensorflow_datasets as ifds
38 sys.path.append("...")
39 from cipherTypeDetection.nullDistributionStrategy import NullDistributionStrategy
40 import cipherTypeDetection.config as config
41 from cipherTypeDetection.trainingBatch import TrainingBatch
42 from cipherTypeDetection.cipherStatisticsDataset import RotorCiphertextsDatasetParameters, PlaintextPathsDatasetParameters,
43 from cipherTypeDetection.predictionPerformanceMetrics import PredictionPerformanceMetrics
44 from cipherTypeDetection.miniBatchEarlyStoppingCallback import MiniBatchEarlyStopping
45 from cipherTypeDetection.transformer import TransformerBlock, TokenAndPositionEmbedding
                from cipherTypeDetection.transformer import TransformerBlock, TokenAndPositionEmbedding
from cipherTypeDetection.learningRateSchedulers import TimeBasedDecayLearningRateScheduler, CustomStepDecayLearningRateScheduler
tf.debugging.set_log_device_placement(enabled=False)
# always flush after print as some architectures like RF need very long time before printing anything.
print = functionly.partial(print, flush=True)
for device in tf.config.list_physical_devices('GPU'):

# tf.config.rearningstaller was negative to the print to the pri
                                   tf.config.experimental.set_memory_growth(device, True)
                    class FFNN(nn. Module):
                                     def __init__(self, input_size, hidden_size, output_size, num_hidden_layers):
    super().__init__()
                                                     # saves parameters so that they can be saved and loaded later self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.output_size self.num_hidden_layers = num_hidden_layers
```

```
layers = [nn.Linear(input_size, hidden_size), nn.ReLU()]
                       for _ in range(num_hidden_layers - 1):
    layers += [nn.Linear(hidden_size, hidden_size), nn.ReLU()]
                       layers.append(nn.Linear(hidden_size, output_size))
 66
67
68
69
                        self.net = nn.Sequential(*layers)
               def forward (self, x):
 70
71
72
73
74
75
                       return self.net(x)
        class LSTM(nn. Module):
                def __init__(self, vocab_size, embed_dim, hidden_size, output_size, num_layers=1, dropout=0.0):
                      super().__init__()
  76
77
78
                       # saves parameters so that they can be saved and loaded later
                      "saves parameters so that they
self.vocab_size = vocab_size
self.embed_dim = embed_dim
self.hidden_size = hidden_size
self.output_size = output_size
self.num_layers = num_layers
self.dropout = dropout
 79
80
81
 82
83
84
85
                       self.embedding = nn.Embedding(
                           num_embeddings=vocab_size,
                              embedding_dim=embed_dim,
padding_idx=0
 88
89
90
91
92
93
94
                        self.lstm = nn.LSTM(
                              input_size=embed_dim,
hidden_size=hidden_size,
                              http://discourses.com/layers/batch_first=True,
dropout=dropout if num_layers > 1 else 0.0
95
96
97
98
99
100
                       self.fc = nn.Linear(hidden_size, output_size)
               # B: Batch size - number of sequences processed in parallel

# L: Sequence length - number of time steps (tokens) in each sequence

# D: Embedding dimension - size of each 'tokens embedding vector

# H: Hidden size - umber of features in the LSTM hidden state

# C: Number of classes - dimensionality of the output logits
102
103
104
105
                \begin{aligned} & \textbf{def forward(self, x):} \\ & \# x: LongTensor \ of \ shape \ [B, \ L] \ or \ [B, \ L, \ I] \\ & \textbf{if } x.dim() == 3 \ \textbf{and} \ x.size(2) == 1:} \\ & = - x \ saueeze(2) \\ & \# \ remove \ channel \ dimension \rightarrow [B, \ L] \end{aligned} 
106
107
108
109
110
111
                      emb = self.embedding(x)
                                                                            # embeddings \rightarrow [B, L, D]
112
                      # LSIM returns:

# output: hidden state at each time step \rightarrow [B, L, H]

# - hidden: final hidden state for each layer \rightarrow [num_layers, B, H]

# not used as we only need the last hidden state, but can be useful for debugging output, (hidden, _) = self.lstm(emb)
115
116
117
118
                      # hidden[-1] selects the final hidden state of the top (last) layer # at the last time step \rightarrow [B, H] last_hidden = hidden[-1]
119
120
121
122
123
124
                       # apply the fully-connected layer to get logits \rightarrow [B, C]
                       logits = self.fc(last hidden)
125
126
                       return logits
127
130 def train_torch_ffnn(model, args, train_ds):
131 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
132 model.to(device)
131
132
133
134
135
                  model.parameters(),
lr=config.learning_rate,
betas=(config.beta_1, config.beta_2),
136
137
138
                       eps=config.epsilon,
139
140
                     amsgrad=config.amsgrad
141
142
                criterion = nn. CrossEntropyLoss()
                model.train()
143
144
                best_val_acc = 0
145
                patience_counter = 0
patience_limit = 250
146
147
148
                train iter = 0
                train_epoch = 0
start_time = time.time()
```

```
152
153
154
155
156
              val_data_created = False
              for epoch in range (args.epochs):
                     epoch in range(args.epochs):
while train_ds.iteration < args.max_iter:
    training_batches = next(train_ds)
    for training_batch in training_batches:
        statistics. labels = training_batch.items()
        stats_np = statistics.numpy()</pre>
158
159
161
                                 labels_np = labels.numpy()
                                  if not val_data_created:
                                        x_train_np , x_val_np , y_train_np , y_val_np = train_test_split(
stats_np , labels_np , test_size=0.3
164
                                        x_val = torch.tensor(x_val_np, dtype=torch.float32).to(device)
y_val = torch.tensor(y_val_np, dtype=torch.long).to(device)
167
168
169
                                        val data created = True
170
171
172
173
                                        x_train_np = stats_np
y_train_np = labels_np
                                  # Use DataLoader for creating minibatch
x_train = torch.tensor(x_train_np, dtype=torch.float32)
174
175
176
177
                                  {\tt y\_train = torch.tensor(y\_train\_np, dtype=torch.long)}
178
179
                                 train_dataset = TensorDataset(x_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
180
181
182
                                  for x_batch , y_batch in train_loader:
    x_batch = x_batch .to(device)
    y_batch = y_batch .to(device)
185
186
187
188
                                        optimizer.zero_grad()
                                        outputs = model(x_batch)
loss = criterion(outputs, y_batch)
loss.backward()
191
                                        optimizer.step()
192
193
194
                                        batch_losses.append(loss.item())
train_iter += len(y_batch)
195
196
                                  epoch_loss = sum(batch_losses) / len(batch_losses)
197
198
199
                                        -- Validation step ---
                                  model.eval()
200
201
202
203
                                  with torch.no_grad():
                                        n toren.no_grad():
val_outputs = model(x_val)
val_loss = criterion(val_outputs, y_val)
val_pred = torch.argmax(val_outputs, dim=1)
val_acc = (val_pred == y_val).float().mean().item()
204
205
206
207
208
209
                                        top3 = torch.topk(val_outputs, k=3, dim=1).indices
y_val_exp = y_val.unsqueeze(1).expand_as(top3)
val_k3 = (top3 == y_val_exp).any(dim=1).float().mean().item()
210
211
212
                                  print(f"Epoch: {epoch+1}, Iteration: {train_iter}, "
    f"Train Loss: {epoch_loss:.4f}, Val Loss: {val_loss.item():.4f}, "
    f"Val Acc: {val_acc:.4f}, Val Top-3 Acc: {val_k3:.4f}")
213
214
215
216
217
218
                                  # --- Early stopping check ---
                                  if val_acc > best_val_acc:
    best_val_acc = val_acc
219
220
221
                                        patience_counter = 0
                                        patience counter += 1
222
223
224
                                        if patience_counter >= patience_limit:
print("Early stopping triggered.")
                                              225
227
228
229
230
231
                                 if train_iter >= args.max_iter:
                           break

if train_iter >= args.max_iter:
                    break
train_epoch += 1
234
235
236
237
              elapsed = time.time() - start_time
              print(f"Finished training in {t.tm_yday - 1} days {t.tm_hour} hours {t.tm_min} minutes {t.tm_sec} seconds with {train_iter} iterations.
```

```
class DummyEarlyStopping: stop_training = False
                return DummyEarlyStopping(), train_iter, f"Trained for {train_epoch} epochs"
241
        def train_torch_lstm(model, args, train_ds):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
244
245
246
247
                model.to(device)
248
249
                optimizer = optim.Adam(
                       model.parameters(),
                       Ir=config.learning_rate,
betas=(config.beta_1, config.beta_2),
250
251
252
253
254
255
256
257
258
259
260
261
                       eps=config.epsilon,
                       amsgrad=config.amsgrad
                criterion = nn.CrossEntropyLoss()
model.train()
                best_val_acc = 0
patience_counter = 0
patience_limit = 250
262
263
264
265
266
                train_iter = 0
                train_epoch = 0
                start\_time = time.time()
                val_data_created = False
267
                x_val = y_val = None
268
269
270
                for epoch in range (args.epochs):
                       epoch in range(args.epochs):
while train_ds.iteration < args.max_iter:
    training_batches = next(train_ds)
    for training_batch in training_batches:
        statistics , labels = training_batch.items()
    stats_np = statistics.numpy().astype(int)
    labels_np = labels.numpy()</pre>
271
272
273
274
275
276
277
278
279
                                             x_train_np, x_val_np, y_train_np, y_val_np = train_test_split(stats_np, labels_np, test_size=0.3)
x_val = torch.tensor(x_val_np, dtype=torch.long).to(device)
y_val = torch.tensor(y_val_np, dtype=torch.long).to(device)
280
281
                                             val_data_created = True
282
                                             x_train_np = stats_np
y_train_np = labels_np
285
286
287
288
                                     x_train = torch.tensor(x_train_np, dtype=torch.long)
y_train = torch.tensor(y_train_np, dtype=torch.long)
                                     train_dataset = TensorDataset(x_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
291
292
293
294
                                      batch_losses = []
                                     for x_batch , y_batch in train_loader:
    x_batch = x_batch.to(device)
295
296
297
                                             y_batch = y_batch.to(device)
                                             optimizer.zero_grad()
outputs = model(x_batch)
loss = criterion(outputs, y_batch)
300
301
302
                                             loss . backward ()
303
                                             batch_losses.append(loss.item())
train_iter += len(y_batch)
304
305
306
307
308
                                      epoch_loss = sum(batch_losses) / len(batch_losses)
                                              - Validation step ---
309
                                      model.eval()
with torch.no_grad():
310
311
312
                                             val_outputs = model(x_val)
                                             val_loss = criterion(val_outputs, y_val)
val_pred = torch.argmax(val_outputs, dim=1)
val_acc = (val_pred == y_val).float().mean().item()
315
316
317
318
                                             top3 = torch.topk(val_outputs, k=3, dim=1).indices
y_val_exp = y_val.unsqueeze(1).expand_as(top3)
val_k3 = (top3 == y_val_exp).any(dim=1).float().mean().item()
319
320
321
                                     print(f"Epoch: {epoch+1}, Iteration: {train_iter}, "
    f"Train Loss: {epoch_loss:.4f}, Val Loss: {val_loss.item():.4f}, "
    f"Val Acc: {val_acc:.4f}, Val Top-3 Acc: {val_k3:.4f}")
322
323
324
325
                                      model.train()
326
327
                                      # --- Early stopping check ---
                                     if val_acc > best_val_acc:
best_val_acc = val_acc
```

```
329
330
                                                              patience_counter = 0
                                                    else
                                                              patience_counter += 1
                                                              if patience_counter >= patience_limit:
333
334
                                                                        print("Early stopping triggered.")
elapsed = time.time() - start_time
335
336
                                                                        t = time.gmtime(elapsed)
                                                                         print(f"Finished \ training \ \textbf{in} \ \{t.tm\_yday - 1\} \ days \ \{t.tm\_hour\} \ hours \ \{t.tm\_min\} \ minutes \ \{t.tm\_sec\} \ seconds \ \textbf{with} \ \{multiple \ multiple 
337
338
                                                                       class DummyEarlyStopping: stop_training = True
return DummyEarlyStopping(), train_iter, f"Early stopped at epoch {epoch+1}"
339
340
341
342
343
344
345
                                                    if train_iter >= args.max_iter:
                                                            break
                                          if train_iter >= args.max_iter:
                                                    break
                               train_epoch += 1
346
347
348
349
                      elapsed = time.time() - start_time
                      t = time.gmtime(elapsed)
                      return DummyEarlyStopping(), train_iter, f"Trained for {train_epoch} epochs"
350
351
352
353
354
355
356
357
          def predict_torch_ffnn(model, test_ds, args):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.eval()
358
359
360
                      criterion = nn. CrossEntropyLoss()
361
362
                      all_preds = []
all_labels = []
363
364
365
366
367
368
                      with torch.no_grad():
                                while test_ds.iteration < args.max_iter:
                                        testing_batches = next(test_ds)

for testing_batch in testing_batches:
    statistics, labels = testing_batch.items()
    stats_np = statistics.numpy()
369
370
371
372
                                                   x = torch.tensor(stats_np, dtype=torch.float32).to(device)
y = torch.tensor(labels.numpy(), dtype=torch.long).to(device)
373
374
375
376
377
378
379
380
                                                    outputs = model(x)
                                                    loss = criterion(outputs, y)
                                                    pred top1 = torch.argmax(outputs.dim=1)
                                                     acc = (pred_top1 == y).float().mean().item()
                                                    top3 = torch.topk(outputs, k=3, dim=1).indices
381
382
383
                                                    y_expanded = y.unsqueeze(1).expand_as(top3)
k3_acc = (top3 == y_expanded).any(dim=1).float().mean().item()
384
385
386
387
                                                    \boldsymbol{print}(f"Eval \rightarrow Loss: \{loss.item():.4f\}, \ Accuracy: \{acc:.4f\}, \ Top-3 \ Accuracy: \{k3\_acc:.4f\}")
                                                    preds = torch.softmax(outputs, dim=1).cpu().numpy()
                                                    all_preds.append(preds)
all_labels.append(labels.numpy())
388
389
390
391
392
                      all_preds = np.concatenate(all_preds, axis=0)
all_labels = np.concatenate(all_labels, axis=0)
393
394
395
                      return all_preds, all_labels
396
397
398
           def predict_torch_lstm(model, test_ds, args):
399
400
401
402
403
404
405
                      device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.eval()
                      model.to(device)
                      criterion = nn. CrossEntropyLoss()
                     all_preds = []
all_labels = []
406
407
                      with torch.no grad():
408
409
410
                               while test_ds.iteration < args.max_iter:
testing_batches = next(test_ds)
for testing_batches in testing_batches:
statistics, labels = testing_batch.items()
411
412
413
414
                                                   outputs = model(x)
```

```
loss = criterion(outputs, y)
420
421
                                preds = torch.softmax(outputs, dim=1).cpu().numpy()
                                all_preds.append(preds)
422
                                all\_labels \ . \, append \, (\, labels \ . \, numpy \, (\,) \,)
423
424
425
             426
427
428
             return all preds, all labels
429
430
431
432
433
       def str2bool(v):
    return v.lower() in ("yes", "true", "t", "1")
434
435
436
       def create_model_with_distribution_strategy(architecture, extend_model, output_layer_size, max_train_len):
    """Creates models depending on the GPU count and on extend_model"""
437
              print('Creating model...')
438
439
             strategy = None
             gpu_count = (len(tf.config.list_physical_devices('GPU')) +
len(tf.config.list_physical_devices('XLA_GPU')))
440
441
442
443
              if gpu count > 1:
                   print("Multiple GPUs found.")

strategy = tf.distribute.MirroredStrategy()

print(f"Number of mirrored devices: {strategy.num_replicas_in_sync}.")
444
445
446
447
448
449
                    with strategy.scope():

if extend_model is not None:

extend_model = tf.keras.models.load_model(extend_model, compile=False)
                   model = create_model(architecture, extend_model, output_layer_size, max_train_len)
if architecture in ("FFNN", "CNN", "LSTM", "Transformer") and extend_model is None:
    if hasattr(model, "summary"):
                          model.summary()
else:
452
453
454
455
456
457
                              # for LSTM use a LongTensor dummy input of shape (1, max_train_len)
                               if architecture == "LSIM":
    summary(model, input_size=(1, max_train_len), dtypes=[torch.long])
458
459
460
461
462
463
                                      summary(model, input\_size = (1, 724))
                   print("Only one GPU found.")
strategy = NullDistributionStrategy()
if extend_model is not None:
    extend_model = tf.keras.models.load_model(extend_model, compile=False)
model = create_model(architecture, extend_model, output_layer_size, max_train_len)
if architecture in ("FFNN", "CNN", "LSTM", "Transformer") and extend_model is None:
464
465
466
467
468
                               model.summary()
469
470
471
472
473
                         else:
    # for LSTM use a LongTensor dummy input of shape (1, max_train_len)
if architecture == "LSTM":
    summary(model, input_size=(1, max_train_len), dtypes=[torch.long])
else:
474
475
                                      summary(model, input_size = (1, 724))
476
477
             print('Model created.\n')
478
              return model, strategy
479
480
481
      def create model (architecture, extend model, output layer size, max train len):
482
483
484
              Creates an un-trained model to use in the training process.
             The kind of model that is returned, depends on the provided architecture and
              the 'extend_model' flag.
485
486
487
488
489
490
             Parameters
             architecture : str
                   The architecture of the model to create.
             extend_model

When 'extend_model' is not None and architecure in ('FFNN', 'CNN', 'LSTM'),
the 'extend_model' will be further trained.
output_layer_size: int
491
492
493
494
495
496
                   Defines the size of the output layer of the neural networks
497
498
             optimizer = Adam(
499
                   learning\_rate = config.learning\_rate \ , \ beta\_1 = config.beta\_1 \ , \ beta\_2 = config.beta\_2 \ , \\ epsilon = config.epsilon \ , \ amsgrad = config.amsgrad)
500
501
502
              # Depends on the number of features returned by 'calculate_statistics()' in
503
504
              # 'feature Calculations . py '
              input_layer_size = 724
              hidden_layer_size = int(2 * (input_layer_size / 3) + output_layer_size)
505
```

```
# Create a model based on an existing one for further trainings
508
              if extend_model is not None:
    # remove the last layer
510
                     model = tf.keras.Sequential()
                     for layer in extend_model.layers[:-1]:
model.add(layer)
                     513
514
515
516
                     return model
517
518
519
              # Create new model based on architecture
if architecture == "FFNN":
    # Use PyTorch for FFNN
model = FFNN(
520
521
522
                            input_size=input_layer_size ,
523
524
525
526
527
                            hidden_size=hidden_layer_size,
                            output size=output layer size
                            num_hidden_layers=config.hidden_layers
                     return model
528
529
530
              elif architecture == "CNN":
    config .FEATURE_ENGINEERING = False
531
532
                     config .PAD_INPUT = True
model = tf .keras . Sequential()
                     model.add(tf.keras.layers.ConvlD(
filters=config.filters, kernel_size=config.kernel_size,
input_shape=(max_train_len, 1), activation='relu'))
533
534
535
536
537
538
                    for _ in range(config.layers - 1):
    model.add(tf.keras.layers.ConvlD(filters=config.filters, kernel_size=config.kernel_size, activation='relu'))
# model_add(tf.keras.layers.Dropout(0.2))
539
540
541
542
                     model.add(tf.keras.layers.MaxPoolingID(pool_size=2))
model.add(tf.keras.layers.Flatten())
                     model.add(tf.keras.layers.Dense(output_layer_size, activation='softmax'))
model.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy",
metrics=["accuracy", SparseTopKCategoricalAccuracy(k=3, name="k3_accuracy")])
return model
elif architecture == "LSTM":
    config .FEATURE_ENGINEERING = False
                     config .PAD_INPUT = True
model = LSTM(
                           vocab_size=56,
embed_dim=64,
                           hidden_size=config.lstm_units,
output_size=output_layer_size,
                           num_layers = 1,
dropout = 0.0
              elif architecture == "DI":
    return DecisionTreeClassifier(criterion=config.criterion, ccp_alpha=config.ccp_alpha)
                    return MultinomialNB(alpha=config.alpha, fit_prior=config.fit_prior)
               elif architecture =
                    return RandomForestClassifier(n_estimators=config.n_estimators, criterion=config.criterion, bootstrap=config.bootstrap, n_jobs=30, max_features=config.max_features, max_depth=30,
                                                                       min_samples_split=config.min_samples_split,
min_samples_leaf=config.min_samples_leaf)
               elif architecture == "ET":
                    return ExtraTreesClassifier(n_estimators=config.n_estimators, criterion=config.criterion,
                                                                   bootstrap=config.bootstrap, n_jobs=30,
max_features=config.max_features, max_depth=30,
min_samples_split=config.min_samples_split,
                                                                    min_samples_leaf=config.min_samples_leaf)
                    config .FEATURE ENGINEERING = False
                     config .PAD_INPUT = True
vocab_size = config .vocab_size
maxlen = max_train_len
                     max_train_ren
embed_dim = config.embed_dim # Embedding size for each token
num_heads = config.num_heads # Number of attention heads
ff_dim = config.ff_dim # Hidden layer size in feed forward network inside transformer
585
586
587
                     inputs = tf.keras.layers.Input(shape=(maxlen,))
                     combedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)

x = embedding_layer(inputs)

transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)
590
591
592
593
594
595
                     transformer_block(x)
x = transformer_block(x)
x = tf .keras .layers .GlobalAveragePooling1D()(x)
outputs = tf .keras .layers .Dense(output_layer_size , activation="softmax")(x)
```

```
600
                            return model
602
                   elif architecture == "SVM"
603
604
                            return SVC(probability=True, C=1, gamma=0.001, kernel="linear")
605
                   elif architecture == "SVM-Rotor":
606
607
                           pipe = Pipeline([
('scale', StandardScaler()),
608
                                    (\ 'clf\ ',\ SVC(\ probability = True\ ,\ C=10\ ,\ gamma=0.001\ ,\ kernel="rbf"))\ ])
609
610
                            return pipe
611
                   elif architecture == "kNN":
    return KNeighborsClassifier(90, weights="distance", metric="euclidean")
614
615
616
                   elif architecture == "[FFNN,NB]":
    model_ffnn = tf.keras.Sequential()
                           model_ffnn = tf.keras.Sequential()
model_ffnn.add(tf.keras.layers.lnput(shape=(input_layer_size,)))
for _ in range(config.hidden_layers):
    model_ffnn.add(tf.keras.layers.Dense(hidden_layer_size, activation='relu', use_bias=True))
model_ffnn.add(tf.keras.layers.Dense(output_layer_size, activation='softmax'))
model_ffnn.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy",
    metrics=["accuracy", SparseTopKCategoricalAccuracy(k=3, name="k3_accuracy")])
model_nb = MultinomialNB(alpha=config.alpha, fit_prior=config.fit_prior)
return [model_ffnn, model_nb]
617
618
619
620
621
622
623
624
625
                  elif architecture == "[DT,ET,RF,SVM,kNN]":
dt = DecisionTreeClassifier(criterion=config.criterion, ccp_alpha=config.ccp_alpha)
et = ExtraTreesClassifier(n_estimators=config.n_estimators, criterion=config.criterion,
bootstrap=config.bootstrap, n_jobs=30,
max_features=config.max_features, max_depth=30,
min_samples_split=config.min_samples_split,
min_samples_leaf=config.min_samples_leaf)

rf = RandomForestClassifier(n_estimators=config.n_estimators, criterion=config.criterion,
bootstrap=config.bootstrap, n_jobs=30,
max_features=config.max_features, max_depth=30,
min_samples_leaf=config.min_samples_split,
min_samples_leaf=config.min_samples_split,
min_samples_leaf=config.min_samples_leaf)
626
627
628
629
630
631
632
633
634
635
636
                           min_samples_leaf=config.min_samples_leaf)
svm = SVC(probability=True, C=1, gamma=0.001, kernel="linear")
knn = KNeighborsClassifier(90, weights="distance", metric="euclidean")
637
640
641
642
643
                            return [dt, et, rf, svm, knn]
                           raise Exception (f"Could not create model. Unknown architecture '{ architecture }'.")
          def parse_arguments():
                  parser = argparse. ArgumentParser(
description='CANN Ciphertype Detection Neuronal Network Training Script',
formatter_class=argparse.RawTextHelpFormatter)
646
647
648
                 649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
                                                                         ' Columnar Transposition, Plaifair and Hill)\n'
'- aca (contains all currently implemented ciphers from \n'
                                                                         https://www.cryptogram.org/resource-area/cipher-types/)\n'
-rotor (contains Enigma, M209, Purple, Sigaba and Typex ciphers)'
- all (contains aca and rotor ciphers)'
- all aca ciphers in lower case'
- simple_substitution\n'
677
678
680
681
682
683
                                                                          '- vigenere\n'
                                                                          '- columnar transposition\n
                                                                         '- playfair \n'
```

```
'- hill\n')
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
                                            '- LSTM\n'
'- DT\n'
'- NB\n'
                                            '- RF\n'
'- ET\n'
'- Transformer\n'
713
714
715
716
                                             '- SVM\n'
'- kNN\n'
'- [FFNN,NB]\n'
718
                                             '- [DT,ET,RF,SVM,kNN]'
'- SVM-Rotor'
719
720
721
722
723
724
725
726
727
           def should_download_plaintext_datasets(args):
           """Determines if the plaintext datasets should be loaded""" return (args.download_dataset and
728
729
730
731
732
733
734
                      (args. download_dataset and
not os. path. exists (args. plaintext_input_directory) and
args. plaintext_input_directory == os. path. abspath('../data/gutenberg_en'))
      def download_plaintext_datasets(args):
           ""Downloads plaintexts and saves them in the plaintext_input_directory""

print("Downloading Datsets...")
736
737
738
739
740
741
742
            checksums dir = '../data/checksums/
           if not Path(checksums_dir).exists():
    os.mkdir(checksums_dir)
            tfds.download.add checksums dir(checksums dir)
            download_manager = tfds.download.download_manager.DownloadManager(download_dir='../data/
           extract_dir=args.plaintext_input_directory)

data_url = ('https://drive.google.com/uc?id=1bF5sSVjxTxa3DB-P5wxn87nxWndRhK_V&export=download' +
'&confirm=t&uuid=afbc362d-9d52-472a-832b-c2af331a8d5b')
743
744
745
746
747
748
749
                 download\_manager.\,download\_and\_extract(\,data\_url\,)
           download_manager.download_meta-meexcept Exception as e:

print("Download of datasets failed. If this issues persists, try downloading the dataset yourself"

"from: https://drive.google.com/file/d/lbF5sSVjxTxa3DB-P5wxn87nxWndRhK_V/view."

"(For more information see the README.md of this project.)")
750
751
752
753
754
755
756
757
758
759
760
                 print("Underlying error:")
                 sys.exit(1)
           os.path.basename(args.plaintext_input_directory))
            dir name = os.listdir(path)
           for name in dir_name:

p = Path(os.path.join(path, name))

parent_dir = p.parents[2]
761
762
763
764
765
           p.rename(parent_dir / p.name)
os.rmdir(path)
            os.rmdir(os.path.dirname(path))
766
767
            print("Datasets Downloaded.")
768
769
      def load_rotor_ciphertext_datasets_from_disk(args, batch_size):
770
771
772
            Load ciphertext input data for rotor ciphertexts from disk.
            This method (in contrast to 'load_plaintext_datasets_from_disk') loads the data
            immediately from disk. Currently this does not take too long, since the input files
```

```
and the number of ciphers that need ciphertexts as input for the feature extraction
                     are\ limited.\ (If\ this\ method\ should\ lazily\ load\ ciphertexts\ ,\ `RotorCiphertextsDataset
                     needs to be adapted.)
778
779
780
781
782
783
784
                     Parameters
                              The arguments parsed by the 'ArgumentParser'. See 'parse_arguments()'.
                     batch_size : int

The number of samples and labels per batch.
785
786
787
788
789
                     tuple [list , RotorCiphertextsDatasetParameters , list , RotorCiphertextsDatasetParameters]

A tuple with the training and testing ciphertexts as well as their

'RotorCiphertextsDatasetParameters' that are both provided to the
790
791
792
793
794
795
                              'CipherStatisticsDataset's for training and testing
                    def validate_ciphertext_path(ciphertext_path, cipher_types):
    """Check if the filename of the file at 'ciphertext_path' matches the
    names inside 'cipher_types'."""
                              796
797
798
799
800
801
802
803
804
                     # Filter cipher_types to exclude non-ciphertext ciphers
805
806
807
                     # Filter cipher_types to exclude non-ciphertext ciphers
                     rotor_cipher_types = [config.CIPHER_TYPES[i] for i in range(56, 61)]
808
                     # Load all ciphertexts in the train and dev folders in 'args.rotor input directory'
809
810
                     rotor_cipher_dir = args.rotor_input_directory
                     def find_ciphertext_paths_in_dir(folder_path):
    """Loads all .txt files in the given folder and checks that their names match the
    known cipher types."""
811
                              file_names = os.listdir(folder_path)
result = []
814
815
816
                              result = []
for name in file_names:
    path = os.path.join(folder_path, name)
    file_name, file_type = os.path.splitext(name)
    if os.path.isfile(path) and file_name.lower() in rotor_cipher_types and file_type == ".txt":
817
818
819
820
                                                 validate\_ciphertext\_path\left(path\;,\;\;config\;.ROTOR\_CIPHER\_TYPES\right)
821
822
823
824
                                                  result.append(path)
                              return result
                    train_dir = os.path.join(rotor_cipher_dir, "train")
test_dir = os.path.join(rotor_cipher_dir, "dev")
train_rotor_ciphertext_paths = find_ciphertext_paths_in_dir(train_dir)
test_rotor_cipherext_paths = find_ciphertext_paths_in_dir(test_dir)
826
827
828
829
830
831
                     # Return empty lists and parameters if no requested ciphers were found on disk
if len(train_rotor_ciphertext_paths) == 0 or len(test_rotor_cipherext_paths) == 0:
empty_params = RotorCiphertextsDatasetParameters(config.ROTOR_CIPHER_TYPES,
832
833
834
835
836
837
                                                                                                                                                   args.dataset_workers,
args.min_train_len,
args.max_train_len,
838
                                                                                                                                                    generate_evalutation_data=False)
839
                              return ([], empty_params, [], empty_params)
840
841
                     # Create dataset parameters, which will be used for creating a 'CipherStatisticsDataset'.
# This class will provide an iterator in 'train_model' to convert the plaintext files
# (applying the provided options) into statistics (features) used for training.
844
                     train\_rotor\_ciphertexts\_parameters = RotorCiphertextsDatasetParameters (config.ROTOR\_CIPHER\_TYPES, and train\_rotor\_ciphertexts\_parameters) = RotorCiphertextsDatasetParameters (config.ROTOR\_CIPHER\_TYPES, and train\_ciphertexts\_parameters) = RotorCiphertextsDatasetParameters (config.ROTOR\_CIPHER\_TYPES, and train\_ciphertexts\_parameters) = RotorCiphertextsDatasetParameters (config.ROTOR\_CIPHER\_TYPES, and train\_ciphertexts\_parameters) = RotorCiphertexts\_parameters (config.ROTOR\_CIPHER\_TYPES, and train\_Ciphertexts\_parameters
845
846
847
                                                                                                                                                           batch_size ,
args.dataset_workers ,
                                                                                                                                                            args.min_train_len,
848
849
                                                                                                                                                            args.max_train_len
                                                                                                                                                            generate_evalutation_data=False)
850
851
852
853
                    test\_rotor\_eiphertexts\_parameters = RotorCiphertextsDatasetParameters (config.ROTOR\_CIPHER\_TYPES, batch\_size,
                                                                                                                                                            args.dataset_workers
                                                                                                                                                            args.min test len.
854
855
856
                                                                                                                                                            args.max_test_len
                                                                                                                                                            generate_evalutation_data=False)
857
858
                     # Return the tuples of training and testing rotor_ciphertexts as well as the parameter
                     # for initializing the 'CipherStatisticsDataset's.
return (train_rotor_ciphertext_paths , train_rotor_ciphertexts_parameters ,
test_rotor_cipherext_paths , test_rotor_ciphertexts_parameters)
859
\bf 862 \quad def \ load\_plaintext\_datasets\_from\_disk(args\ ,\ requested\_cipher\_types\ ,\ batch\_size):
```

```
Gets all plaintext paths found in 'args.plaintext_input_directory', and converts them into training and testing list and parameters, used to create
              'CipherStatisticsDataset 's.
866
867
868
869
              This method does not load the contents of the plaintext files. This is done
              lazily by the 'CipherStatisticsDataset'
870
871
872
873
874
875
                    args:
The arguments parsed by the 'ArgumentParser'. See 'parse_arguments()'.
                    A list of cipher types to provide as parameters to the 'CipherStatisticsDataset'.

The list is filtered and only ACA ciphers are used as parameters, since the features of rotor ciphers currently have to be extracted from ciphertext files.
876
877
878
                    batch_size : int

The number of samples and labels per batch.
879
880
881
882
884
              tuple [list , PlaintextPathsDatasetParameters , list , PlaintextPathsDatasetParameters]
885
886
                    A tuple with the training and testing plaintext paths as well as their 'PlaintextPathsDatasetParameters' that are both provided to the
887
                    'CipherStatisticsDataset's for training and testing
888
              # Filter cipher_types to exclude non-plaintext ciphers
890
              aca_cipher_types = [config.CIPHER_TYPES[i] for i in range(56)]
891
              cipher_types = [type for type in requested_cipher_types if type in aca_cipher_types]
892
893
              # Get all paths to plaintext files in the 'plaintext_input_directory'
              plaintext_files = []
dir_name = os.listdir(args.plaintext_input_directory)
for name in dir_name:
894
896
                    name in dif_name:
path = os.path.join(args.plaintext_input_directory, name)
if os.path.isfile(path):
897
898
899
900
                          plaintext_files.append(path)
901
902
             # Use some plaintext for training and others for testing train_plaintexts, test_plaintexts = train_test_split(plaintext_files, test_size=0.05,
903
904
905
                                                                                                  random_state=42, shuffle=True)
             # Create dataset parameters, which will be used for creating a 'CipherStatisticsDataset'.
# This class will provide an iterator in 'train_model' to convert the plaintext files
# (applying the provided options) into statistics (features) used for training.
train_plaintext_parameters = PlaintextPathsDatasetParameters(cipher_types, batch_size,
             args.min_train_len, args.max_train_len,
args.keep_unknown_symbols, args.dataset_workers)
test_plaintext_parameters = PlaintextPathsDatasetParameters(cipher_types, batch_size,
909
910
911
                                                                                  args.min_test_len, args.max_test_len, args.keep_unknown_symbols, args.dataset_workers)
912
913
914
915
              # Return the training and testing plaintexts as well as their parameters
return (train_plaintexts, train_plaintext_parameters, test_plaintexts, test_plaintext_parameters)
918
919
920
       \boldsymbol{def}\ load\_datasets\_from\_disk(args\ ,\ requested\_cipher\_types):
              Loads training and testing data from the file system.
921
922
923
924
              In case of the ACA ciphers the datasets are plaintext files that need to be
              encrypted before the features can be extracted. In case of the rotor ciphers
              there are already encrypted ciphertext files that can directly be used to extract the features.

To simplify the training code, both kinds of input data are returned in
925
926
              'CipherStatisticsDataset's that provide an iterator interface, returning 'TrainingBatch'es of the requested size on each 'next()' call.

Plaintext input is loaded lazily, while ciphertexts currently are loaded
927
928
929
930
              immediately
931
932
933
              Parameters
934
935
                    The parsed commandline arguments. See also 'parse_arguments() '.
936
937
938
              requested_cipher_types: list
A list of the requested cipher types. These are provided as parameters to
the returned 'CipherStatisticsDataset's as well as for selection of input
939
                    files
940
941
942
                   Limits the amount of input lines loaded from ciphertext files.
943
944
945
              tuple [CipherStatisticsDataset]
              Training and testing 'CipherStatisticsDataset' that lazily calculate the features for the input data on 'next()' calls.
946
947
948
              print("Loading Datasets ...")
```

```
# Filter cipher_types to exclude non-ciphertext ciphers
            rotor_cipher_types = [config.CIPHER_TYPES[i] for i in range(56, 61)]
non_rotor_ciphers = [type for type in requested_cipher_types if type not in rotor_cipher_types]
 954
955
956
            rotor_cipher_types = [type for type in requested_cipher_types if type in rotor_cipher_types]
957
958
            # Calculate batch size for rotor ciphers. If both aca and rotor ciphers are requested,
            # the amount of samples of each rotor cipher per batch should be equal to the 
# amount of samples of each aca cipher per loaded batch.
number_of_crotor_ciphers = len(rotor_cipher_types)
number_of_aca_ciphers = len(non_rotor_ciphers)
if number_of_aca_ciphers <= 0:
    rotor_dataset_batch_size = args.train_dataset_size
 959
 960
961
962
963
964
                 aca_dataset_batch_size = 0
                 amount_of_samples_per_cipher = args.train_dataset_size // (number_of_aca_ciphers + number_of_rotor_ciphers)
                 rotor_dataset_batch_size = amount_of_samples_per_cipher * number_of_rotor_ciphers aca_dataset_batch_size = amount_of_samples_per_cipher * number_of_aca_ciphers
 967
968
969
970
            # Load the plaintext file paths and the rotor ciphertexts from disk
971
972
973
             train_plaintext_parameters ,
              test plaintexts
974
975
976
977
             test_plaintext_parameters) = load_plaintext_datasets_from_disk(args,
                                                                                                requested_cipher_types
                                                                                                 aca_dataset_batch_size)
978
979
             train_rotor_ciphertexts_parameters ,
             test_rotor_ciphertext_paths ,
test_rotor_ciphertexts_parameters) = load_rotor_ciphertext_datasets_from_disk(args
980
981
                                                                                                                     rotor_dataset_batch_size)
 982
983
984
            # Convert the training and testing ciphertexts and plaintexts, as well as # their parameters into 'CipherStatisticsDataset's.
 985
            train_ds = CipherStatisticsDataset(train_plaintexts, train_plaintext_parameters, train_rotor_ciphertext_paths,

→ train_rotor_ciphertexts_parameters)
986
            test_ds = CipherStatisticsDataset(test_plaintexts , test_plaintext_parameters , test_rotor_ciphertext_paths ,

→ test_rotor_ciphertexts_parameters)
 987
            988
989
 990
991
992
            print("Datasets loaded.\n")
 993
994
995
            # Return 'CipherStatisticsDataset's for training and testing.
996
997
            return train_ds, test_ds
 998
      def train_model(model, strategy, args, train_ds):
 999
1000
            Trains the model with the given training dataset.
1001
            Depending on the value of 'args.architecture' a different approach is taken to train the model. Some architectures need to be trained in one iteration, while others can be trained with multiple input batches.
1002
1002
1003
1004
            While the training is in progress, status messages are logged to stdout to indicate the amount of seen input data as well as the current
1005
1006
1007
            accuracy of the trained model.
1008
1009
1010
1011
1012
                 The model that will be trained. Needs to match 'args.architecture'.
1013
            strategy :
                 A distribution strategy (of the 'Tensorflow' library) to distribute
the 'fit' calls to multiple devices. Could also be a 'NullStrategy'
if no GPU devices are found on the system.
1014
1015
1016
1017
1018
1019
                 Commandline arguments entered by the user. See also: 'parse_arguments()'.
1020
                 A 'CipherStatisticsDataset' providing the features to use for training
1021
1022
            Returns
1023
1024
            tuple
1025
1026
1027
1028
            checkpoints_dir = Path('../data/checkpoints')
            def delete previous checkpoints():
1029
                  shutil.rmtree(checkpoints_dir)
1030
1031
            def create checkpoint callback():
                 ""Provides a 'keras' 'ModelCheckpoint' used to periodically save a model in training"" if not checkpoints_dir.exists():
1032
1032
1034
                       os.mkdir(checkpoints_dir)
                 1035
1036
1037
1038
                 return tf.keras.callbacks.ModelCheckpoint(
```

```
filepath=checkpoint_file_path,
                            save_weights_only=False,
monitor='val_accuracy',
mode='max',
1041
1042
1043
                             save_best_only=False,
save_freq=100)
1044
1045
1046
1047
                print('Training model ...')
1048
1049
               delete previous checkpoints()
1050
               # Create callbacks for tensorflow models
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='../data/logs',
1051
1052
1053
               early_stopping_callback = MiniBatchEarlyStopping(min_delta=1e-5,
1054
1055
                                                                                                 patience = 250,
                                                                                                 monitor='accuracy
mode='max',
1056
1057
1058
                                                                                                 restore_best_weights=True)
1059
1060
                custom\_step\_decay\_lrate\_callback = CustomStepDecayLearningRateScheduler(early\_stopping\_callback)
                checkpoint_callback = create_checkpoint_callback()
1061
               # Initialize variables
architecture = args.architecture
start_time = time.time()
train_iter = 0
train_epoch = 0
1062
1063
1064
1065
1066
                val_data = None
val_labels = None
1067
1068
1069
               training batches = None
combined_batch = TrainingBatch("mixed", [], [])
classes = list(range(len(config.CIPHER_TYPES)))
should_create_validation_data = True
1070
1071
1072
1073
1074
1075
               if args.architecture == "FFNN" and isinstance(model, FFNN):
    return train_torch_ffnn(model, args, train_ds)
1076
1077
1078
                elif args.architecture == "LSTM" and isinstance(model, LSTM):
                      return train_torch_lstm(model, args, train_ds)
1079
1080
1081
                # Perform main training loop while the iterations don't exceed the user provided max_iter
               while train_ds.iteration < args.max_iter:
    training_batches = next(train_ds)</pre>
1082
1083
1084
                      # For architectures that only support one fit call: Sample all batches into one large batch.

if architecture in ("DT", "RF", "ET", "SVM", "kNN", "SVM-Rotor", "[DT,ET,RF,SVM,kNN]"):

for training_batch in training_batches:
    combined_batch.extend(training_batch)

if train_ds.iteration < args.max_iter:
    print("Loaded %d ciphertexts." % train_ds.iteration)
1085
1086
1087
1088
1089
1090
                            continue
train_ds.stop_outstanding_tasks()
print("Loaded %d ciphertexts." % train_ds.iteration)
training_batches = [combined_batch]
1091
1092
1093
1094
1095
1096
                      for index, training_batch in enumerate(training_batches):
1097
                             statistics , labels = training_batch .items()
train_iter = train_ds .iteration - len(training_batch) * (len(training_batches) - index - 1)
1098
1099
1100
                             # Create small validation dataset on first iteration
1101
1102
                             if should_create_validation_data:
    statistics, val_data, labels, val_labels = train_test_split(statistics.numpy(),
1103
                                                                                                                                        labels.numpv()
1104
1105
                                   statistics = tf.convert_to_tensor(statistics)
                                   val_data = tf.convert_to_tensor(val_data)
labels = tf.convert_to_tensor(labels)
1106
1107
1108
                                    val_labels = tf.convert_to_tensor(val_labels)
1109
                                   should_create_validation_data = False
train_iter -= len(training_batch) * 0.3
1110
1111
1112
                             # scikit-learn architectures:
                             if architecture in ("DT", "RF", "ET", "SVM", "kNN", "SVM-Rotor"):
    train_iter = len(labels) * 0.7
                                   print(f"Start training the {architecture}.")
if architecture == "kNN":
    history = model. fit(statistics, labels)
elif architecture == "SVM-Rotor";
1115
1116
1117
1118
                                          # print(f"RFE-rank: \n[list(model.ranking_)]\n")
1119
1120
1121
1122
                                   else:
history = model.fit(statistics, labels)
if architecture == "DT":
plt.gcf().sct_size_inches(25, 25 / math.sqrt(2))
print("Plotting tree.")
plot_tree(model, max_depth=3, fontsize=6, filled=True)
1124
1125
1127
```

```
plt.savefig(args.model_name.split('.')[0] + '_decision_tree.svg',
dpi=200, bbox_inches='tight', pad_inches=0.1)
1130
                              # Naive Bayes training
elif architecture == "NB":
    history = model.partial_fit(statistics,
1133
1135
1136
                                                                                     labels ,
classes=classes)
                              # Ensemble: [FFNN,NB]
elif architecture == "[FFNN,NB]":
    with strategy.scope():
        history = model[0].fit(statistics,
1139
1140
1141
1142
                                                                              labels , batch_size = args .batch_size ,
1143
1144
                                                                               validation_data = (val_data, val_labels),
                                                                               epochs=args.epochs,
callbacks=[early_stopping_callback,
tensorboard_callback,
1145
1146
1147
                                                                                                   custom_step_decay_lrate_callback , checkpoint_callback])
1148
1149
1150
1151
                                    history = model[1]. partial fit(statistics,
                                                                                          labels ,
classes=classes)
                              # Ensemble: [DT,ET,RF,SVM,kNN]
elif architecture == "[DT,ET,RF,SVM,kNN]":
    print(f"Start training the {architecture}.")
    dt, et, rf, swm, knn = model
    for index, m in enumerate([dt, et, rf, svm]):
        m. fit(statistics, labels)
        print(f"Trained model {index + 1} of {len(model)}")
    knn. fit(statistics, labels)
1154
1155
1156
1157
1158
1159
1160
1161
1162
                                     print(f"Trained model {len(model)} of {len(model)}")
1163
1164
                                    with strategy.scope():
   history = model.fit(statistics , labels ,
1165
                                                                       batch_size = args.batch_size,
                                                                       validation_data = (val_data, val_labels),
epochs = args.epochs,
1168
                                                                        callbacks = [early_stopping_callback,
                                                                                   tensorboard_callback,
custom_step_decay_lrate_callback,
checkpoint_callback])
1171
1174
                              # print for Decision Tree, Naive Bayes and Random Forests

if architecture in ("DT", "NB", "RF", "ET", "SVM", "kNN", "SVM-Rotor"):
    val_score = model.score(val_data, val_labels)
    train_score = model.score(statistics, labels)
    print("train accuracy: %f, validation accuracy: %f" % (train_score, val_score))
1175
1176
1177
1178
1179
1180
1181
1182
                              if architecture == "[FFNN,NB]":
                                     val_score = model[1].score(val_data, val_labels)
train_score = model[1].score(statistics, labels)
print("train accuracy: %f, validation accuracy: %f" % (train_score, val_score))
1183
1184
                              if architecture == "[DT,ET,RF,SVM,kNN]":
1186
                                     for m in model:

val_score = m.score(val_data, val_labels)
                                            rtain_score = m.score(statistics, labels)

print(f"{type(m)._name_}: train accuracy: {train_score}, "
    f"validation accuracy: {val_score}")
1189
1190
1191
1192
1193
1194
                                    train_epoch = (train_ds.iteration
                                                             // ((train_iter + train_ds.batch_size * train_ds.dataset_workers)
// train_ds.epoch))
1195
1196
                              print("Epoch: %d, Iteration: %d" % (train_epoch, train_iter))
if train_iter >= args.max_iter or early_stopping_eallback.stop_training:
    break
1198
1199
1200
1201
1202
1203
                       if train_ds.iteration >= args.max_iter or early_stopping_callback.stop_training:
    train_ds.stop_outstanding_tasks()
1204
1205
1206
1207
                1208
1209
1210
1211
1212
                                                     train_iter ,
train_epoch))
1213
1214
                print(training_stats)
1216
                return early_stopping_callback, train_iter, training_stats
```

```
1218 def save_model(model, args):
              ""Writes the model and the commandline arguments to disk."""

print('Saving model...')

architecture = args.architecture
1219
1220
1221
1222
1223
1224
              if not os.path.exists(args.save_directory):
    os.mkdir(args.save_directory)
1225
1226
1227
1228
               # Gestione nome modello
              if args.model_name == 'm.h5':
i = 1
1229
1230
                     base_name = args.model_name.split('.')[0]
extension = '.pth' if architecture == "FFNN" else '.h5'
                     while os.path.exists(os.path.join(args.save_directory, base_name + str(i) + extension)):
    i += 1
1231
1232
1233
                    model_name = base_name + str(i) + extension
1234
1235
1236
                    model_name = args.model_name
if architecture == "FFNN":
1237
                          model_name = model_name.replace('.h5', '.pth')
1238
1239
              model_path = os.path.join(args.save_directory, model_name)
1240
1241
1242
1243
               if architecture in ("FFNN", "LSTM"):
                    state_dict = {
                          re_urt = {
    'model_state_dict': model.state_dict(),
    'hidden_size': model.hidden_size,
    'output_size': model.output_size,
1244
1245
1246
1247
1248
                   if architecture == "FFNN":
                    state_dict['input_size'] = model.input_size
state_dict['num_hidden_layers'] = model.num_hidden_layers
elif architecture == "LSIM":
1249
1250
1251
                           architecture == LSIM :
state_dict['vocab_size'] = model.vocab_size
state_dict['embed_dim'] = model.embed_dim
state_dict['num_layers'] = model.num_layers
1252
1253
1254
1255
                           state_dict['dropout'] = model.dropout
1256
1257
                   torch.save(state dict. model path)
1258
1259
1260
              elif architecture in ("CNN", "Transformer"):
1261
1262
              1263
1264
1265
1266
1267
1268
              elif architecture == "[FFNN,NB]":
    model[0].save('../data/models/' + model_path.split('.')[0] + "_ffnn.h5")
1269
1270
1271
                     with open('../data/models/' + model_path.split('.')[0] + "_nb.h5", "wb") as f: pickle.dump(model[1], f)
              elif architecture == "[DT,ET,RF,SVM,kNN]":
    for index, name in enumerate(["dt", "et", "rf", "svm", "knn"]):
        with open('./'data/models/' + model_path.split('.')[0] + f"_[name].h5", "wb") as f:
        pickle.dump(model[index], f)
1272
1272
1273
1274
1275
1276
1277
              # Saving parameters
with open('../data/' + model_path.split('.')[0] + '_parameters.txt', 'w') as f:
    for arg in vars(args):
        f.write("{:23s}= {:s}\n".format(arg, str(getattr(args, arg))))
1278
1279
1280
1281
1282
1283
1284
               # Managing logs
              " managing logs if architecture in ("FFNN", "CNN", "LSIM", "Transformer"): logs_destination = '../data/' + model_name.split('.')[0] + '_tensorboard_logs'
1285
                          if os.path.exists('../data/logs'):
1287
                                 if os.path.exists(\(\text{logs_destination}\):
shutil.rmtree(\(\text{logs_destination}\))
1288
1290
                                 shutil.move('../data/logs', logs_destination)
1291
1292
                    except Exception:

print(f"Could not move logs from '../data/logs' to '{logs_destination}'.")
1293
1294
1295
1296
              print('Model saved.\n')
1297
1298 def predict_test_data(test_ds, model, args, early_stopping_callback, train_iter):
1299 """
1300
1301
1302
              Testing the predictions of the model.
              The trained model is used to predict the data in 'test_ds' and the results are evaluated in regard to accuracy, precision, recall, etc. The calculated
1303
1304
              metrics are printed to stdout.
1305
1306
```

```
1308
                test ds : CipherStatisticsDataset
1309
1310
                       The dataset used for prediction
                model :
1311
                      The trained model to evaluate.
1312
1313
                args:
The commandline arguments provided by the user.
               early_stopping_callback:
Indicates whether the training was stopped before 'args.max_iter' was
reached. Used together with 'train_iter' and 'args.max_iter' to control
the number of prediction iterations.
1314
1315
1316
1317
                train_iter : int

The number of iterations used until the model converged. Used together with
1318
1319
1320
1321
1322
                      'early_stopping_callback' and 'args.max_iter' to control the number of prediction iterations .
1323
1324
                Returns
1325
                The statistics of this prediction run.
1326
1327
1328
1329
                print('Predicting test data...\n')
1330
1331
1332
                architecture = args.architecture
start_time = time.time()
1333
1334
                total_len_prediction = 0
                cntr = 0
1335
1336
1337
                test_iter = 0
test_epoch = 0
               # Determine the number of iterations to use for evaluating the model

prediction_dataset_factor = 10

if early_stopping_callback.stop_training:

while test_ds.dataset_workers * test_ds.batch_size > train_iter / prediction_dataset_factor and prediction_dataset_factor -= 1

args.max_iter = int(train_iter / prediction_dataset_factor)
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
                       while test_ds.dataset_workers * test_ds.batch_size > args.max_iter / prediction_dataset_factor and prediction_dataset_factor > 1:
                             prediction dataset factor -= 1
                       args.max_iter /= prediction_dataset_factor
1348
1349
                # Initialize 'PredictionPerformanceMetrics' instances for all classifiers. These
1350
1351
1352
1353
                # are used to save and evaluate the batched prediction results of the models.

prediction_metrics = {}

if architecture == "[FFNN,NB]":
                      1354
1355
1356
                elif architecture == "[DT,ET,RF,SVM,kNN]":
                      architecture == "[DI,EI,RR,SVM,KNN]":

prediction_metrics = ("DT": PredictionPerformanceMetrics(model_name="DT"),

"ET": PredictionPerformanceMetrics(model_name="RF"),

"RR": PredictionPerformanceMetrics(model_name="RF"),

"SVM": PredictionPerformanceMetrics(model_name="NVM"),

"kNN": PredictionPerformanceMetrics(model_name="kNN"),
1357
1358
1359
1360
1361
1362
1363
1364
                      prediction\_metrics \ = \ \{ \ architecture: \ PredictionPerformanceMetrics (model\_name=architecture) \}
                combined_batch = TrainingBatch("mixed", [], [])
while test_ds.iteration < args.max_iter:
    testing_batches = next(test_ds)</pre>
1365
1366
1367
                      # For architectures that only support one fit call: Sample all batches into one large batch.

if architecture in ("DT", "RF", "ET", "SVM", "kNN", "SVM-Rotor", "[DT,ET,RF,SVM,kNN]"):

for testing_batch in testing_batches:
1368
1369
1370
1371
1372
1373
                                    combined_batch.extend(testing_batch)
                             if test_ds.iteration < args.max_iter:
    print("Loaded %d ciphertexts." % test_ds.iteration)
    continue
1374
1375
                             test_ds.stop_outstanding_tasks()
                             print("Loaded %d ciphertexts." % test_ds.iteration)
testing_batches = [combined_batch]
1376
1377
1379
                       for testing_batch in testing_batches
1380
1381
                               statistics , labels = testing_batch.items()
                             # Decision Tree, Naive Bayes prediction
if architecture in ("DT", "NB", "RF", "ET", "SVM", "kNN"):
    prediction = model.predict_proba(statistics)
1382
1383
1384
                                   prediction_metrics[architecture].add_predictions(labels, prediction)

f architecture == "SVM-Rotor":
prediction = model.predict_proba(statistics)
# add probability 0 to all aca labels that are missing in the prediction
padded_prediction = []

for p in list(prediction):
1385
1386
1387
1388
1389
1390
                             padded = [0] * 56 + list(p)
    padded_prediction.append(padded)
prediction_metrics[architecture].add_predictions(labels, padded_prediction)
elif architecture = "[FFNN.NB]";
1391
1392
1394
                                   prediction = model[0].predict(statistics, batch_size=args.batch_size, verbose=1)
```

```
nb_prediction = model[1].predict_proba(statistics)
                               prediction_metrics["FFNN"]. add_predictions(labels, prediction)
prediction_metrics["NB"]. add_predictions(labels, nb_prediction)
elif architecture == "[DT,ET,RF,SVM,kNN]":
1397
1398
1399
                                     rarchitecture == [DI,EI,RH,SNM,RNN];
prediction = model[0].predict_proba(statistics)
prediction_metrics["DT"].add_predictions(labels, prediction)
prediction_metrics["ET"].add_predictions(labels, model[1].predict_proba(statistics))
prediction_metrics["RF"].add_predictions(labels, model[2].predict_proba(statistics))
prediction_metrics["SVM"].add_predictions(labels, model[3].predict_proba(statistics))
prediction_metrics["KNN"].add_predictions(labels, model[4].predict_proba(statistics))
1400
1401
1402
1403
1404
1405
1406
                               elif architecture == "FFNN" and isinstance(model, FFNN):
    preds, labels = predict_torch_ffnn(model, test_ds, args)
# You may want to adapt this to your PredictionPerformanceMetrics usage:
    prediction_metrics = { architecture: PredictionPerformanceMetrics(model_name=architecture)}
    prediction_metrics[architecture]. add_predictions(labels, preds)
1407
1408
1409
1410
1411
                                      for metrics in prediction_metrics.values():
metrics.print_evaluation()
1412
1413
1414
                                      1415
1416
1417
                                      elapsed_prediction_time.seconds % 60)
return prediction_stats
1418
1419
1420
1421
                               elif architecture == "LSTM" and isinstance (model, LSTM);
                                     reds, labels = predict_torch_lstm(model, test_ds, args)

prediction_metrics = {architecture: PredictionPerformanceMetrics(model_name=architecture)}

prediction_metrics[architecture]. add_predictions(labels, preds)

for metrics in prediction_metrics.values():
1422
1423
1424
1425
1426
                                             metrics.print_evaluation()
                                     metrics.print_evaluation()
elapsed_prediction_time = datetime.fromtimestamp(time.time()) - datetime.fromtimestamp(start_time)
prediction_stats = 'Prediction time: %d days %d hours %d minutes %d seconds.' % (
elapsed_prediction_time.days, elapsed_prediction_time.seconds // 3600,
    (elapsed_prediction_time.seconds // 60) % 60,
elapsed_prediction_time.seconds % 60)
1427
1428
1429
1430
1431
1432
                                      return prediction_stats
1433
1434
1435
                                      prediction = model.\,predict(\,statistics\,\,,\,\,batch\_size = args\,.\,batch\_size\,\,,\,\,verbose = 1)
                                      prediction metrics[architecture]. add predictions(labels, prediction)
1436
1437
1438
                               total_len_prediction += len(prediction)
                               cntr += 1
test_iter = args.train_dataset_size * cntr
test_epoch = test_ds.epoch
if test_epoch > 0:
1439
1440
                               test_epoch = test_iter // ((test_ds.iteration + test_ds.batch_size * test_ds.dataset_workers) // test_ds.epoch)
print("Prediction Epoch: %d, Iteration: %d / %d" % (test_epoch, test_iter, args.max_iter))
1442
1443
1444
1445
                               if test_iter >= args.max_iter:
    break
1446
1447
                        if test_ds.iteration >= args.max_iter:
1448
1449
1450
1451
                 test\_ds.stop\_outstanding\_tasks\left(\right)
                 elapsed prediction time = datetime.fromtimestamp(time.time()) - datetime.fromtimestamp(start time)
1452
1453
                if total_len_prediction > args.train_dataset_size:
    total_len_prediction -= total_len_prediction % args.train_dataset_size
1454
                 print('\ntest data predicted: %d ciphertexts' % total_len_prediction)
1455
1456
                 # print prediction metrics
                for metrics in prediction_metrics.values():
    metrics.print_evaluation()
1457
1458
1459
1460
                # print selected feature again
if architecture == "SVM-Rotor"
1461
                     # print(f"RFE-support: \n(list(model.support_)]\n")
# print(f"Support names: [convert_rfe_support_to_names(model.support_)]")
# print(f"RFE-rank: \n(list(model.ranking_)]\n")
1462
1463
1464
1465
                        print()
1466
1467
                # print("GridSearchCV:")
                # print(f"Best score: {model.best_score_}")
# print(f"Best params: {model.best_params_}")
1468
1469
1470
                 prediction_stats = 'Prediction time: %d days %d hours %d minutes %d seconds with %d iterations and %d epochs.' % (
1471
1472
1473
                        elapsed_prediction_time.days, elapsed_prediction_time.seconds // 3600, (elapsed_prediction_time.seconds // 60) % 60,
1474
                        elapsed_prediction_time.seconds % 60, test_iter, test_epoch)
1475
                 return prediction_stats
1477
                expand_cipher_groups(cipher_types):
"""Turn cipher group identifiers (ACA, MTC3, ROTOR, ALL) into a list of their ciphers."""
1478 def
                 expanded = cipher_types
if config.MTC3 in expanded:
    del expanded[expanded.index(config.MTC3)]
1480
1481
1483
                        for i in range(5):
                               expanded.append(config.CIPHER_TYPES[i])
```

```
elif config.ACA in expanded:
1486
                     del expanded[expanded.index(config.ACA)]
for i in range(56):
1487
1488
                          expanded.append(config.CIPHER_TYPES[i])
               elif config.ROTOR in expanded:
del expanded[expanded.index(config.ROTOR)]
1489
1490
1491
                    for i in range (56, 61):
               expanded.append(config.CIPHER_TYPES[i])
elif config.ALL in expanded:
1492
1493
1494
                   del expanded[expanded.index(config.ALL)]
for i in range(61):
    expanded.append(config.CIPHER_TYPES[i])
1495
1496
1497
               return expanded
1498
1499
1500
               # Don't fork processes to keep memory footprint low.
1501
               multiprocessing.set\_start\_method("spawn")
1502
1503
1504
               args = parse arguments()
1505
               cpu_count = os.cpu_count()
               if cpu_count and cpu_count < args.dataset_workers:
    print("WARNING: More dataset_workers set than CPUs available.")</pre>
1506
1507
1508
1509
               # Print arguments
1510
1511
               for arg in vars(args):
    print("{:23s}= {:s}".format(arg, str(getattr(args, arg))))
1512
              args.plaintext_input_directory = os.path.abspath(args.plaintext_input_directory)
args.rotor_input_directory = os.path.abspath(args.rotor_input_directory)
args.ciphers = args.ciphers.lower()
cipher_types = args.ciphers.split(',')
architecture = args.architecture
1513
1514
1515
1516
1517
1518
               extend_model = args.extend_model
1519
1520
               # Validate inputs
               if os.path.splitext(args.model_name)[1] not in ('.h5', '.pth'):
    print('ERROR: The model must have extension ".h5" (for Keras) or ".pth" (for PyTorch FFNN).', file=sys.stderr)
1521
1522
1523
                     sys.exit(1)
1524
1525
               if extend_model is not None:
    if architecture not in ('FFNN', 'CNN', 'LSTM'):
        print('ERROR: Models with the architecture %s can not be extended!' % architecture,
1526
1527
                                     file = sys.stderr)
1529
                            sys.exit(1)
1530
                     if len(os.path.splitext(extend_model)) != 2 or os.path.splitext(extend_model)[1] != '.h5':
print('ERROR: The extended model name must have the ".h5" extension!', file=sys.stderr)
1531
1532
                            sys.exit(1)
1532
1533
1534
              1535
1536
1537
                     svs.exit(1)
1538
1539
1540
              if args.train_dataset_size * args.dataset_workers > args.max_iter:
                   args.train_dataset_size * args.uataset_workers > args.max_ter:

print("ERROR: --train_dataset_size * --dataset_workers must not be bigger than --max_iter."

"In this case it was %d > %d" %

(args.train_dataset_size * args.dataset_workers, args.max_iter),
1541
1542
1543
                              file = sys. stderr)
1544
1545
              # Convert commandline cipher argument (all, aca, mtc3, rotor, etc.) to list of # all ciphers contained in the provided group. E.g. 'rotor' gets expanded # into 'enigma', 'm209', etc.
1546
1547
1548
1549
               cipher_types = expand_cipher_groups(cipher_types)
1550
1551
               # Ensure plaintext dataset is available at 'args.plaintext_input_directory'.
1552
              if should_download_plaintext_datasets(args):
    download_plaintext_datasets(args)
1553
1554
              # Load the datasets for the requested cipher types. If aca and rotor cipher types
# are contained in 'cipher_types', both plaintext and ciphertext datasets are loaded.
train_ds, test_ds = load_datasets_from_disk(args, cipher_types)
1555
1556
1557
1558
1559
1560
               # Get the number of cipher classes to predict. Since the label numbers are fixed,
              # it must be ensured that the output_layer_size of the neural networks contain
# enough nodes upto the higest wanted class label.
output_layer_size = max([config.CIPHER_TYPES.index(type) for type in cipher_types]) + 1
1561
1562
1563
1564
1565
               # Create a model and allow for distributed training on multi-GPU machines model, strategy = create_model_with_distribution_strategy(
1566
1567
1568
               architecture\;,\; extend\_model\;,\; output\_layer\_size = output\_layer\_size\;,\; max\_train\_len = args\;. max\_train\_len\;)
1569
               early_stopping_callback, train_iter, training_stats = train_model(model, strategy, args, train_ds)
1570
1571
               save_model(model, args)
               prediction\_stats = predict\_test\_data(test\_ds \;,\; model \;,\; args \;,\; early\_stopping\_callback \;,\; train\_iter)
```

8.2 Full listing of eval.py

```
import multiprocessing
       from pathlib import Path
       import argparse
import random
6 import sys
6 import os
7 import pickle
8 import functools
9 import numpy as np
10 from datetime import datetime
12 import torch
13 import torch.nn.functional as F
14 import torch.optim as optim
13 | 16 # This environ variable must be set before all tensorflow imports!
17 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
     import tensorflow as tf
import tensorflow_datasets as tfds
      from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import SparseTopKCategoricalAccuracy
sys.path.append("../")
    sys.path.append("...")

from util.utils import map_text_into_numberspace

from util.utils import print_progress

import cipherTypeDetection.config as config

from cipherTypeDetection.enerStatisticsDataset import CipherStatisticsDataset. PlaintextPathsDatasetParameters.

RotorCiphertextsDatasetParameters, calculate_statistics, pad_sequences

from cipherTypeDetection.predictionPerformanceMetrics import ProductionPerformanceMetrics

from cipherTypeDetection.cnsembleModel import EnsembleModel

from cipherTypeDetection.snsembleModel import EnsembleModel

from cipherTypeDetection.stansformer import MultiHeadSelfAttention, TransformerBlock, TokenAndPositionEmbedding

from util.utils import get_model_input_length

from cipherImplementations.cipher import OUTPUT_ALPHABET, UNKNOWN_SYMBOL_NUMBER

ft.debugging.set_log_device_placement(enabled=False)

# always flush after print as some architectures like RF need very long time before printing anything.

print = functools.partial(print, flush=True)
36
37
38
39
       for device in tf.config.list_physical_devices('GPU');
    tf.config.experimental.set_memory_growth(device, True)
40
41
       def str2bool(v):
    return v.lower() in ("yes", "true", "t", "1")
42
43
44
45
       def benchmark(args, model, architecture):
              46
47
48
49
50
51
52
53
54
55
56
57
58
60
61
62
63
64
65
              tids.download.add_checksums_dir('../data/checksums/')
download_manager = tfds.download_download_manager.DownloadManager(download_dir='../data/', extract_dir=args.plaintext_folder)
download_manager.download_and_extract(
                      'https://drive.google.com/uc?id=1bF5sSVjxTxa3DB-P5wxn87nxWndRhK_V&export=download')
path = os.path.join(args.plaintext_folder, 'ZIP.ucid_1bF5sSVjxTx-P5wxn87nxWn_V_export_downloadR9Cwhunev5CvJ-ic_
                                                                                                           'HawxhTtGOlSdcCrro4fxfEI8A', os.path.basename(args.plaintext folder))
                      dir_nam = os.listdir(path)
for name in dir_nam:
    p = Path(os.path.join(path, name))
    parent_dir = p.parents[2]
    p.rename(parent_dir / p.name)
                      os.rmdir(path)
66
67
68
                      os.rmdir(os.path.dirname(path))
print("Datasets Downloaded.")
              69
70
71
              plaintext_files = []
dir_nam = os.listdir(args.plaintext_folder)
```

```
for name in dir_nam:
 78
79
80
                  path = os.path.join(args.plaintext_folder, name)
if os.path.isfile(path):
                         plaintext_files.append(path)
 81
82
83
            def find_ciphertext_paths_in_dir(folder_path):
    """Loads all .txt files in the given folder and checks that their names match the
                  known cipher types.""
file_names = os.listdir(folder_path)
 84
85
86
87
88
89
90
91
92
93
94
95
                  result = []
for name in file_names:
                      r name in file_names:
path = os.path.join(folder_path, name)
file_name, file_type = os.path.splitext(name)
if os.path.isfile(path) and file_name.lower() in cipher_types and file_type == ".txt":
    validate_ciphertext_path(path, config.ROTOR_CIPHER_TYPES)
             eval\_rotor\_ciphertext\_paths = find\_ciphertext\_paths\_in\_dir(args.rotor\_ciphertext\_folder)
 96
97
98
99
            # Calculate batch size for rotor ciphers. The amount of samples per rotor cipher should be
            # Calculate batch size for rotor cipners. The amount of samples per rot cipner.

# equal to the amount of samples per aca cipher.

number_of_rotor_ciphers = len(config.ROTOR_CIPHER_TYPES) -
number_of_aca_ciphers = len(config.CIPHER_TYPES) -
number_of_aca_ciphers = len(config.CIPHER_TYPES) -
number_of_aca_ciphers

rotor_train_dataset_size = amount_of_samples_per_cipher * number_of_rotor_ciphers
100
101
102
103
104
105
            plaintext_dataset_params = PlaintextPathsDatasetParameters(cipher_types[:56], args.dataset_size,
106
107
                                                                                                     args.min_text_len,
                                                                                                     args.max_text_len,
args.keep_unknown_symbols,
108
109
110
                                                                                                     args.dataset_workers
111
                                                                                                      generate evaluation data=True)
             rotor_dataset_params = RotorCiphertextsDatasetParameters(config.ROTOR_CIPHER_TYPES,
                                                                                                 rotor_train_dataset_size,
114
                                                                                                 args.dataset_workers,
115
                                                                                                 args.min_text_len,
116
                                                                                                 args.max text len
117
            generate_evalutation_data=True)

dataset = CipherStatisticsDataset(plaintext_files, plaintext_dataset_params, eval_rotor_ciphertext_paths,
118
119
                                                                rotor_dataset_params, generate_evaluation_data=True)
120
121
122
            if args.dataset_size % dataset.key_lengths_count != 0:

print("WARNING: the --dataset_size parameter must be dividable by the amount of --ciphers and the length configured KEY_LENGTHS in
            " config.py. The current key_lengths_count is %d" % dataset.key_lengths_count, file=sys.stderr)
print("Datasets loaded.\n")
123
124
125
126
127
             print('Evaluating model ...')
128
129
130
             start_time = time.time()
iteration = 0
131
132
133
134
135
             prediction_metrics = PredictionPerformanceMetrics(model_name=architecture)
             while dataset.iteration < args.max_iter:
136
137
138
                  batches = next(dataset)
                  for index, batch in enumerate(batches):
139
140
141
                          statistics , labels , ciphertexts = batch.items()
                         if architecture == "FFNN":
142
143
144
145
                              if hasattr(model, "evaluate"): # Keras model
    results.append(model.evaluate(statistics, labels, batch_size=args.batch_size, verbose=1))
                                        # PyTorch model
                                     stats_np = statistics.numpy()
                                    x = torch.tensor(stats np, dtype=torch.float32)
148
149
150
151
152
153
                                    y = torch.tensor(labels.numpy(), dtype=torch.long)
                                     with torch.no_grad():
    outputs = model(x)
    loss = F.cross_entropy(outputs, y)
    top1 = torch.argmax(outputs, dim=1)
154
155
156
                                           acc = (top1 == y).float().mean()
                                           # Calc top-3
157
158
                                          trop = torch.topk(outputs, k=3, dim=1).indices
y_expanded = y.unsqueeze(1).expand_as(top3)
k3_acc = (top3 == y_expanded).any(dim=1).float().mean()
159
160
161
                                           results.append((loss.item(), acc.item(), k3\_acc.item()))
162
163
164
                         elif architecture in ("CNN", "LSTM", "Transformer"):
165
                               results.append(model.evaluate(ciphertexts\ ,\ labels\ ,\ batch\_size = args.batch\_size\ ,\ verbose = 1))
```

```
elif architecture in ("DT", "NB", "RF", "ET", "SVM", "kNN"):
                                   results.append(model.score(statistics, labels))
print("accuracy: %f" % (results[-1]))
elif architecture == "Ensemble":
170
                                          results. append (model. evaluate (statistics\ ,\ ciphertexts\ ,\ labels\ ,\ args.batch\_size\ ,\ prediction\_metrics\ ,\ verbose=1))
171
172
173
                                   iteration = dataset.iteration - len(batch) * (len(batches) - index - 1)
                                   if epoch > 0:
epoch = iteration // (dataset.iteration // dataset.epoch)
176
177
178
                                   print("Epoch: %d, Iteration: %d" % (epoch, iteration))
if iteration >= args.max_iter:
                                           break
179
180
                           if dataset.iteration >= args.max_iter:
181
182
                 elapsed_evaluation_time = datetime.fromtimestamp(time.time()) - datetime.fromtimestamp(start_time)
print('Finished evaluation in %d days %d hours %d minutes %d seconds with %d iterations and %d epochs.\n' % (
elapsed_evaluation_time.days, elapsed_evaluation_time.seconds // 3600, (elapsed_evaluation_time.seconds // 60) % 60,
elapsed_evaluation_time.seconds % 60, iteration, epoch))
183
184
185
187
188
                  if architecture in ("FFNN", "CNN", "LSTM", "Transformer"):
189
190
191
                          avg_loss = 0
avg_acc = 0
                 avg_acc = 0
avg_k3_acc = 0
for loss , acc_pred , k3_acc in results:
    avg_loss += loss
    avg_acc += acc_pred
    avg_k3_acc += k3_acc
avg_loss = avg_loss / len(results)
avg_acc = avg_acc / len(results)
avg_acc = avg_acc / len(results)
avg_k3_acc = avg_k3_acc / len(results)
print("Average evaluation results: loss: %f, accuracy: %f, k3_accuracy: %f\n" % (avg_loss, avg_acc, avg_k3_acc))
elif architecture in ("DT", "NB", "RF", "ET", "Ensemble", "SVM", "kNN"):
avg_test_acc = 0
avg_k3_acc = 0
for acc, k3_acc in results:
192
193
194
195
196
197
198
199
200
201
202
                          avg_ks_acc = 0

for acc, k$\frac{1}{2}acc in results:
    avg_test_acc += acc
    avg_k$\frac{1}{2}acc == acc
    avg_test_acc = avg_test_acc / len(results)
    avg_k$\frac{1}{2}acc = avg_k$\frac{1}{2}acc / len(results)
203
204
205
206
207
208
                          print("Average evaluation results from %d iterations: avg_test_acc=%f, k3_accuracy: %f\n" % (iteration, avg_test_acc, avg_k3_acc))
209
210
211
                           print("Detailed results:")
                           prediction_metrics.print_evaluation()
212
213
         def evaluate(args, model, architecture):
    results_list = []
    dir_name = os.listdir(args.data_folder)
    dir_name.sort()
215
218
                  cntr = 0
219
220
221
                  for name in dir name:
                         path = os.path.join(args.data_folder, name)
222
223
224
                          if os.path.isfile(path):
    if iterations > args.max_iter:
225
226
227
228
229
230
                                        break
                                   hatch = []
                                   batch_ciphertexts = []
                                   labels = []
results = []
231
232
233
                                  results = []
dataset_cnt = 0
input_length = get_model_input_length(model, args.architecture)
with open(path, "rb") as fd:
lines = fd.readlines()
for line in lines:
234
235
236
                                           # remove newline
line = line . strip (b'\n') . decode()
237
238
239
                                           if line ==
                                           continue
split_line = line.split(' ')
labels.append(int(split_line[0]))
240
241
                                          labels.append(int(split_line[0]))
statistics = [float(f) for f in split_line[1].split(',')]
batch.append(statistics)
ciphertext = [int(j) for j in split_line[2].split(',')]
if input_length is not None:
    if len(ciphertext) < input_length:
        ciphertext = pad_sequences([ciphertext], maxlen=input_length)[0]
# if the length its too high, we need to strip it..
elif len(ciphertext) > input_length:
        ciphertext = ciphertext(rinput_length)
242
243
244
245
248
249
250
251
                                                         ciphertext = ciphertext[:input length]
                                           batch_ciphertexts.append(ciphertext)
                                           iterations += 1
if iterations == args.max_iter:
```

```
if len(labels) == args.dataset_size:
                                   if architecture == "FFNN"
                                        results.append(model.evaluate(tf.convert_to_tensor(batch), tf.convert_to_tensor(labels), args.batch_size, verbose \Longrightarrow = 0)
258
                                    elif architecture in ("CNN", "LSTM", "Transformer"):
                                   259
260
261
262
                                         results.append(model.evaluate(tf.convert\_to\_tensor(batch), tf.convert\_to\_tensor(batch\_ciphertexts), tf. \\ \\ \hookrightarrow convert\_to\_tensor(labels),
263
264
265
                                   args.batch_size, verbose=0))

elif architecture in ("DT", "NB", "RF", "ET", "SVM", "kNN"):
    results.append(model.score(batch, tf.convert_to_tensor(labels)))
                                   batch_ciphertexts = []
266
267
                       labels = []
dataset_cnt += 1

if len(labels) > 0:
268
269
270
271
                             if architecture == "FFNN":
                             results.append(model.evaluate(tf.convert_to_tensor(batch), tf.convert_to_tensor(labels), args.batch_size, verbose=0)) elif architecture in ("CNN", "LSTM", "Transformer"):
272
273
274
275
276
277
                                   results.append(
                             model.evaluate(tf.convert_to_tensor(batch_ciphertexts), tf.convert_to_tensor(labels), args.batch_size, verbose=0))

elif architecture == "Ensemble":
    results.append(
278
279
280
                             281
282
283
284
                        results.append(model.score(batch, tf.convert_to_tensor(labels)))

if architecture in ("FFNN", "CNN", "LSTM", "Transformer"):
                             avg_loss = 0
avg_acc = 0
avg_k3_acc = 0
285
286
                             for loss, acc_pred, k3_acc in results:
avg_loss += loss
avg_acc += acc_pred
287
288
289
                        avg_k3_acc += k3_acc
result = [avg_loss / len(results), avg_acc / len(results), avg_k3_acc / len(results)]
elif architecture in ("DT", "NB", "RF", "ET", "Ensemble", "SVM", "kNN"):
290
291
292
293
                             avg\_test\_acc = 0
                             for acc in results:
    avg_test_acc += acc
result = avg_test_acc / len(results)
294
295
296
297
298
299
                        results_list.append(result)
cntr += 1
                       300
301
302
303
304
305
306
307
                        print_progress("Evaluating files: ", cntr, len(dir_name), factor=5)
if iterations == args.max_iter:
308
309
310
311
312
313
            if \ \ architecture \ \ in \ \ ("FFNN", "CNN", "LSTM", "Transformer"):
                  avg\_test\_loss = 0
314
                  avg_test_acc = 0
avg_test_acc_k3 = 0
315
316
317
                  for loss, acc, acc_k3 in results_list:
                        avg_test_loss += loss
avg_test_acc += acc
avg_test_acc_k3 += acc_k3
318
319
            avg_test_acc_k3 += acc_k3
avg_test_loss = avg_test_loss / len(results_list)
avg_test_acc = avg_test_acc / len(results_list)
avg_test_acc_k3 = avg_test_acc_k3 / len(results_list)
avg_test_acc_k3 = avg_test_acc_k3 / len(results_list)
print("\n\nAverage evaluation results from %d iterations: avg_test_acc=%f, avg_test_acc=%f, avg_test_acc_k3=%f" % (
    iterations, avg_test_loss, avg_test_acc, avg_test_acc_k3))
elif architecture in ("DT", "NB", "RF", "ET", "Ensemble", "SVM", "kNN"):
320
321
322
323
324
325
326
327
328
                  avg_test_acc = 0
for acc in results_list:
                      avg_test_acc += acc
                  avg_test_acc = avg_test_acc / len(results_list)
print("\n\nAverage evaluation results from %d iterations: avg_test_acc=%f" % (iterations, avg_test_acc))
329
330
331
333
334
       def predict_single_line(args, model, architecture):
            cipher id result =
335
336
337
            ciphertexts = []
result = []
            if args.ciphertext is not None:
338
339
340
341
                  ciphertexts.append(args.ciphertext.encode())
                  ciphertexts = open(args.file, 'rb')
```

```
for line in ciphertexts:
                    # remove newline
line = line.strip(b'\n')
if line == b'':
                    if line == 0:
    continue

# evaluate aca features file

# label = line.split(b'')[0]

# statistics = ast.literal_eval(line.split(b'')[1].decode())

# ciphertext = ast.literal_eval(line.split(b'')[2].decode())
347
348
349
350
351
352
353
354
355
                    # print(config.CIPHER_TYPES[int(label.decode())], "length: %d" % len(ciphertext))
                    # Append ciphertext to itself. This improves the reliablity of the results.
                    while len(line) < 1000:
line = line + line
# Limit line to at most 1000 characters to limit the execution time
356
357
358
                    line = line[:1000]
359
360
361
362
363
                     ciphertext = map_text_into_numberspace(line, OUTPUT_ALPHABET, UNKNOWN_SYMBOL_NUMBER)
                    try:
statistics = calculate_statistics(ciphertext)
                    except ZeroDivisionError:
    print("\n")
364
365
366
367
368
369
                           continue
                     results = None
                     if architecture
                           result = model.predict(tf.convert_to_tensor([statistics]), args.batch_size, verbose=0)
                    result = model.predict((tf.convert_to_tensor((statistics]), args.batch_size, verbose=0)

elif architecture in ("CNN", "ISIM", "Transformer"):
    input_length = get_model_input_length(model, architecture)

if len(ciphertext) < input_length:
    ciphertext = pad_sequences([list(ciphertext)], maxlen=input_length)[0]

split_ciphertext = [ciphertext[input_length*j:input_length*(j+1)] for j in range(len(ciphertext) // input_length)]
370
371
372
373
374
375
                          376
377
378
379
380
381
382
                                            model.predict(tf.reshape(tf.convert_to_tensor([ct]), (1, input_length, 1)), args.batch_size, verbose=0))
                    model.predict(tf.reshape(tf.convert_to_tensor([ct]),
    result = results[0]
    for res in results[1:]:
        result = np.add(result, res)
    result = np.divide(result, len(results))
elif architecture in ("DT", "NB", "RF", "ET", "SVM", "kNN"):
    result = model.predict_proba(tf.convert_to_tensor([statistics]))
elif architecture == "Ensemble":
    result = model.predict([f.convert_to_tensor([statistics]), [cinbut])
383
384
385
386
387
388
389
390
391
                           result = model.predict(tf.convert to tensor([statistics]), [ciphertext], args.batch size, verbose=0)
392
393
                    if isinstance(result, list):
    result_list = list(result[0])
                    else:
result_list = result[0].tolist()
394
395
396
397
                    if results is not None and architecture not in ('Ensemble', 'LSTM', 'Transformer', 'CNN'):

for j in range(len(result_list)):
                                 result_list[j] /= len(results)
                    if args.verbose:
                         for cipher in args.ciphers:
    print("{:23s} {:f}\".format(cipher, result_list[config.CIPHER_TYPES.index(cipher)]*100))
    max_val = max(result_list)
400
401
402
403
404
405
                           cipher = config.CIPHER_TYPES[result_list.index(max_val)]
                           max val = max(result list)
406
                           cipher = config .CIPHER_TYPES[result_list.index(max_val)]
print("{:s} {:f}%".format(cipher, max_val * 100))
407
408
409
410
                     cipher_id_result += cipher[0].upper()
              if args.file is not None:
412
413
                     ciphertexts.close()
414
415
              # return a list of probabilities (does only return the last one in case a file is used)
             res_dict = {}
if len(result) != 0:
    for j, val in enumerate(result[0]):
        res_dict[args.ciphers[j]] = val * 100
              res dict = {}
416
417
418
419
420
421
422
423
424
        def load_model(architecture, args, model_path, cipher_types):
              strategy = args.strategy
model_list = args.models
425
426
427
428
429
              architecture_list = args.architectures
              if architecture == "FFNN" and model_path.endswith(".pth"):
430
                    from cipherTypeDetection.train import FFNN
```

```
432
433
                    checkpoint = torch.load(model_path, map_location=torch.device("cpu"))
                           input_size=checkpoint['input_size'],
                           hidden_size=checkpoint['hidden_size'],
output_size=checkpoint['output_size'],
436
437
438
439
                           num_hidden_layers=checkpoint['num_hidden_layers']
440
441
442
                     model.load_state_dict(checkpoint['model_state_dict'])
                    model.eval()
443
444
                    config .FEATURE_ENGINEERING = True
config .PAD_INPUT = False
445
446
447
             448
449
450
451
452
453
                                 'TokenAndPositionEmbedding': TokenAndPositionEmbedding, 'TransformerBlock': TransformerBlock})
454
455
456
                    model = tf.keras.models.load_model(args.model)

if architecture in ("CNN", "LSTM", "Transformer"):
    config.FEATURE_ENGINEERING = False
457
458
459
                           config.PAD_INPUT = True
460
                           config.FEATURE_ENGINEERING = True
                    config.PAD_INPUT = False
optimizer = Adam(learning_rate=config.learning_rate, beta_1=config.beta_1, beta_2=config.beta_2, epsilon=config.epsilon,
462
463
464
              amsgrad=config.amsgrad)
model.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy",
metrics=["accuracy", SparseTopKCategoricalAccuracy(k=3, name="k3_accuracy")])
elif architecture in ("DT", "NB", "RF", "ET", "SVM", "kNN"):
465
466
467
468
469
470
471
                    config .FEATURE_ENGINEERING = True
config .PAD_INPUT = False
with open(model_path, "rb") as f:
              model = pickle.load(f)

elif architecture == 'Ensemble'
cipher_indices = []
472
473
                    crpner_indices = {;}
for cipher_type in cipher_types:
    cipher_indices.append(config.CIPHER_TYPES.index(cipher_type))
model = EnsembleModel(model_list, architecture_list, strategy, cipher_indices)
474
475
476
477
478
479
480
                    raise ValueError ("Unknown architecture: %s" % architecture)
              # Controlla se ci sono cifrari rotor tra quelli richiesti
481
482
              has\_rotor\_ciphers = \textbf{any}(c \ \textbf{in} \ config . ROTOR\_CIPHER\_TYPES \ \textbf{for} \ c \ \textbf{in} \ cipher\_types)
483
484
                 Se ci sono cifrari rotor, carica anche il modello rotor_only
485
486
                    rotor_only_model_path = args.rotor_only_model
                    rotor_only_model.patn = args.rotor_only_model
if not os.path.exists(rotor_only_model_path):
    raise FileNotFoundError(f"Rotor-only model is required but not found at {rotor_only_model_path}")
with open(rotor_only_model_path, "rb") as f:
    rotor_only_model = pickle.load(f)
return RotorDifferentiationEnsemble(architecture, model, rotor_only_model)
487
488
489
490
491
             # Se non ci sono cifrari rotor:
# - se è un ensemble, restituisci direttamente l'ensemble
# - altrimenti restituisci il modello normale
492
493
494
495
              return model
496
497
       def expand_cipher_groups(cipher_types):
    """Turn cipher group identifiers (ACA, MTC3) into a list of their ciphers"""
    expanded = cipher_types
    if config.MTC3 in expanded:
        del expanded[expanded.index(config.MTC3)]
498
499
500
501
502
503
504
                    for i in range(5):
              expanded.append(config.CIPHER_TYPES[i])
elif config.ACA in expanded:
505
506
              del expanded[expanded.index(config.ACA)]
for i in range(56):
    expanded.append(config.CIPHER_TYPES[i])
elif "aca+rotor" in expanded:
507
508
509
510
                    del expanded[expanded.index("aca+rotor")]
for i in range(61):
512
                          expanded.append(config.CIPHER_TYPES[i])
513
514
              return expanded
515 def parse_arguments():
             parser = argparse. ArgumentParser(
description='CANN Ciphertype Detection Neuronal Network Evaluation Script', formatter_class=argparse.RawTextHelpFormatter)
518
519
              sp = parser.add_subparsers()
bench_parser = sp.add_parser('benchmark')
520
                                                            help='Use this argument to create ciphertexts on the fly, \nlike in training mode, and evaluate them with
```

```
'the model. \nThis option is optimized for large throughput to test the model.')
eval_parser = sp.add_parser('evaluate', help='Use this argument to evaluate cipher types for single files or directories.')
single_line_parser = sp.add_parser('single_line', help='Use this argument to predict a single line of ciphertext.')
522
523
524
525
526
527
528
529
                    parser.add_argument('--batch_size', default=128, type=int,
                  530
531
532
533
534
535
536
537
                                        'Possible values are:\n'
'- FFNN\n'
'- CNN\n'
538
539
540
541
542
543
                                        '- LSTM\n'
'- DT\n'
'- NB\n'
544
545
                                        '- RF\n'
'- ET\n'
546
547
548
                                         '- Transformer\n'
                                         '- SVM\n
                                         '- kNN\n
                                         '- Ensemble')
549
550
                                                                        -ciphers', '--ciphers', default='aca', type=str,
                    parser.add_argument(
                                                                 ('--ciphers', '--ciphers', default='aca', type=str,

help='A comma seperated list of the ciphers to be created.\n'

'Be careful to not use spaces or use \' to define the string.\n'

'Possible values are:\n'

'- mtc3 (contains the ciphers Monoalphabetic Substitution, Vigenere,\n'

'Columnar Transposition, Plaifair and Hill)\n'

'- aca (contains all currently implemented ciphers from \n'

'https:'(www.cryntogram.org/resource_arga/cipher_types/\)n'
552
553
554
555
556
557
558
559
560
                                                                                              https://www.cryptogram.org/resource-area/cipher-types/)\n'
                                                                              '- aca+rotor\n'
                                                                              '- simple_substitution\n'
'- vigenere\n'
561
562
563
                                                                              '- columnar_transposition \n'
                                                                              '- playfair\n'
'- hill\n')
564
565
566
                   parser.add_argument('--models', action='append', default=None,

help='A list of models to be used in the ensemble model. The length of the list must be the same like the one in '

'the --architectures argument.')

parser.add_argument('--architectures', action='append', default=None,

help='A list of the architectures to be used in the ensemble model. The length of the list must be the same like '

'the one in the --models argument.')

parser.add_argument('--strategy', default='weighted', type=str, choices=['mean', 'weighted'],
567
568
569
570
571
572
                                                                  help='The algorithm used for decisions.\n- Mean voting adds the probabilities from every class and returns the mean
                   'value of it. The highest value wins.\n- Weighted voting uses pre-calculated statistics, like for example 'precision, to weight the output of a specific model for a specific class.')

parser.add_argument('--dataset_size', default=16000, type=int,

help='Dataset size per evaluation. This argument should be dividable \nby the amount of --ciphers.')
573
574
575
576
577
578
579
                   bench_parser.add_argument('--download_dataset', default=True, type=str2bool)
bench_parser.add_argument('--dataset_workers', default=1, type=int)
bench_parser.add_argument('--plaintext_folder', default='.../data/gutenberg_en', type=str)
bench_parser.add_argument('--rotor_ciphertext_folder', default='.../data/rotor_ciphertexts', type=str)
bench_parser.add_argument('--keep_unknown_symbols', default=False, type=str2bool)
bench_parser.add_argument('--min_text_len', default=50, type=int)
bench_parser.add_argument('--max_text_len', default=-1, type=int)
580
581
582
583
584
585
586
587
588
589
590
                    bench group = parser.add argument group('benchmark')
                   591
592
                   'symbols are defined in the alphabet of the cipher.')
bench_group.add_argument('--min_text_len', help='The minimum length of a plaintext to be encrypted in the evaluation process.\n'
'If this argument is set to -1 no lower limit is used.')
bench_group.add_argument('--max_text_len', help='The maximum length of a plaintext to be encrypted in the evaluation process.\n'
'If this argument is set to -1 no upper limit is used.')
593
594
595
596
597
                    eval\_parser.add\_argument('--evaluation\_mode', nargs='?', choices=('summarized', 'per\_file'), default='summarized', type=str)\\ eval\_parser.add\_argument('--data\_folder', default='../data/gutenberg\_en', type=str)\\
598
599
600
                    eval_group = parser.add_argument_group('evaluate')
601
602
                    eval_group.add_argument('--evaluation_mode',

help='- To create an single evaluation result over all iterated data files use the \'summarized\' option

'\n This option is to be preferred over the benchmark option, if the tests should be reproducable.'
                                                                                      'In This option is to be preferred over the benchmark option, if the tests should be reproducable.\n'
'- To create an evaluation for every file use \'per_file\' option. This mode allows the \n'
' calculation of the \n - average value of the prediction \n'
' - lower quartile - value at the position of 25 percent of the sorted predictions\n'
' - median - value at the position of 50 percent of the sorted predictions\n'
603
604
605
```

```
' - upper quartile - value at the position of 75 percent of the sorted predictions\n'
' With these statistics an expert can classify a ciphertext document to a specific cipher.')
eval_group.add_argument('--data_folder', help='Input folder of the data files with labels and calculated features.')
609
611
                   single_line_parser.add_argument('--verbose', default=True, type=str2bool)
data = single_line_parser.add_mutually_exclusive_group(required=True)
data.add_argument('--ciphertext', default=None, type=str)
612
614
615
616
                    data.add_argument('--file', default=None, type=str
617
                    single_line_group = parser.add_argument_group('single_line')
                   single_line_group.add_argument('--ciphertext', help='A single line of ciphertext to be predicted by the model.')
single_line_group.add_argument('--file', help='A file with lines of ciphertext to be predicted line by line by the model.')
single_line_group.add_argument('--verbose', help='If true all predicted ciphers are printed. \n'

'If false only the most accurate prediction is printed.')
618
619
620
621
622
623
                    return parser.parse_args()
624
625
626
                    multiprocessing.set_start_method("spawn")
627
628
                   args = parse_arguments()
629
630
631
                  for arg in vars(args):
    print("{:23s}= {:s}".format(arg, str(getattr(args, arg))))
m = os.path.splitext(args.model)
if os.path.splitext(args.model)[1] not in ('.h5', '.pth'):
    print('ERROR: The model must have extension ".h5" (for Keras) or ".pth" (for PyTorch FFNN).', file=sys.stderr)
632
633
634
635
                             sys.exit(1)
636
637
                    architecture = args.architecture
                   architecture = args.architecture
model_path = args.model
args.ciphers = args.ciphers.lower()
cipher_types = args.ciphers.split(',')
args.ciphers = expand_cipher_groups(cipher_types)
if architecture == 'Ensemble':
638
639
640
641
642
643
                            if not hasattr(args, 'models') or not hasattr(args, 'architectures'):
                            raise ValueError("The length of --models must be the same like the length of --architectures.")

raise ValueError("The length of --models must be the same like the length of --architectures.")
644
645
646
647
648
                             models = []
for i in range(len(args.models)):
649
650
651
                                     model = args.models[i]
arch = args.architectures[i]
if not os.path.exists(os.path.abspath(model)):
                  if not os.path.exists(os.path.abspath(model)):
    raise ValueError("Model in %s does not exist." % os.path.abspath(model))
    if arch not in ('FFNN', 'CNN', 'LSTM', 'DT', 'NB', 'RF', 'ET', 'Transformer', 'SVM', 'kNN'):
        raise ValueError("Unallowed architecture %s" % arch)
    if arch in ('FFNN', 'CNN', 'LSTM', 'Transformer') and not os.path.abspath(model).endswith('.h5'):
        raise ValueError("Model names of the types %s must have the .h5 extension." % ['FFNN', 'CNN', 'LSTM', 'Transformer'])
elif args.models is not None or args.architectures is not None:
    raise ValueError("It is only allowed to use the --models and --architectures with the Ensemble architecture.")
652
653
654
655
656
657
658
659
660
                    print("Loading Model...")
661
662
663
                   # There are some problems regarding the loading of models on multiple GPU's.
# gpu_count = len(tf.config.list_physical_devices('GPU'))
                    # if gpu_count > 1:
664
665
                                 strat = tf.distribute.MirroredStrategy()
with strat.scope():
666
667
668
                                         model = load_model()
                   # # model = load_model()
model = load_model(architecture, args, model_path, cipher_types)
669
670
671
672
                    print ("Model Loaded.")
                   # Model is now always an ensemble
673
674
                   #architecture = "Ensemble"
                   # the program was started as in benchmark mode.

if args.download_dataset is not None:
    benchmark(args, model, architecture)

# the program was started in single_line mode.
elif args.ciphertext is not None or args.file is not None:
    predict_single_line(args, model, architecture)

# the program was started in prediction mode.
else.
675
676
677
678
679
680
681
                            evaluate(args, model, architecture)
684
                   main()
```