
 Eindhoven University of Technology

MASTER

A study of the general number field sieve and a development of a CT2 plug-in using YAFU

Querejeta Azurmendi, I.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentthesis/a-study-of-the-general-number-field-sieve-and-a-development-of-a-ct2-plugin-using-yafu(6ebb4e6a-29ad-4b24-b880-1ad37c220a6e).html

A study of the General Number
Field Sieve and a development of a

CT2 plug-in using YAFU

A thesis submitted for the degree of Master of Science.

Technical University of Eindhoven

Department of Mathematics and Computer Science

Author:
Iñigo Querejeta
Azurmendi
0870120

Supervisors:
Prof. Dr. Tanja Lange

Henry de Valence

Advisors:
Cristina Balasoiu

Prof. Bernhard Esslinger
Armin Krauss

July 28, 2016

ii

Abstract

The Number Field Sieve (NFS) is the fastest known algorithm for factoring
general numbers having more than 100 decimal digits. This thesis will cover
the theory behind the algorithm, going through different fields of math-
ematics, such as complex analysis, algebraic number theory, or theory of
ideals. We present a plug-in developed for the CrypTool 2 (CT2) applica-
tion. Our plug-in makes use of an already existing implementation (YAFU)
of the number field sieve and finally we present some comparisons with the
previously existing factoring plug-ins.

iii

Acknowledgements

I would like to express my greatest appreciation to the people who have
helped and supported me throughout my master project.

To my supervisor Prof. Dr. Tanja Lange for introducing me to CrypTool 2
and making possible an Internship abroad. Many thanks as well for the
guidance during my project and the last comments in the proofreading task.

To Prof. Bernhard Esslinger. First of all for accepting me as part of
this project. It is now with great pleasure that I have taken part in the
CrypTool 2 group. Secondly, the critical questions and guidance throughout
the thesis have been of great help as well as the time spent for feedback.

To Armin Krauss for your constant support in the development of
the plug-in. Without your participation and input, the plug-in could not
have been successfully implemented in that quality.

To Henry de Valence for your patience and time spent in task of
proofreading.

Last, but not least, I would like to thank my family and friends for
giving me unconditional support, and for having made this experience of
the master as fulfilling as it has been.

Iñigo Querejeta
Eindhoven
July, 2016

iv

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Variables viii

1 Introduction 1

2 Factorizing Algorithms Using the Difference of Squares 3

2.1 Fermat’s Factorizing Algorithm 3

2.2 Dixon’s Method and the Quadratic Sieve 5

3 Interlude 11

3.1 Introduction . 11

3.2 Algebraic Number Theory . 12

3.3 Theory of Ideals . 13

4 The General Number Field Sieve 19

4.1 Creating a Difference of Squares 19

4.2 Smoothness and the Algebraic Factor Base 23

4.3 Creating Squares in Oα . 31

5 Details of the General Number Field Sieve 35

5.1 The Polynomial Selection Problem 36

5.2 The Sieving Step . 39

5.2.1 The Rational Sieve . 40

5.2.2 The Algebraic Sieve 42

5.2.3 Lattice Sieving . 43

5.3 The Linear Algebra Step (Matrix Reduction) 44

5.3.1 Gaussian Elimination 44

5.3.2 Standard Lanczos Algorithm 46

5.3.3 Lanczos in GF(2) . 51

v

vi CONTENTS

5.4 Computing the Square Root 52

6 The GNFS Algorithm and the Security of Cryptographic
Keys 53
6.1 State of the Art of the GNFS 53
6.2 LogJam and FREAK Attack 56

6.2.1 LogJam attack . 57
6.3 TeslaCrypt Malware . 59
6.4 Conclusion . 61

7 CrypTool 2 Plug-in 65
7.1 Introduction to CrypTool 2 65
7.2 Factoring Algorithms besides GNFS, QS, or Fermat’s Made

Newly Available in CT2 . 66
7.9 The New GeneralFactorizer 74

7.9.1 YAFU (Yet Another Factorization Utility) 74
7.9.2 The Plug-in . 75

7.10 Results and Further Work . 77
7.10.1 Performance of the Plug-in 77
7.10.2 Further Work for the GeneralFactorizer 84

Appendices 87

A Numbers used for performance tests 89

List of Figures

6.1 Advances in factorization through time, with the size of keys
in bits (y-axis) for RSA numbers. Data taken from [9] 55

6.2 MITM attack overview . 57

6.3 Top 512-bit DH primes for TLS. 8.4% of Alexa Top 1M
HTTPS domains allow DHE EXPORT, of which 92.3% use
one of the two most popular primes, shown here. Taken from
[12] . 58

6.4 An overview of the session key generation 60

6.5 Number of YAFU downloads in the last year. The method to
decrypt infected files was given in December 2015 61

6.6 Security strength through different time frames 62

7.1 GUI of the plug-in . 76

7.2 Drop down box of available choices 78

7.3 Drop down box for determining search of ECM 79

7.4 Performance of the GeneralFactorizer for a 300-bit number,
lasting slightly above 8 minutes 80

7.5 Performance of the old Quadratic Sieve plug-in for a 300-bit
number, lasting slightly below 12 minutes 80

7.6 Comparison of performance with time in logarithmic scale.
Numbers can be found in Table A.1 81

7.7 Performance of the GeneralFactorizer with number 1 from
Table A.2 . 82

7.8 Comparison of performance with time in logarithmic scale.
Numbers can be found in Table A.2 83

vii

viii LIST OF FIGURES

List of Variables

n = p× q Number to be factored.
e RSA public key. Chapter 2 on-

wards, exponents of factorization.
d RSA private key. Chapter 2 on-

wards, degree of a polynomial.
φ Eulers phi function. Chapter 2 on-

wards natural homomorphism φ :
Z[α]→ Z/nZ.

x, y Difference of squares x2 ≡ y2

(mod n).
F = {p1, . . . , pS} Factor base of small primes.
S = |F| Size of the factor base.
B Factor base bound, pS ≤ B.
U Set of relations.
|U | Size of set U .
ei Exponents of primes in factoriza-

tion.
vi Binary vector related to factoriza-

tion.
L Number of relations found.

Q Subfield consisting of algebraic
numbers.

O Set of all algebraic integers.
Oα Set of algebraic integers in Q(α).
D Dedekind domain.
m Root of polynomial f modulo n.
(a, b) Relations, such that (a + bα) and

a+ bm are smooth.
f(t) ∈ Z[t] Monic irreducible polynomial.
f ′(t) Derivative of f .
α Root of minimal polynomial.
αi Different roots of f(t).
σi Embeddings such that σi(α) = αi.
N(a, b) Norm of (a+ bα).
F (X,Y) Homogenized polynomial of f .
(r, p) Pair representing degree one prime

ideals.
lp,r(a+ bα) Power of prime ideal (r, p) such that

a+ br ≡ 0 (mod p).
χq Quadratic characters.
A Sieving region.
[−u, u] Region from which we choose the

values of (a, b).

Chapter 1

Introduction

For centuries two problems in number theory have kept many mathe-
maticians busy: determining if a given integer is prime and expressing a
given whole number as a product of primes. Now, the first problem is
considered to be solved using probabilistic algorithms [8], mainly because
of their computational speed compared to the available deterministic
algorithms (despite the fact that it is in P). Even if the second one might
seem a straightforward problem for reasonably small numbers, it becomes
complicated when we consider huge numbers. In fact, the difficulty of this
problem is what gave rise to the well known RSA (Rivest-Shamir-Adleman)
cryptosystem [53], the first public-key cryptosystem, consisting of two
keys for every user, one private and one public, and offering a secure
communication over an insecure channel, such as the Internet. Still today,
RSA is one of the standards of secure electronic communication and is also
used for digital signatures, so the interest to factorization remains one of
the main topics of discrete mathematics. When we talk about RSA, we
must specify that the security comes with the usage of at least 1024-bit
composite numbers of the form n = p × q where p and q are primes of
roughly the same size. This means that we are talking about numbers
with ≈ 310 decimal digits. This number, whose factorization is unknown,
together with a number e ∈ Z/nZ is what forms the public key. The private
key, d ∈ Z/nZ, is then generated by calculating the inverse of e mod (φ(n))
where φ is Euler’s phi function, calculated by φ(n) = (p − 1)(q − 1).
Therefore, if we manage to factor number n we can calculate the private
key and the cryptosystem is broken.
Already in 1999 a 512-bit key was factored [21], but surprisingly, regardless
of this factorization, 512-bit keys are still used today in some applications.
In fact, Valenta, Cohney, Liao, Fried, Codduluri, and Heninger have shown
in 2015 that many popular protocols still accept 512-bit keys. In the same
paper [62] they present a study of the General Number Field Sieve which
shows how it is possible for a non-expert to factor 512-bit RSA keys in

1

2 CHAPTER 1. INTRODUCTION

under 4 hours (together with the payment of $100 to access the computing
power in the cloud).

A specialized version of the Number Field Sieve, named Special Number
Field Sieve, also exists and has been used to factor numbers much bigger
than the ones mentioned before. The downside is that the latter algorithm
works only for a special kind of numbers, which must have the form rh ± s,
where r, s must be “small” integers. This makes it impossible to use this
algorithm for the purpose of breaking RSA.

Leaving aside the usage of Quantum Computers, which will not be
discussed in this thesis, the General Number Field Sieve is the most
interesting option to recover the secret key of RSA in practical use cases,
and that might be enough motivation for many. Furthermore this algorithm
is also academically interesting. It uses many results of different fields
in mathematics, such as linear algebra, algebraic number theory, finite
fields and real and complex analysis. This thesis will focus mainly on the
description and explanation of the General Number Field Sieve algorithm,
but will also discuss the latest factorizations, the state-of-the-art of the
implementations and finally, a plug-in that I developed for the application
CrypTool 2 [2]. My plug-in uses an already implemented version of the
General Number Field Sieve called Yet Another Factoring Utility, YAFU
[18], together with a user-friendly GUI under Windows.

I would like to acknowledge my use of S. H. Weintraub book, Factoriza-
tion: Unique and Otherwise [65], but specially the thesis of M. E. Briggs,
An introduction to the General Number Field Sieve [16]. It helped me
understand the GNFS to the extent shown in this thesis, and helped me
follow an organized and smooth structure. In comparing this thesis to their
texts, one will notice similar arguments for some of the results contained
and similar structure in the manner these results are shown.

An introduction to the factorization and the explanation of some ba-
sic algorithms, together with some background in the theory of ideals and
algebraic number theory will be presented before focusing on the notions
needed to understand the General Number Field Sieve. We will proceed
with a study of the state-of-the-art in the implementation of the General
Number Field Sieve together with some record factorizations in the past
years. Some recent attacks on electronic security using the General Num-
ber Field Sieve algorithm will follow. Finally, the thesis will end with the
explanation of my work in CrypTool 2.

Chapter 2

Factorizing Algorithms Using
the Difference of Squares

The General Number Field Sieve algorithm uses the difference of squares
method in order to find non-trivial factors of a number, but it was not the
first algorithm to use this idea. This chapter will focus on earlier algorithms
which also used the difference of squares. However, later in the thesis
(Section 7.2), factoring algorithms based on other ideas (such as Pollard
p− 1, Williams p+ 1 or Lenstra ECM) will be covered.

Starting from the first algorithm using the difference of squares, Fer-
mat’s method, followed by Dixon’s method, where the ideas of factor base
and smoothness are introduced, and finishing with the Quadratic Sieve, this
chapter will describe the main algorithms prior to the General Number Field
Sieve (referred during the thesis as GNFS) using the difference of squares.
In this chapter we will describe many of the notions used in the GNFS
algorithm itself, as we will discuss factor base, smoothness of a number
and a way to find a difference of squares. We will also describe what is
the role of sieving, as well as using algebra to create this difference of squares.

An important theorem of integer numbers, in order to properly intro-
duce factorization, is the fundamental theorem of arithmetic:

Theorem 2.0.1. Every positive integer greater than one, is either a prime
itself or the product of prime numbers, and that product, up to rearrangement
of the factors, is unique.

2.1 Fermat’s Factorizing Algorithm

We will briefly go through this algorithm because of its historical impor-
tance. Pierre de Fermat was one of the first to suggest the idea of difference

3

4 CHAPTER 2. FACTORIZING ALGORITHMS USING THE DOS

of squares for factorizing a number [64]. This idea is based in the fact that
if we find x, y ∈ Z/nZ such that x2 ≡ y2 (mod n), then it is likely we have
found non trivial factors of n, since (x+ y)(x− y) ≡ 0 (mod n). By trivial
factors, we mean that gcd(n, x ± y) ∈ {1, n}. In this case the congruence
will equal zero without finding any factors of n. However, Pierre de Fermat
did not use modular arithmetic, and was looking for a difference of squares
such that x2 − y2 = n

To start getting our minds to number theory, we will prove that ev-
ery odd number can be represented as a difference of squares.

Theorem 2.1.1. Let n be an odd number. Then there exist two numbers
a, b ∈ Z with n - a and n - b such that n = a2 − b2.

Proof. Since n is an odd number it can be represented as n = 2k + 1:

(2.1)

n = 2k + 1

= (k2 + 2k + 1− k2)
= ((k + 1)2 − k2)
= (k + 1)2 − k2

for k ∈ Z. And we have our difference of squares from any odd number.

This proof shows how a difference of squares does not guarantee non-
trivial factors, however, if x − y 6= 1, then (x + y)(x − y) = n gives a
non-trivial factor of n. Fermat’s algorithm, using this idea, goes as follow:
Having an odd composite positive integer n to factor:

1. Let:
k = b√nc
t = 2k + 1
r = k2 − n

2. while (r is not a square)
{
r = r + t (The i-th iteration: r = (k + i)2 − n + 2(k + i) + 1 =

((k + i) + 1)2 − n)
t = t+ 2
}

3. x = (t− 1)/2
y =
√
r

2.2. DIXON’S METHOD AND THE QUADRATIC SIEVE 5

When r is a square, it means that y2 = r = ((k+ i) + 1)2− n = x2− n, and
therefore:

x2 − y2 = (x+ y)(x− y) = n

The problem of this algorithm is its running time. However, this al-
gorithm works well for numbers who have factors relatively close to

√
n.

Fermat’s factorization method will try as many as n+1
2 −

√
n steps to factor

n and hence has a complexity of O(n+1
2 −

√
n) = O(n). This algorithm can

therefore not be used for huge numbers. Nevertheless this idea, developed
in a different manner, is what will be used in the most powerful factoring
algorithm presently.

2.2 Dixon’s Method and the Quadratic Sieve

In this section we will discuss the predecessors of the GNFS. None of
them use algebraic numbers nor different rings from Z/nZ, but in both
algorithms, the ideas of using a polynomial for finding relations, having
a factor base, and a sieving step (in the case of the Quadratic Sieve) are
already implemented.

The Quadratic Sieve (QS) algorithm was developed by Carl Pomerance
[48]. It was popular in the 80s and early 90s, but even now, it is the optimal
algorithm for factoring numbers between 50 and 100 digits. The idea is
very similar to Dixon’s method [27] with which we will begin, but let us
first define the next two concepts:

Definition 2.2.1. A non-empty set F of positive prime integers is called a
factor base. An integer k is called smooth over F if all prime factors of
k are in F .

Dixon’s method relies on Fermat’s factorization method, i.e.: that a con-
gruence of squares will yield a factor of n. However, instead of looking for
a pair of squares such that x2 − y2 = n, it looks for a pair of squares such
that x2 − y2 ≡ 0 (mod n).
However it is only with probability 2/3 that this will yield a non trivial
factor of n. If p and q both divide (x− y) or (x+ y), then gcd(x+ y, n) and
gcd(x−y, n) will yield 1 or n, and this will be when we have no factorization
of n. We can see in the following table, as shown in [16], why this results in
probability 2/3:

6 CHAPTER 2. FACTORIZING ALGORITHMS USING THE DOS

p|x+ y? p|x− y? q|x+ y? q|x− y? gcd(x+ y, n) gcd(x− y, n)

Yes Yes Yes Yes n n

Yes Yes Yes No n p

Yes Yes No Yes p n

Yes No Yes Yes n q

Yes No Yes No n 1

Yes No No Yes p q

No Yes Yes Yes q n

No Yes Yes No q p

No Yes No Yes 1 n

It is only in the first, fifth and ninth case that the factorization will yield a
trivial factor.

What makes it much more efficient than Fermat’s method, is that
Dixon relaxes the condition of ‘finding a square of an integer’ to ‘having
an integer with small prime factors’. To see how this is relaxed, note that
there are 316 squares in the range [0, 99999], while there are 693 numbers
with prime factors less or equal than 7, and 5157 with factors less than 30.
The first step will be choosing the factor base F = {p1, . . . , pS}, which is
usually done by considering a bound B and taking all primes below that
bound. A polynomial f(t) = t2 is also chosen. We then compute for a set
of random integers ri the values of f(ri) and we keep track of the ones that
satisfy the following:

f(ri) ≡ r2i (mod n) is smooth over F .

The ri’s satisfying the above are called relations. What Dixon’s method will
be doing is finding a set U of integers that satisfy the following:

(2.2)
∏
ri ∈U

f(ri) = (pe11 · · · peSS)2,

where ei are non-negative exponents that are not all zero.
Note that the only thing we are interested in is that the whole product
is a square. The exponents ei will not make a difference as we will see
when explaining the linear algebra step. Now, if we name x =

∏
ri∈U ri and

y = pe11 · · · peSS , then we get the following congruence of squares:

x2 =
∏
ri∈U

r2i ≡
∏
ri∈U

f(ri) ≡ y2(mod n).

The tricky step is to find the set U . For this we need to find a number of
relations of at least the size of the factor base S = |F|, and then, from a
basic theorem of algebra, we know we can find such a set. To see this step
more clearly, let us consider it in the following way:

2.2. DIXON’S METHOD AND THE QUADRATIC SIEVE 7

For every f(ri) smooth over the factor base, we will assign it a vector
vi ∈ FS2 where the j-th entry will represent the parity of the power of the
j-th prime for j ∈ S. When L > S such ri’s have been found we create a
matrix M ∈ ZS×L2 . Then, using our knowledge in algebra, we derive that
there exists a linear combination of rows of the matrix M that will yield
a zero vector. Let us call the group of those rows U . The fact of having
that their representative vectors form the zero vector over F2 means that∏
ri∈U f(ri) = (pe11 · · · peSS)2, and hence, this set U satisfies the condition

(2.2).

What is it then that hinders the algorithm? Dixon’s way of finding
ri’s such that f(ri) is smooth over F is by choosing random integers and
doing trial division until finding whether they are smooth or not. This
process requires a lot of time since most of these random numbers will not
be smooth over F and therefore we will have a lot of “wasted” operations.
To be clear, the problem here is not finding the smooth numbers, but rather
how to determine if they are smooth or not.

Pomerance improved this algorithm, naming it the Quadratic Sieve. The
main differences are the polynomial used, a reduction of the factor base and
a sieving procedure to run through the values of ri. This simple changes
produce huge improvements in the running time of the algorithm.
The choice of values ri is different. In Dixon’s method, random values were
chosen, while here it is done in a more effective way:
Let k = b√nc, and now we choose ri to be k+ 1, k+ 2, The polynomial
will be defined as:

f(t) = t2 − n
Using this polynomial and these values for ri will give us the following:

f(k + 1) = b√nc2 + 2b√nc+ 1− n = 2b√nc+ τ

where τ = b√nc2 + 1 − n, which is ≤ 0 in our first iteration. Note that
the generation of values f(t) is the same as what Fermat did in his method
to generate r. This will make the values of f(ri) smaller (compared to
the ones of Dixon) and therefore increase the smoothness chance. At each
iteration the multiple of b√nc will increase, and eventually the values will
be big too. However this change in the polynomial does no bring us only
that advantage but also sieving which we will explain later.
To explain this improvement we will use the same notions of factor base
and smooth number as in Definition 2.2.1, therefore an upper bound, B,
will define our factor base F . We may assume that none of these primes
divide n (it can be checked with trial division up to B). We now give a step
by step explanation of how the new choice of values for ri together with the
new quadratic polynomial makes finding relations much faster.

8 CHAPTER 2. FACTORIZING ALGORITHMS USING THE DOS

First of all, Pomerance reduces the size of the factor base consider-
ably by using the Legendre symbol as follows. Let pj ∈ F :

If pj |f(r) then n ≡ r2 mod pj

Which means that n is a quadratic residue modulo pj , which can be ex-

pressed as
(
n
pj

)
= 1, where

(
n
pj

)
is the Legendre symbol, defined as:

(
a

pj

)
=

1 if a is a quadratic residue modulo pj and a 6≡ 0 (mod pj)
−1 if a is a quadratic non-residue modulo pj
0 if a ≡ 0 (mod pj)

An important thing to have in mind about the Legendre symbol, is that
it is a completely multiplicative function, i.e.;(

ab

pj

)
=

(
a

pj

)(
b

pj

)
.

Therefore we can already make our factor base a bit smaller, by only
choosing the primes with Legendre symbol equal to one. We can make an
observation due to the fact that pj is prime, Z/pjZ is a finite field, and
therefore every quadratic residue can only come from two values, i.e. if n
is a quadratic residue modulo pj ∈ F , it means that n ≡ t2 (mod pj) or
n ≡ (−t)2 (mod pj), and therefore t and −t are the only roots of n modulo
pj .
The naive approach to continue determining which values of f(ri) are
smooth over the factor base would be to take the primes in F , and do trial
division repeatedly until we have reached either 1 or the end of the factor
base. Clearly, this is a very slow procedure, since we will find ourselves
doing unnecessary divisions to many numbers which will not be divisible by
pj ∈ F , i ∈ {1, . . . , S}. Therefore, we want to find a way to do this division
with a higher conviction that the number will indeed be divisible by prime
pj ∈ F .
Here is where the sieving procedure was introduced in the quadratic sieve,
and instead of choosing the values of ri randomly, the following was applied.
We select values ri from a range [−u, u], u ∈ Z/nZ, and place in an array
the values of f(ri) within this range. Then, for every prime pj , we find the
first ri for which r2i ≡ n (mod pj). Once we have found that, then we know
that that particular prime pj only divides the values ri + pjv < u for v ∈ Z,
and we avoid doing trial division for all other ri. This is due to the modular
arithmetic, as when doing calculations modulo pj we can reduce at every
step. Therefore if r2i ≡ n (mod pj) then f(ri + vpj) ≡ f(ri) ≡ r2i − n ≡ 0
(mod pj).
For each respective value of the array, we replace f(ri) by f(ri)/pj . In
order to remove all the powers of pj dividing each value of f(ri), we repeat,

2.2. DIXON’S METHOD AND THE QUADRATIC SIEVE 9

for every pj , the sieve for p2j , p
3
j , . . . , p

e
j , such that in every ri + p`j position

we replace f(ri) by f(ri)/pj , for 1 < ` < e, where e is the first integer such
that pej is too big to fit in the sieving array. Note that for every prime pj
we will run the sieve twice, once for (−ri)2 ≡ n (mod pj) and for (ri)

2 ≡ n
(mod pj).
Once we finished checking for a certain value pj , we pass to our next prime
in the factor base and we do the same check as previously. In this way,
we are sure of dividing by a prime pj ∈ F which can actually divide f(ri).
At the end of running through the primes in the factor base, we choose
the values for which their respective entries in the array are one, i.e.: the
number has been totally factored by the numbers in the factor base and
therefore is F-smooth.
Division is an expensive operation on these large numbers. A way to avoid
these costly operations to numbers which end up not being smooth is by
using the following property of logarithms, log(a/b) = log(a) − log(b), and
instead of placing f(ri) in the array, we place log(f(ri)). Then one goes
through the values of log(f(ri)) such that r2i ≡ n (mod pj), (again, sieving
using ri + pjv < u) and subtracts log(pj). In order to remove all the powers
of each pj , we perform the same sieve as before. At the end of this process we
divide the values of f(ri) by the primes dividing it, only for the values which
its respective entry in the array is 0 = log(1) in order to check that we indeed
reach one. This last check is necessary due to the errors in the rounding of
the logarithms to make sure that we are accepting only smooth values. Fi-
nally, the step of the linear algebra consists in the same steps used by Dixon.

Dixon’s modification of finding a difference of squares was a huge
advance in factoring. Before him, the idea of using modular arithmetic
was already used for factoring algorithms. However Dixon was the first
to develop the idea of using smooth numbers to create these squares, and
as we have seen, smooth numbers are much more likely to be found than
perfect squares. This led Dixon to finding an algorithm where the expected
number of operations required is O(exp(β(log n log logn)1/2)) for some
constant β > 0.
Pomerance, with the small modification of the polynomial, the usage of
the Legendre symbol and the sieving idea improved massively the step of
finding relations, and developed an algorithm with conjectured complexity
of O(exp((1 + o(1))(log n log log n)1/2)).

Now the question is how can we do further improvements from here.
One idea would be to optimize the search of smooth values by augmenting
the size of the factor base. This way it would be easier to find smooth
values, but then the problem is that you need more such values, since the
number of relations needed is directly related to the size of the factor base.

10 CHAPTER 2. FACTORIZING ALGORITHMS USING THE DOS

The GNFS goes in a totally innovating direction, and while it stays with
the same concepts as the quadratic sieve, it uses totally different notions
of mathematics to achieve this, the most important being the use of rings
other than Z or Z/nZ.

Before starting with the GNFS we will have an interlude explaining some
important concepts of algebraic number theory and theory of ideals.

Chapter 3

Interlude

3.1 Introduction

It is quite complicated to see how the use of number fields, or even complex
analysis can help in solving a problem such as integer factorization. As a
matter of fact, the problem of factorization has not been the only “integer”
problem to use the help of number fields. This section will be introduced
with two problems that were also solved using number fields. The intention
is not to present a proof of these problems, but rather name them and
present them to the reader as a motivation, therefore proofs will be omitted.
The first of the two problems is the following:

What are the integer solutions for the following equation?

x3 = y2 + 2

Euler proved that this problem only has a solution with x = 3 and y = 5.
As one may imagine at this point, he did it with the use of number fields.
He expressed the equation as:

y2 + 2 = (y +
√
−2)(y −

√
−2) = x3

He then did the proof by treating the factors as if they where relatively
prime integers. He did not offer a proof that this was the unique prime
factorization, but as we will see later in the paper, the ring Z[

√
−2] is

indeed a unique factorization domain [51].

Another interesting proof using notions of algebraic number theory is
the proof [42] of Fermat’s last theorem:

xl + yl = zl has nonzero solutions x, y, z only if l ≤ 3

So we notice ourselves that algebraic number theory is a tool that can be used
in “simple” problems with “complicated” solutions, and with this we mean a

11

12 CHAPTER 3. INTERLUDE

statement that can be easily understood, even by non mathematicians, but
a solution which requires tools not accessible to all. Factorization could be
seen as one of these problems, since the idea of the problem is quite simple
to understand, but when it comes to big numbers and a limited time frame
to solve the problem, the solution increases in complication. In this paper
we will see how algebraic numbers help in our task to factor big numbers.
Despite the fact of discovering new fields in the quest of factorization, the
notions of factor base and smoothness, slightly modified as we will see later,
remain in the algorithm. We will first introduce the algebraic background,
followed by factorization into irreducibles and finish with ideals in number
fields. These two last sections are of high importance due to the following
property of the field extensions. Take, for instance, Z[

√
2], in this extended

ring, 6 = 3× 2 is no longer the unique factorization, since:

6 = (2 +
√

2)(2−
√

2).

Due to this, new notions of factor base and unique factorization (different
from the previously introduced unique factorization of Theorem 2.0.1) will
have to be introduced.

3.2 Algebraic Number Theory

This section will go through some basic definitions of algebraic number the-
ory, followed by properties of the number fields. It is a very wide subject,
and we will limit the notions explained in this thesis to what will be used
to explain the GNFS. For further study or other applications, we refer the
interested reader to two books of algebraic number theory, [42] or [35]. In
the course of this thesis more notions will be introduced, and this section is
constrained as an introduction of the basics.

Definition 3.2.1. A number α ∈ C is an algebraic number if there exists
a polynomial f ∈ Q[t] such that f(α) = 0. A number β ∈ C is an algebraic
integer if there exists a monic1 polynomial f ∈ Z[t] such that f(β) = 0.
The subfield of C consisting of all algebraic numbers will be denoted by Q,
and the set of all algebraic integers of Q by O.

Definition 3.2.2. An algebraic number field is of the form

K = Q(α1, . . . , αd) ⊆ C with d ∈ N+ where αj ∈ Q for j = 1, . . . , d

Let K = Q(α) be an algebraic number field, then OK is the ring of alge-
braic integers of K.

1Polynomial with leading coefficient equal to one.

3.3. THEORY OF IDEALS 13

The following theorem will help us know more about Q(α):

Theorem 3.2.3. [33, Theorem 1.6, Chapter 5]
Given a monic, irreducible polynomial f(t) ∈ Q[t] of degree d, a root α ∈ C
of f(t), and the associated ring Q(α), the following hold:

1. Q(α) ∼= Q[t]/(f(t)).

2. f(t) divides any polynomial g(t) for which g(α) = 0.

3. The set {1, α, . . . , αd−1} forms a basis for Q(α) as a vector space over
Q.

Note: We will not go through the proof, however, it is important for
later in the thesis to see that there exists a surjective ring homomorphism
ψ : Q[t] → Q(α) defined by ψ(Q) = Q and ψ(t) = α. It is easy to see how
this map it is surjective by noting that every element in Q(α) is represented
by a linear combination of {1, α, . . . , αd−1}.
The following proposition will be used throughout the thesis for proofs or
demonstrations.

Proposition 3.2.4. Given a monic, irreducible polynomial f(t) of degree
d with integer coefficients and a root α ∈ C of f(t), the set of all Z-linear
combinations of the elements {1, α, . . . , αd−1}, denoted Z[α], forms a subring
of the ring of algebraic integers OK of K = Q(α).

To see how equality does not always hold in Z[α] ⊆ OK , let us consider
the following example:
Let Q(

√
5) be the field formed by the irreducible polynomial in Z[t], t2 − 5.

The field is generated by the basis S = {1,
√

5}. Let α = (1 +
√

5)/2,
which is in Q(α) since it is a Q-combination of the elements in S. It is
also an algebraic integer since it is a root of the irreducible polynomial
f(t) = t2 − t− 1, but clearly α 6∈ Z[

√
5], hence in this case we have that:

Z[
√

5] (OQ(α) (Q(
√

5)

3.3 Theory of Ideals

This thesis is aimed at students of mathematics having already knowledge
in the theory of ideals. Nevertheless, I want to use this section to remind the
reader of some notions such as fractional ideals, unique factorization of ide-
als and the study of principal ideal domains (PIDs) in the case of Dedekind
domains.
We will begin by introducing what ideals are, as their role in the under-
standing of making the ring of algebraic integers OK of a number field K
as a unique factorization domain is crucial. However, we present a general
notions of ideals for integral domains:

14 CHAPTER 3. INTERLUDE

Definition 3.3.1. An integral domain is a commutative ring with an
identity (1 6= 0) with no zero-divisors. This is, if ab = 0, then either a or b
equal zero.

Note that every field is an integral domain, and therefore the notions
described for integral domains, will also apply for number fields.

Definition 3.3.2. An ideal p of an integral domain R is a nonempty subset
p of R such that:

• p is a subgroup of R (under the operation of addition),

• if a ∈ p and x ∈ R then xa ∈ p.

Definition 3.3.3. Let r ∈ R. The principal ideal with generator r is:

pr = {r′|r′ = rβ for some β in R}.

Definition 3.3.4. Let D = {ri} be a nonempty set of elements of R. The
ideal generated by D is:

pD =
{∑

riβi|βi ∈ R with only finitely many βi 6= 0
}

Definition 3.3.5. An integral domain R in which all ideals are principal is
called a principal ideal domain or PID.

Definition 3.3.6. If R is an integral domain in which every nonzero,
nonunit can be represented as a finite product of irreducible elements of
R, then R is called a factorization domain. If this factorization is unique
up to units and order of the factors, it is called a Unique Factorization
Domain or UFD.

Definition 3.3.7. An ideal p is prime if it satisfies the following properties:

• If a and b are two elements of R such that their product ab is an
element of p, then a is in p or b is in p.

• p is not equal to the whole ring R.

Definition 3.3.8. A maximal ideal is an ideal so that there are no other
ideals contained between p and R.
This is, if q is an ideal and q ⊇ p, then q = p or q = R.

Now we can introduce the notion of Dedekind Domains, which will be
very important throughout our explanation of algebraic number theory in
the following sections and will also help us to determine how to study unique
factorization with ideals. Beforehand, let us introduce the notion of quotient
field and integrally closed, and the ascending chain condition

3.3. THEORY OF IDEALS 15

Definition 3.3.9. Let R be an integral domain, and E be a field. Then E
is the quotient field of R if:

E =
{a
b
|a, b ∈ R, and b 6= 0

}
with a/b = c/d in E if ad = bc in R.

Note: We are not assuming that division exists, ‘/’ is just a symbol
meaning b[a/b] = a and when defining E we can give it an interpretation.

Definition 3.3.10. An integral domain R satisfies the ascending chain
condition if every sequence of ideals p1 ⊂ p2 ⊂ p3 . . . of R is finite.

To proceed with the definition of integrally closed, we generalize the
notion of algebraic integer. For this, let Z be any subring of Q. Then
an element θ of an algebraic number field K is Z-integral if its minimum
polynomial has all its coefficients in Z. With this notion, we proceed with
the definition of integrally closed:

Definition 3.3.11. Let R be a subring of an algebraic number field K, and
let Z = R∩Q. The integral closure of R in K is S = {θ ∈ K|θ is Z-integral}.
R is integrally closed in K if R = S.

Now we have the necessary tools to define a Dedekind domain.

Definition 3.3.12. A Dedekind domain is an integral domain R satisfy-
ing the following properties:

• R satisfies the ascending chain condition.

• Every nonzero prime ideal of R is maximal.

• R is integrally closed in its quotient field E.

We continue with the definition of fractional ideals.

Definition 3.3.13. Let R be an integral domain with quotient field E. A
nonempty subset p of E is called a fractional ideal of E if it satisfies the
following properties:

• For any α, β ∈ p, α+ β ∈ p.

• For any α ∈ p and r ∈ R, rα ∈ p.

• There exists a nonzero γ ∈ R such that γp ⊆ R.

If p1 and p2 are fractional ideals, then their product p1p2 is the smallest
subset of K which is closed under addition and which contains all products
i1i2 where i1 ∈ p1 and i2 ∈ p2.

16 CHAPTER 3. INTERLUDE

Definition 3.3.14. Let p be a fractional ideal. The inverse of p is p−1 =
{i ∈ R : ip ⊆ E}.

Lemma 3.3.15. Let φ : R→ S be a ring homomorphism. ker(φ) is an ideal
of R.

Proof. Suppose that a ∈ ker(φ) and r ∈ R, then

φ(ra) = φ(r)φ(a) = φ(r)0 = 0.

Therefore ra ∈ ker(φ). Similarly for ar. Now we want to prove that a+ b ∈
ker (φ) if a and b is in the kernel.

φ(a+ b) = φ(a) + φ(b) = 0 + 0 = 0

Hence a+ b is in the kernel and therefore ker(φ) is an ideal of R.

Lemma 3.3.16. If R is a commutative ring with identity 1R, S is a com-
mutative ring with identity 1S, and φ : R → S is a ring homomorphism,
then φ(1R) = 1S.

Proof. Let y ∈ S. Since φ is a surjective ring homomorphism there exists
x ∈ R such that φ(x) = y. Then we have y · φ(1R) = φ(1R) · φ(x) =
φ(1R · x) = φ(x) = y, and hence φ(1R) = 1S .

Now we present two important theorems, for which the proof is accessible
in [65, p.153]. These results determine the conditions for the unique prime
factorization of ideals to happen.

Theorem 3.3.17. Every nonzero ideal in a Dedekind domain D is uniquely
representable as a product of prime ideals. In other words, any ideal I has
a unique expression (up to order of the factors) of the form:

I = pa11 pa22 · · · pa``
where the pi are the distinct prime ideals containing I, and aj ∈ N+ for j =
1, . . . , ` and aj ≥ 1.

Theorem 3.3.18. If D is a Dedekind domain, then D is a unique factor-
ization domain (UFD) if and only if D is a PID

Finally, a very important result accessible in [65, p.155], states the fol-
lowing:

Theorem 3.3.19. Let K be an algebraic number field and let R = OK ,
then R is a Dedekind domain.

Finally we end up with an important notion which will help us build
the GNFS, the norm of an ideal. Later in the thesis we will see how this is
related to the notion of a norm of an element θ ∈ Q(α).

3.3. THEORY OF IDEALS 17

Definition 3.3.20. Given a ring R and an ideal p of R, the norm of p is
defined to be [R : p], the number of cosets of p in R.

We will develop the presented ideas further in the thesis, but for now we
have a basis to start with the GNFS and see how we can use these concepts
to create a difference of squares.

18 CHAPTER 3. INTERLUDE

Chapter 4

The General Number Field
Sieve

The General Number Field Sieve (GNFS) uses the same idea as Fermat’s
method, Dixon’s method or the Quadratic Sieve, namely the difference of
squares to factor a number. The quadratic sieve algorithm arrived to a
point which was very hard to optimize factorization. Some testing tried
optimizing the algorithm by means of augmenting the factor base (to make
the search of smooth numbers easier) or using multiple polynomials for
the sieve [56]. The usage of a quadratic polynomial was believed to be the
best choice to produce the difference of squares desired in order to factor a
number, but as the GNFS shows by using polynomials of higher degree, this
was not the optimal choice for factoring numbers with big factors. However
the most important improvement in the GNFS algorithm is using rings
other than Z or Z/nZ that have the notion of unique prime factorization
and smoothness imposed on them. In this section we will describe how
the GNFS exploits this idea. We will begin by explaining how the GNFS
creates the difference of squares, followed by the updated notions of factor
base and smoothness. The norm of ideals plays a very important role in the
GNFS, so we will dedicate a section to explain this notion and relate it with
our sieving procedure. Finally, the task of determining whether a number
is a perfect square in Z[α] will need the help of quadratic characters, with
which we will finish the section.

Note: Throughout this section, we will refer to the ring of algebraic
integers of Q(α) as Oα.

4.1 Creating a Difference of Squares

The idea in the quadratic sieve was to use a quadratic polynomial, f(t) =
t2−n in order to produce squares modulo n. Another way to think about this

19

20 CHAPTER 4. THE GENERAL NUMBER FIELD SIEVE

polynomial is as a ring homomorphism which sends an element of the ring Z
to a square in the ring Z/nZ, f : Z→ Z/nZ. Note that it is not the unique
polynomial which can be seen as such a map, for instance f(t) = t2 + tn−n
has the same effect. Up to now we have mentioned that the GNFS makes
use of a different ring other that Z/nZ in order to find smooth elements in a
faster manner. After the interlude we might have an idea which ring we will
be using, but before that, let us call the new ring R and assume there exists
a natural homomorphism φ : R→ Z/nZ. Now, let β ∈ R. If we manage to
find y, x ∈ Z/nZ such that φ(β2) = y2 (mod n) and x = φ(β) then we can
produce a difference of squares in the following manner:

x2 ≡ φ(β)2 ≡ φ(β2) ≡ y2 (mod n) (4.1)

In the previous section, we already introduced the extensions Z[α] and
Q(α), where α 6∈ Z,Q. The reason for having introduced these notions of
such rings is due to the following property presented in [40, p.53]:

Theorem 4.1.1. Let f ∈ Z[t] be a monic, irreducible polynomial of degree
d > 1. Let α ∈ C be a root of f(t). Let n ∈ N, m ∈ Z be such that f(m) ≡ 0
(mod n). Then there exists a natural ring homomorphism φ : Z[α]→ Z/nZ
induced by φ(α) ≡ m (mod n) with φ(1) ≡ 1 (mod n).

Proof. To construct this homomorphism we choose f,m and d as above,
and we combine the ordinary reduction map on Z with Z[α] to obtain the
following ring homomorphism:

φ : Z[α] → Z/nZ(
d−1∑
i=0

aiα
i

)
7→

(
d−1∑
i=0

aim
i mod n

)
In this way, we have that φ(1) = φ(1α0) ≡ 1 (mod n).
Now we need to check that φ is well defined. Let g(t), h(t) ∈ Z[t]. Note that
f is a monic, irreducible polynomial, which means that f is the minimal
polynomial of α. In order to see if φ is well defined, we need to show that
if g(α) and h(α) are equal, then φ(h(α)) = φ(g(α)). Start by noting that if
g(α) = h(α) then we have that α is a root of g−h, and as we have mentioned
before, f is the minimal polynomial of α, therefore we have that f |g−h. So
we have that g − h = fl, for l(α) ∈ Z[α]. With this deduced, we have that:

g(m)− h(m) = f(m)l(m)

But remember that we have created our polynomial f in a way that f(m) ≡ 0
mod n, therefore we have that g(m) − h(m) = f(m)l(m) ≡ 0 mod n, and
therefore g(m)−h(m) is divisible by n so that g(m) ≡ h(m) mod n and we
have that φ is well defined.

4.1. CREATING A DIFFERENCE OF SQUARES 21

This is the homomorphism that the GNFS will make use of. To see
how it is possible to create a difference of squares with this, we apply the
homomorphism to the set U of pairs (a, b) chosen such that the following
holds:

∏
(a,b)∈U

(a+ bα) = β2 and
∏

(a,b)∈U

(a+ bm) = y2 (4.2)

To see how we can create a difference of squares with these notions, let
x = φ(β), where β ∈ Z[α] and y ∈ Z as in (4.2). Then:

(4.3)
x2 ≡ φ(β)2 ≡ φ(β2) ≡ φ

 ∏
(a,b)∈U

(a+ bα)

≡

∏
(a,b)∈U

φ(a+ bα) ≡
∏

(a,b)∈U

(a+ bm) ≡ y2 (mod n)

It is important to note that the condition that the first square produced
by U in (4.2) is a perfect square in Z[α] is imposed because the ring
homomorphism is only defined in Z[α]. But in practice, in order to make
the condition less restrictive, we relax the condition for the product to be
a perfect square in Q(α). Then the just defined way to produce a square
cannot be used.

Let us assume that the pairs (a, b), in the first product of equation (4.2)
create a square θ2 ∈ Q(α). To solve this obstruction in an easy manner we
consider the following lemma shown in [40, p.60]:

Lemma 4.1.2.

If
∏

(a,b)∈U

(a+ bα) = θ2 for θ ∈ Q(α) then θ ∈ Oα and f ′(α) · θ ∈ Z[α]

where f ′(t) is the derivative of f(t).

Therefore, if we have a set U similar to the one in (4.2) such that:

∏
(a,b)∈U

(a+ bα) = θ2 and
∏

(a,b)∈U

(a+ bm) = z2

with θ ∈ Oα and z ∈ Z, we let β = f ′(α) · θ ∈ Z[α], y = f ′(m) · z and

22 CHAPTER 4. THE GENERAL NUMBER FIELD SIEVE

x = φ(β) ∈ Z/nZ, then:

(4.4)

x2 ≡ φ(β)2 ≡ φ(β2)

≡ φ

f ′(α))2
∏

(a,b)∈U

(a+ bα)

≡ φ(f ′(α))2

∏
(a,b)∈U

φ(a+ bα)

≡ f ′(m)2
∏

(a,b)∈U

(a+ bm)

≡ y2 (mod n)

and a difference of squares is reached.

We will expand the polynomial choice idea in section 5.1, but for the
moment, we will see how such a polynomial is easy to create in a simple
manner. We begin by choosing the integer m, which can be defined by
m = b d

√
nc, then we write n in base m, i.e.:

n = cdm
d + cd−1m

d−1 + · · ·+ c0

with cd = 1 and we let

f(t) = td + cd−1t
d−1 + · · ·+ c0.

In order to satisfy assumptions made to create the homomorphism, the
polynomial f must be irreducible.
Many studies have been focusing on how to determine whether a polynomial
is indeed irreducible. One well known such method is the Eisenstein criteria:

Theorem 4.1.3. Let f(t) =
∑d

i=0 ait
i. If there exists a prime number p

such that p - an, p|ai for all i = 0, 1, . . . , n − 1 and p2 - a0, then f(t) is
irreducible over Q.

Another widely used result comes from probabilistic Galois theory, which
states that almost all polynomials with integer coefficients are irreducible
[59]. This will be assumed to be the case. In case it is reducible, the al-
gorithm would end here with a factorization of n. To see how this is the
case imagine that the polynomial created is indeed reducible. Then, by us-
ing algorithms to factor polynomials (such as Cantor–Zassenhaus algorithm
[20] or Berlekamp’s algorithm [14]) we reduce f(t) = g(t) · h(t), but note
that, by construction, f(m) = n and therefore g(m) · h(m) = n, and if the
factorization of f is not trivial, neither would be the factorization of n and
we are therefore done. One may ask now, if it is so simple to factor a poly-
nomial, why not just factor f(m) = n and get in this manner the factors

4.2. SMOOTHNESS AND THE ALGEBRAIC FACTOR BASE 23

of n? The obstruction here is to create the polynomial f(m) = n such that
it is reducible. So throughout the thesis we assume that f(t) is irreducible
over Z[t], and therefore a homomorphism can be created.
Now the problem is to find the set U such that (4.2) is satisfied. In order to
accomplish this, we will use the same method used in the quadratic sieve.
We will sieve over integers until we find a big enough set of numbers U such
that a+αb is smooth over a factor base defined in Z[α] and a+mb is smooth
over a factor base defined in Z/nZ. We will only consider pairs (a, b) that do
not share a factor. In the explanation of Dixon’s method and the quadratic
sieve we have already introduced the notions of smoothness and factor base,
but since we are working in an extension of the ring of integers, we need
to redefine these two notions, starting by redefining the notion of unique
factorization.

4.2 Smoothness and the Algebraic Factor Base

At this point, we might ask ourselves why is there so much interest in using
such a complicated algorithm instead of using for instance the quadratic
sieve. The answer is easy: it is faster for larger numbers. But why is
it faster? The step that requires time in both Dixon’s and Pomerance’s
method is sieving in order to find enough relations to produce the difference
of squares. This step is directly related to the bit length of n. In the
quadratic sieve we need to consider whether x2−n is smooth, but if x ≈ √n,
then x2 − n is of magnitude about

√
n. The GNFS works in a different

manner. On the one hand we need to determine whether a+ bm mod n is
smooth. The values of a, b ∈ Z are chosen within a range −u < a, b < u
with u ∈ Z, and the number m is chosen to be of order n1/d. This results
in a number of order n1/d [35], which with a sufficiently large d (say d ≥ 5)
makes it more likely to be smooth than in the quadratic sieve. A good
choice is d = 5, as mentioned in [15]. On the other hand one needs to
determine whether (a+ bα) is smooth over a factor base consisting of prime
ideals, and this section will explain specifically which ideals and how to
determine smoothness. As we will see, the notion of smoothness is directly
related to the homogenized polynomial, and therefore, the size of the values
to check for smoothness is related to the exponent of the polynomial. This
is the reason why we must limit the size of d and not make it too big.

The new notion of smoothness becomes pretty simple. What we want
to do is determine whether a + bα is smooth over an algebraic factor base.
To do this we could use a map that sends elements from Z[α] to elements
of Z. This algebraic factor base and map must have the property that the
smoothness of the mapped element will determine the smoothness of the
element in the algebraic factor base. This is exactly what we will do with

24 CHAPTER 4. THE GENERAL NUMBER FIELD SIEVE

the help of the norm defined in Q(α). Before defining the norm, we will
present the following theorem following the steps presented in [16]:

Theorem 4.2.1. There are exactly d ring injective homomorphisms (em-
beddings) from the field Q(α) into the field C. These embeddings are given
by σi(τ) = τ for all τ ∈ Q and σi(α) = αi, for 1 ≤ i ≤ d, assuming f(x)
splits over C as:

f(t) = (t− α1) · · · (t− αd).

Proof. The canonical mapping σi : Q(α) → Q(αi) which sends α to αi
for 1 ≤ i ≤ d is an isomorphism of fields, which means that each σi is
a distinct isomorphic copy of Q(α) in C, which means that there are at
least d embeddings from Q(α) into C. To show that these are all possible
embeddings, suppose that σ : Q(α)→ C is a injective ring homomorphism,
then σ(Q) = Q. If σ(α) = θ ∈ C and f(t) = td + ad−1t

d−1 + · · ·+ a1t+ a0,
then

(4.5)

f(θ) = θd + ad−1θ
d−1 + · · ·+ a1θ + a0

= φ(α)d + ad−1φ(α)d−1 + · · ·+ a1φ(α) + a0

= φ(αd + · · ·+ a1α+ a0)

= φ(0)

= 0

and therefore θ = αi and σ = σi for some 1 ≤ i ≤ d. Hence, the σi are the
only embeddings.

Now we are ready to define the norm:

Definition 4.2.2. The norm of the element θ ∈ Q(α), denoted by N(θ), is
defined as:

N(θ) = σ1(θ)σ2(θ) · · ·σd(θ)

where σi for i ∈ {1, . . . , d} are the embeddings described in the previous
theorem.
We now redefine what will be considered as algebraic smoothness. We do
not have enough information in order to totally understand this explanation.
However, this section will be used in order to get the necessary notions in
order to comprehend the following definition:

Definition 4.2.3. Consider Q(α), a number field, then an algebraic number
a+ bα ∈ Z[α] is B-smooth if |N(a+ bα)| is B-smooth.

Note that we have defined our new notions of smoothness for elements
of Z[α] while we have the norm defined for elements of Q(α). For this we
need to know more about this norm, which will be studied further. As
we saw, our interest of smoothness is for elements of Z[α], therefore, first
of all, the norm must be defined for elements in Z[α], and it must map

4.2. SMOOTHNESS AND THE ALGEBRAIC FACTOR BASE 25

elements to Z and not to C. Further in this chapter we will see how we can
indeed relate the factorization of the norm of an element β ∈ Z[α] to the
factorization of the element itself into ideals.

Our next step is to show that the norm is a map to elements of Z
and we have to study how the norm reacts when we apply it to elements of
Z[α] instead of Q(α). For this we will make use of the notions presented
in the interlude (Chapter 3), together with other concepts presented
throughout this section. We will begin by an important property, but
beforehand we need to introduce two results and a definition from [42,
p.65-p.67].

Definition 4.2.4. Let Q(α) be an algebraic number field of degree d over
Q, and let σ1, . . . , σd be the embeddings of Q(α) in C. For each element
β ∈ Q(α),

TQ(α)(β) =
d∑
j=1

σj(β)

is called the trace of β.

Lemma 4.2.5. Let Q(α) be an algebraic number field, and let β ∈ Q(α)
with [Q(β) : Q] = `, then we can express mβ,Q(t) (the minimal polynomial
of β over Q) as :

mβ,Q(t) = t` − TQ(α)(β)t`−1 + · · · ±NQ(α)(β).

Lemma 4.2.6. Let θ ∈ Q(α), and let mθ,Q(t) be the minimal polynomial of
θ over Q. Then θ ∈ Oα if and only if mθ,Q(t) ∈ Z[t].

Now we have enough information to start with the proof of the following
proposition:

Proposition 4.2.7. The norm defined previously, Definition 4.2.2, is a
multiplicative function that maps elements of Q(α) to Q ⊂ C. Furthermore,
algebraic integers in Q(α) are mapped to elements of Z.

Proof. For the first part of this proof we use the form of the minimal poly-
nomial of θ over Q as in Lemma 4.2.5:

mθ,Q(t) = t` − TQ(α)(θ)t
`−1 + · · · ±NQ(α)(θ)

where TQ(α) is the trace defined in Definition 4.2.4.
It is clear from the definition of the minimal polynomial that mθ,Q(x) ∈ Q[t],
and therefore it follows that the norm, as well as the trace, of θ from Q(α)
maps elements from Q(α) to Q.
To prove the second statement we use Lemma 4.2.6 that θ ∈ Oα if and only
if mθ,Q(t) ∈ Z[t], which means its coefficients are integers. With this result

26 CHAPTER 4. THE GENERAL NUMBER FIELD SIEVE

and with the definition of the minimal polynomial of θ over Q, we have
that if θ is an algebraic integer, then the norm maps elements from Q(α) to
Z.

Which now leads us to the following important corollary, which is trivial
by the fact that Z[α] ⊆ Oα:

Corollary 4.2.8. The norm function is a multiplicative function that sends
elements of Z[α] to elements of Z.

Now that we see how the norm sends elements from Z[α] to elements of
Z, we use the following definition which will help us present an easy way of
computing the norm.

Definition 4.2.9. Let f ∈ Z[t] be a monic, irreducible polynomial of degree
d > 1. The homogenized polynomial, F (X,Y) ∈ Z[X,Y] is defined as:

F (X,Y) = (Y)df(X/Y)

Let a+ bα be the number we want to calculate the norm of. Then using
the embeddings of Theorem 4.2.1 and Definition 4.2.2 we are able to get the
following result:

Proposition 4.2.10. Given an element β ∈ Z[α] of the form β = a+bα for
coprime integers a and b, polynomial f(t) ∈ Z[t] be a monic, irreducible poly-
nomial of degree d, the norm defined in Definition 4.2.2 can be represented
as N(a+ bα) = (−b)df(−a/b).

Proof.

(4.6)

N(a+ bα) = σ1(a+ bα) · σ2(a+ bα) · · ·σd(a+ bα)

= (a+ bα1) · (a+ bα2) · · · (a+ bαd)

= bd [(a/b+ α1) · · · (a/b+ αd)]

= (−b)d [(−a/b− α1) · · · (−a/b− αd)]
= (−b)df(−a/b)

In some literature, such as [15], the pair (a, b) is represented as a − bα,
which results in N(a, b) = bdf(a/b), the homogenized polynomial of f(t).
Note that having any of these representations, it is now easy to calculate
the norm of a value β ∈ Z[α].
Having already defined smoothness, we know how to find the relations, and
assuming enough have been found, the next step would be applying linear
algebra as we would do in the quadratic sieve with vectors v ∈ Fn2 where
each entry represents the parity of the power of the respective prime dividing
N(a + bα) to reach a zero vector. However, we encounter the problem
that the fact of N(a+ bα) being a square is a necessary condition, but not

4.2. SMOOTHNESS AND THE ALGEBRAIC FACTOR BASE 27

sufficient, as we will see now. In order to solve this obstruction we have to
relate the norm of an element θ ∈ Q(α) with the norm of an ideal but first
we will present a necessary result for squareness in Z that we will try to
make sufficient by the means just mentioned.
First, let

R(pj) = {r ∈ {0, 1, . . . , pj − 1}|f(r) ≡ 0 mod pj}.

We now express the norm in a different manner, using the values in R(pj)
in the following way:

lpj ,r(a+ bα) =

{
ordpj (N(a+ bα)) if a+ br ≡ 0 mod pj

0 otherwise

where ordpj (k) is the exponent of the highest power of pj dividing k. Then,
we clearly have, as stated in [17]

N(a+ bα) = ±
∏
p,r

plp,r(a+bα),

which gives rise to the following proposition.

Proposition 4.2.11. Let U be a set as in (4.2). Then for each prime
number pj and each r ∈ R(pj), we have:∑

(a,b)∈U

lpj ,r(a+ bα) ≡ 0 mod 2.

To be able to prove this result, we need to understand exactly what the
pairs (p, r) are. The new notation of the norm just presented will be more
clear once we start working with ideals.
As previously mentioned, our intention to solve this obstruction is to relate
the norm of an element of Q(α) with the norm of an ideal (as defined in
Chapter 3). The following two propositions taken from [58, p.116-118] will
finally relate the norm of an element of a Dedekind domain to the norm
of the principal ideal generated by that element, and prime ideals to prime
integers respectively:

Proposition 4.2.12. The norm of ideals is a multiplicative function that
maps ideals of Oα to positive integers. Moreover, if θ ∈ Oα then N(〈θ〉) =
|N(θ)|, where 〈θ〉 is the ideal generated by θ.

Proposition 4.2.13. Let D be a Dedekind domain. If p is an ideal of D with
N(p) = p for some prime integer p, then p is a prime ideal of D. Conversely,
if p is a prime ideal of D then N(p) = pu for some prime integer p and a
positive integer u.

28 CHAPTER 4. THE GENERAL NUMBER FIELD SIEVE

If we follow the properties of the Dedekind domain described earlier, we
have that having β ∈ Oα, it follows that the ideal generated by β factors
uniquely as:

〈β〉 = pe11 pe22 · · · pekk
for distinct prime ideals pi of Oα and positive integers ei with 1 ≤ i ≤ k.
It is now that the two previously stated propositions come into play. Fol-
lowing the properties described above, we can get the following:

|N(β)|= N(〈β〉) = N(pe11 · · · pekk) =

N(p1)
e1 · · ·N(pk)

ek = (pu11)e1 · · · (pukk)ek (4.7)

for not necessarily distinct primes pi and positive integers ei and ui with
1 ≤ i ≤ k.
Using this will be essential in order to determine whether an ideal generated
by a+ bα is smooth over the factor base. But now, as mentioned in [16], a
practical problem arises. The problem comes when storing the prime ideals
in a computer, since the representation of them takes a lot of disk space. To
solve this problem the GNFS restricts the prime ideals used in the algebraic
factor base to ones of a special form. We start with the definition of a first
degree prime ideal:

Definition 4.2.14. A first degree prime ideal p of a Dedekind domain D
is a prime ideal of D such that N(p) = p for some prime p.

We want to represent the first degree prime ideals as pairs (p, r). For
that we need to use lemma 3.3.16.
Using the following theorem, we will define what is the representation used
for our first degree prime ideals:

Theorem 4.2.15. The set of pairs (r, p) where p is a prime integer and
r ∈ Z/pZ with f(r) ≡ 0 (mod p) is in bijective correspondence with the set
of all first degree prime ideals of Z[α].

Proof. Let p be a first degree prime ideal of Z[α]. Then, by definition, the
norm of p equals p for some prime p. With this, we have that the order of p
with respect to Z[α] is the same as the order of pZ with respect to Z, which
implies that Z[α]/p ∼= Z/pZ, i.e. they are isomorphic.
Using the fact that there is a surjective homomorphism of rings ψ : Z[α]→
Z[α]/p with kerψ = p, and because of the isomorphism between both fields,
we can compose with the isomorphism to get a map ψ : Z[α]→ Z/pZ, with
the same kernel, which means that the elements in p map to elements which
are divisible by p, and any such integer is the image of an element in p.
Using Lemma 3.3.16, we have that any integer a will be mapped to itself
modulo p.
First we will prove the injective correspondence. Let r = ψ(α) ∈ Z/pZ,

4.2. SMOOTHNESS AND THE ALGEBRAIC FACTOR BASE 29

where ψ is the map generated by the ideal p. We have that f(t) is a monic,
irreducible, polynomial with integer coefficients and α a root, of the form
f(t) = td + ad−1t

d−1 + · · ·+ a0, then by f(α) = 0 we have that ψ(f(α)) = 0
(mod p), and hence:

(4.8)

0 ≡ ψ(f(α))

≡ ψ(αd + ad−1α
d−1 + · · ·+ a1α+ a0)

≡ ψ(α)d + ψ(ad−1α)d−1 + · · ·+ ψ(a1α) + ψ(a0)

≡ rd + ad−1r
d−1 + · · ·+ a1r + a0

≡ f(r) (mod p)

so that r is a root of f(t) (mod p) and the ideal p determines the pair
(r, p). Note that there does not need to be only one root of f modulo p,
and normally there is more than one. However, any such root, with p,
will represent the same first degree prime ideal, and will be good for our
intentions.

Now we need to prove the surjectivity. Let p be a prime integer and
r ∈ Z/pZ with f(r) ≡ 0 (mod p). Then there is a natural ring surjective
homomorphism, analogous to the note alongside Theorem 3.2.3 that maps
polynomials in α to polynomials in r, in particular ψ(α) ≡ r (mod p). By
Theorem 3.3.15 we have that the kernel of a ring homomorphism is an ideal.
Let p = kerψ so that p is an ideal of Z[α]. Since ψ is surjective and kerψ = p
it follows that Z[α]/p ∼= Z/pZ and hence the norm of the ideal is p, and p
is therefore a first degree prime ideal. Hence the pair (r, p) determines a
unique first degree prime ideal p.

The algebraic factor base will consist of these kind of ideals, namely, first
degree prime ideals of Z[α]. Now that we have a clear view of which are the
ideals that we will be using, we have to see how the use of Proposition 4.2.11
will help to determine the squareness in the algebraic factor base. For this
we begin by considering the exponents lp,r in Proposition 4.2.11 in a differ-
ent manner, mainly as group homomorphism lpi : Q(α)∗ → Z, where Q(α)∗

denotes the multiplicative group of non-zero elements in the field Q(α), for
a fixed prime ideal pi.
Following a result derived by Briggs in [16, p.17], we have that these expo-
nent homomorphisms follow the next proposition:

Proposition 4.2.16. For every prime ideal pi of Z[α], there exists a group
homomorphism lpi : Q(α)→ Z that possesses the following properties:

• lpi(β) ≥ 0 for all β ∈ Z[α].

• lpi(β) > 0 if and only if the ideal pi divides the principal ideal 〈β〉.

30 CHAPTER 4. THE GENERAL NUMBER FIELD SIEVE

• lpi(β) = 0 for all but a finite number of prime ideals pi of Z[α], and
|N(β)|= ∏N(pi)

lpi for all prime ideals pi of Z[α] .

As we have said previously, we are interested only in the principal ideals
of Z[α] for the GNFS, furthermore, the elements we are interested in are
〈a+ bα〉. Therefore, the only homomorphisms to be considered are those of
the first degree prime ideals of Z[α].

Theorem 4.2.17. Given an element β ∈ Z[α] of the form β = a + bα for
coprime integers a and b and a prime ideal p of Z[α], then the homomorphism
lp of Proposition 4.2.16 corresponding to p has lp(β) = 0 if p is not a first
degree prime ideal of Z[α]. Furthermore, if p is a first degree prime ideal of
Z[α] corresponding to the pair (r, p) as in Theorem 4.2.15, then:

lp(β) =

{
ordp(N(β)) if a ≡ −br (mod p)

0 otherwise

where ordp(N(β)) denotes the exponent of the prime integer p occurring in
the unique factorization of the integer N(β) into distinct primes.

We will not prove this result, however, the interested reader might refer
to Theorem 3.1.9 of [16]. Little by little we get closer to the final result,
but we can already start seeing how indeed a difference of squares using
a number field and a finite field is indeed possible. Theorem 4.2.16 is of
high importance, since it gives us a simple and fast manner to determine
whether a prime ideal corresponding to (r, p) occurs in the factorization of
〈a + bα〉, mainly if and only if a ≡ −br (mod p). This property is what
gives rise to the fast sieving in the algebraic base.

Now we have seen how finding a smooth element in the number field
sums up to finding an element a+ bα such that its norm factors completely
over the primes in (r, p) corresponding to the first degree prime ideals of
the factor base. For the smoothness bound there is a consensus [42] that it
is best chosen empirically, however, in [40], theoretical reasons are given to
motivate the choice of the bound being of size:

B = exp((2/3)2/3(log n)1/3(log log n)2/3)

The next step is producing a square in Oα, in order to arrive at the difference
of squares in (4.3). In the quadratic sieve algorithm this step sums up to
representing the powers of the primes in the prime factorization by their
parities, in a vector of length S, where S is the length of the factor base.
Once the number of smooth numbers has surpassed the size S, we are able to
follow, using a matrix, to the final step of finding the difference of squares.
In the GNFS, the process is similar. Using the notions of factorization
described earlier, and the homomorphisms related to the exponents of the

4.3. CREATING SQUARES IN Oα 31

prime ideal factorization we reach the desired difference of squares. But
before this, we need to see how to produce squares in Oα since it is not as
obvious as for Z/nZ. The next section will face this starting with the proof
of Proposition 4.2.11.

4.3 Creating Squares in Oα

In the GNFS algorithm, by the form of the difference of squares, we need to
create a square both in Z[α] and Z/nZ. The condition for the latter will be
the same as the one used in the quadratic sieve, i.e., a linear combination of
vectors representing the parity of the exponents of the primes dividing the
respective number. A square will be reached when a linear combination gives
rise to a zero vector v ∈ FS2 . We need to find a similar way to represent
the squareness of numbers in the number field Q(α). In other words, we
need a way to represent squareness of numbers such that a zero vector in
FS2 is a necessary and sufficient condition for squareness in Q(α). We will
start proving the necessary condition of Proposition 4.2.11 by using the new
notions of exponents derived in the previous section, and we will finish by
making this condition sufficient in probabilistic grounds.

Theorem 4.3.1. If U is a set of pairs of integers (a, b) such that the product
of all elements a+ bα ∈ Z[α] is a perfect square θ2 ∈ Q(α), then∑

(a,b)∈U

lpi(a+ bα) ≡ 0 (mod 2)

for all prime ideals pi of Z[α].

Proof. By Proposition 4.2.16, lpi is a homomorphism from Q(α)∗ → Z, and
hence:

∑
(a,b)∈U

lpi(a+ bα) = lpi

 ∏
(a,b)∈U

(a+ bα)

 = lpi(θ
2) = 2lpi(θ) ≡ 0 (mod 2).

However, this condition is not sufficient, since Z[α] (Oα in most of the
cases, and therefore, the prime ideals of Z[α] might differ from the prime
ideals of Oα. For instance, use the following example:
Take Z[

√
3] generated by f(t) = t2 − 3, and consider 2 +

√
3. We have that

N(2 +
√

3) = F (2,−1) = (−1)2((2
−1

2 − 3) = 4 − 3 = 1, which is square in

Z, but if we solve x2 = 2 +
√

3, we get x = ±(
√

6 +
√

2)/2, which is not in
Z[
√

3]. Furthermore, it is not even in Q(
√

3).

In order to make this condition sufficient we will use the notion of

32 CHAPTER 4. THE GENERAL NUMBER FIELD SIEVE

quadratic characters but first let us have a look at the following property
of perfect squares. If i is an integer such that i = `2, then i is also a perfect
square modulo every prime p. This is due to Euler’s Criterion:(

i

p

)
≡ i p−1

2 ≡ `
2(p−1)

2 ≡ `p−1 ≡ 1 (mod p)

where
(
i
p

)
is again the Legendre symbol defined in Section 2.2. With this

property, we have that if i is a perfect square, then it is a perfect square
modulo any set of primes, and even if the converse is not true, probabilisti-
cally speaking, the more primes we check this property for, the more likely
it is that i is a perfect square. To transport this idea to Q(α) we introduce
the following theorem:

Theorem 4.3.2. Let U be a set of (a, b) pairs such that∏
(a,b)∈U

(a+ bα) = θ2

for some θ ∈ Q(α). Given a first degree prime ideal q corresponding to a
pair (s, q) that does not divide 〈a + bα〉 for any pair (a,b) and for which
f ′(s) 6≡ 0 (mod q), it follows that

∏
(a,b)∈U

(
a+ bs

q

)
= 1

Proof. Let ψ : Z[α] → Z/qZ be the homomorphism as defined in Theorem
4.2.15, mapping α to s modulo q, and let q be its kernel, which is the first
degree prime corresponding to the pair s, q. Let χq : Z[α] \ q → {±1},
defined as χq(β) =

(
ψ(β)
q

)
.

As we saw in (4.4), we have that

f ′(α)2 ·
∏

(a,b)∈S

(a+ bα) = γ2

for some γ ∈ Z[α]. By the hypothesis of the theorem that (s, q) (pair
representing p) does not divide (a + bα) for any pair (a, b) nor f ′(s) ≡
0 (mod q), we have that γ 6∈ q (i.e. γ is not divisible by the ideal q).
The proposition follows by applying χq to the equation and by using the
multiplicative property of Legendre symbol:

χq(γ
2) =

(
ψ(γ2)

q

)
=

(
ψ(γ)ψ(γ)

q

)
=

(
ψ(γ)

q

)2

= 1

4.3. CREATING SQUARES IN Oα 33

(4.9)

1 = χq(γ
2)

= χq

f ′(α)2 ·
∏

(a,b)∈U

(a+ bα)

=

ψ
(
f ′(α)2 ·∏(a,b)∈U (a+ bα)

)
q

=

(
ψ(f ′(α)2) ·∏(a,b)∈U ψ(a+ bα)

q

)

=

(
ψ(f ′(α)2)

q

)
·
(∏

(a,b)∈U ψ(a+ bα)

q

)

= χq(f
′(α))2 ·

(∏
(a,b)∈U (a+ bs)

q

)

= 1 ·
∏

(a,b)∈U

(
a+ bs

q

)
.

For further reference in the thesis, the set

Q = {(s, q)| for some pairs (s, q) with a+ bs 6≡ 0 (mod q)

for any pair (a, b) and f ′(s) 6≡ 0 (mod q)} (4.10)

will be referred as the quadratic factor base and the elements χq as quadratic
characters.
This does not make the condition sufficient, but as it is mentioned in [17,
p.70], it is “overwhelmingly likely” that it will be the case and the more
characters are checked, the more likely it will be a square.

Now, for the last step of the matrix reduction, we need to get these
results in a manner that will keep our representation with binary vectors.
For this, the entry will be a zero if the Legendre symbol is 1 and one
otherwise. With this additional information, the relation (a, b) is most
probably square if all entries related to a quadratic character in the array
are 0. As we explained before, the Legendre symbol is a completely
multiplicative function and therefore addition modulo 2 of binary vectors
correctly reflects the Legendre symbol of (a+ bα) · (c+ dα).

Having this in mind, and having proved these properties we can explain
how the dependencies will work in order to create the difference of squares by
finding a set of pairs (a, b) with a+bm and a+bα smooth. As we previously
said, in order to create that, we will use binary vectors. Let k, l,m denote

34 CHAPTER 4. THE GENERAL NUMBER FIELD SIEVE

the sizes of the rational, algebraic and quadratic factor base respectively.
The rational factor base will be created by prime numbers, the algebraic
factor base by the first degree prime ideals represented by the pairs (p, r) as
defined in Theorem 4.2.15. Finally the quadratic factor base will consist of
the quadratic characters as previously defined. Then the size of the binary
vectors would be 1 +k+ l+m. We represent these vectors for the pair (a, b)
where a+ bm and a+ bα are smooth over the rational and algebraic factor
base respectively as:

(4.11)
e(a,b) =

{(
Sign(a+ bm), epi(a, b), epj (a, b), eqh(a, b)

)
|

i ∈ {1, . . . , k}, j ∈ {1, . . . , l}, h ∈ {1, . . . ,m}
}

where Sign(a+ bm) is the sign of a+ bm, i.e. the power of the factor (−1),
epi(a, b) is the parity of the exponents of every prime in the rational base,
epj (a, b) = lpj (a, b) as defined in Theorem 4.2.17 and finally, eqh(a, b) are such

that (−1)eqh (a,b) = χq(a + bα), with q uniquely representing (q, s). Having
this definition of the binary vectors, and having the properties of Theorem
4.3.1 and Theorem 4.3.2, a non-trivial dependence among these vectors will
very likely generate a difference of squares in Z[α] as required in (4.3).

Chapter 5

Details of the General
Number Field Sieve

Until now we have studied the theory behind the GNFS, backing up the
explanations with different fields in mathematics. This chapter will explain
the parts of the algorithm that were skipped previously for sake of simplicity.
The parts we will cover throughout this chapter address a simple way of
solving the problem proposed in each section and an introduction to a more
advanced method to solve the problem. This chapter will be divided in the
four different stages of the GNFS:

• Polynomial Selection

• Sieving

• Matrix Reduction (Linear Algebra)

• Square Root

Out of these four, the sieving step and the square root are well studied
steps in the research of the GNFS. The sieving is the most expensive step
in terms of time and memory for the GNFS, while the computation of the
square root is the last and cheapest part of the algorithm. However, the
square root problem is not obvious since it is not the squares in Q(α) that
are required for x2 ≡ y2 (mod n) but the homomorphic images in Z/nZ of
their square roots.
Regardless of the importance in the complexity of the sieving step, the
ongoing research is more directed to the first part of the algorithm, the
polynomial selection. This is due to the influence of the polynomials
selected on the likelihood of pairs being smooth. We will present a basic
method for this problem, known as the base-m method. Then we will
present a better method. Finally, the matrix reduction step is also well
studied, and research is mostly directed in the study of how to parallelize

35

36 CHAPTER 5. DETAILS OF THE GNFS

this step. As opposed to the polynomial selection and the sieving step, the
matrix reduction is very hard to parallelize.

This chapter will follow the flow of the GNFS, starting with the poly-
nomial selection, continuing with the sieving step followed by the matrix
reduction and finally the square root.

5.1 The Polynomial Selection Problem

In the previous chapter it was mentioned that the great innovation in the
GNFS that outpassed the quadratic sieve in running time was using a ring
other than Z/nZ. The new ring we consider is Z[α], which is created with
the complex root α of an irreducible polynomial. We discussed that the
most time consuming part of the algorithm is the sieving step, i.e. finding
enough relations in order to find a non trivial dependence which will lead to
a difference of squares (4.3). Therefore there are two ways to approach this
situation: first, to find an optimization in the sieving procedure, second,
to spend a certain amount of time in making the values (a + bm) and
(a+ bα) more likely to be smooth, and therefore ease the task of the sieving
procedure.

The determination of whether a value is smooth or not (which we
will consider to be part of the sieving step) is also time consuming and the
running time of the algorithm could be improved here. We will see however,
that while it has been optimized from the first one used in Dixon’s method,
it is not much different than the one of the Quadratic Sieve. It is indeed the
selection of the polynomial (which is directly related to the field in which
we work, and to the norm since N(a, b) = bdf(a/b)) which will define the
running time of the sieving step to a big extent.

We can divide the polynomial selection methods in two groups, the
linear search and the non-linear search methods. The linear methods
consist in finding two polynomials with one linear and the other of higher
degree, while the non-linear looks for two non-linear polynomials. In the
first group we can find methods as the base-m method, Murphy’s improve-
ment of the latter or Kleinjung’s method. As for non-linear methods, the
most studied proposals are from Zimmerman [50] or Williams [68]. In this
thesis we discuss only linear methods.

The first step of the algorithm, in order to find a difference of squares,
starts by looking for a pair of polynomials, f1, f2, which share a common

5.1. THE POLYNOMIAL SELECTION PROBLEM 37

root m modulo n, so that:∏
(a,b)∈U

φ1(a+ bα1) =
∏

(a,b)∈U

a+ bm =
∏

(a,b)∈U

φ2(a+ bα2)

where α1, α2 are the complex roots of polynomials f1 and f2 respectively, and
φ1, φ2 are the homomorphism of f1, f2 respectively as defined in Theorem
4.1.1.
We begin by an obvious method for generating such polynomials, called
the base-m method, which is a simple way of defining polynomials with the
required properties and which we used so far in Chapter 4.

Definition 5.1.1 (The base-m Method [45]). The base-m representation
of n is as follows:

n =
d∑
i=0

aim
i,

with ai ∈ {−bm−12 c, dm−12 e}. We define the polynomials as follows:

f1(t) =

d∑
i=0

ait
i, and f2(t) = t−m.

Note at this point, that the homogenized polynomial of f2(t) is
F2(a, b) = a−mb.

In this way we have a nonlinear polynomial f1(t) and a monic and
linear polynomial f2(t). If the linear polynomial is non-monic, then the size
of the nonlinear polynomial can be greatly reduced as mentioned in [36].
Note that in order to make the nonlinear polynomial non-monic, we need
to keep the property of it having a root at m modulo n, and therefore if it
is of the form f2(t) = b1t− b0, then b0/b1 must be equal to m.

However this is not the best method to find a good polynomial which will
help us find more relations. What the polynomial selection step tries to do
in more advanced methods is find a set of pairs of polynomials (f1(t), f2(t)),
satisfying the conditions of being irreducible, coprime and sharing a root
modulo n, and then choose the most suitable pair. By suitable polynomials
we mean polynomials that have a norm N1(a, b) and N2(a, b) (where N1

and N2 are F1(a, b) and F2(a, b) respectively) simultaneously smooth for
many coprime integer pairs (a, b) in the sieving region. This is what defines
the yield of a polynomial (or also referred as the yield of Ni(a, b)).
There are two factors that influence the yield of Ni, i ∈ {0, 1}, the size
and the root properties. The size refers to the values taken by Ni, and
small values are more likely to be smooth over the factor base. The root
properties describe how the roots of Ni affect the likelyhood of smooth

38 CHAPTER 5. DETAILS OF THE GNFS

values. To study the latter, we check whether the homogeneous form of
a polynomial has many roots modulo small pk, for p prime and k ≥ 1. If
it is the case, then the values taken by Fi(a, b) “behave” as if they where
smaller than they actually are [69].
We will start with a sketch of Montgomery and Murphy’s method [21], but
beforehand, we define what is known as the sieving region.

Definition 5.1.2. The pairs (a, b) searched during the sieving step to satisfy
equation (4.2) are inspected in some region A ⊂ Z2. This region is known
as sieving region.

For the case of line sieving (which we will explain in next section), the
sieving region is of the form [−A,A]× [1, B] ∩ Z2 for some A and B.
The reason why we introduce these terms in this section, is because in the
polynomial selection step, one of the tests made to each pair of polynomials is
the yield of Ni(a, b) for i ∈ {1, 2}x. We now use the sieving region to present
three modifications to a pair of polynomials which keeps them coprime and
sharing a root modulo n if they had these properties previously.

• Re-defining the pair of polynomials as (f ′1, f
′
2) with f ′i(t+ l) = fi(t)

• Adding a Z[t]−multiple of one polynomial to another

• Changing the shape of the sieving region A, while maintaining its area.

Note that a rectangle of a given area only changes s = A/B (where A,B
are the length of its sides) which is named the skewness of a sieving region.
The last modification together with the first one preserve the value of αi
while the second one might change it. Nevertheless, the shared root modulo
n and keeping both polynomials coprime will be preserved.
Montgomery and Murphy’s method can be divided in two main stages. The
first where different pairs of polynomials are being searched, and the second
where, among these pairs, one is selected. This method is a linear method,
and therefore the effort is focused on the first polynomial f1(t). The method
used for the factorization of the first 512-bit RSA modulus [21] starts with
input n, and chooses a degree d and a bound ad,max denoting the maxi-
mum value of the leading coefficient. Begin by setting ad = 0. Then one
formulates the following steps:

(i) Choose the next good ad, i.e., choose an ad with small prime divisors.
If the bound ad,max has been reached, terminate.

(ii) Set m =
[

d

√
n
ad

]
. Start determining the base-m expansion of n, but if

you encounter that ad−2 is too big, return to step (i).

(iii) Next step is determining the complete base-m expansion from which
you obtain f1 and, as in the base-m method, we define f2 = t − m.

5.2. THE SIEVING STEP 39

Using the three methods defined above, optimize in order to get a pair
of polynomials with small coefficients.

(iv) Finally, using a sieve as will be further explained, determine which
f1 + cf2 have good root properties, and output (f1 + cf2, f2). Go to
the first step.

In the last step, c is a polynomial of degree one, which is used to find
polynomials f1(t) + cf2(t) = f1(t) + (j1t − j0)f2(t), where j1 and j0 are
small compared to a2, a1 respectively and where the resulting polynomial
has good root properties modulo many small primes.

In the first three steps, this method is trying to make the coefficients
ai of the non-linear polynomial as small as possible. This makes the size
of Fi smaller, and therefore having a better yield. Then, in step (iv) the
root properties are checked. As explained in [21], the effect of the root
properties is measured using a parameter while for the smoothness of the
values of F1(a, b) and F2(a, b) a probabilistic method is used. Among the
top ranked candidates, a short sieving is performed in order to choose the
best suited pair of polynomials. This short sieving consists in running the
previously describe sieve (for a small number of pairs (a, b) in order to
determine which pair is more interesting for the next step).

Another polynomial selection method to mention, is Kleinjung’s poly-
nomial selection algorithm. He makes an improvement of the method
just explained by changing the two first steps and keeping the last two as
Montgomery and Murphy do. One of the changes in these two steps is
to substitute the creation of a monic polynomial f2 and replace it by a
non-monic one. However, we will not go into detail of this algorithm in this
thesis, and the interested reader may refer to [36].

5.2 The Sieving Step

We will stick with the choice of f2 = x −m with norm N2(a, b) = a + bm
and the sieving region A = [−u, u] × [1, u]. To keep notation as in the
previous chapter, we refer to N1(a, b) as N(a, b), and to N2(a, b) simply
as a + bm. After having chosen a “good” polynomial, the GNFS proceeds
with the sieving step. This is, finding a set U , such that equation (4.2) is
satisfied, by sieving through different values of (a, b) pairs. The construction
of such a set proceeds in two steps. In a first place, the algorithm sieves
through pairs in order to find (a, b) pairs with a + bm and a + bα smooth
over the rational and algebraic factor base respectively. Secondly, after
having stored the parity of the powers of the primes dividing a + bm and
N(a+ bα) and their exponents in binary vectors, it calculates the quadratic

40 CHAPTER 5. DETAILS OF THE GNFS

characters as described in Section 4.4 for every (q, s) in the quadratic base,
and places the binary result in its respective entry of the vector, to increase
the possibility of indeed making it a square in Z[α]. As we saw before, this
does not ensure that we will indeed find a square, but at least it increases
the probabilities considerably. After this, as we will see in the next section,
one uses linear algebra in order to find a dependency among these pairs to
construct squares.
Recall that the pairs (a, b) must be relatively prime. Let us define the set
of “accepted” pairs.

B = {(a, b) : a, b ∈ Z, gcd(a, b) = 1, |a|≤ u, 0 < b ≤ u} . (5.1)

where u is a large positive integer to be chosen depending on n.
Now, it is clear from (4.2) that we have two different cases in our search
for the set U . First we have the rational side, i.e., finding pairs such that∏

(a,b)∈U (a+bm) is a square, and second the algebraic side, which consists in
finding pairs such that

∏
(a,b)∈U (a+ bα) is a square. As presented in [17] we

will proceed by dividing these two cases and explaining two different sieving
procedures. First the rational sieve, followed by the algebraic sieve. To be
able to find squares in Z[α] and Z/nZ simultaneously we just need to keep
the pairs which are in the intersection of these two groups i.e., we need to
find pairs (a, b) which are smooth over both the rational and the algebraic
factor base.
For determining whether the pairs (a, b) are smooth over a factor base,
a simple method consists in keeping the value of b fixed and calculating
smoothness for all values of a ranging from −u ≤ a ≤ u. This could be
done with trial division, by trying to divide all values of a + bm or N(a, b)
by all primes in the factor base and then accepting for the ones terminated
with 1. However, there are methods to solve this problem known as sieving
method where the total number of pairs (a, b) checked is much smaller than
the numbers of pairs checked with trial division. We begin by showing a
procedure to solve the problem in the rational and algebraic side, which is
very similar to the previously explained in the Quadratic Sieve. Then, we
finish the chapter with a sketch of a more complex method, known as the
Lattice Sieving.

5.2.1 The Rational Sieve

An alternative procedure for finding a smooth set (a, b) ∈ Z2 will be ex-
plained in this subsection. We need to find a set T1:

T1 := {(a, b) ∈ B : a+ bm is B-smooth}

In order to find this set, we use the fact that a prime pj divides a+bm if and
only if a+ bm ≡ 0 (mod pj). The steps of the rational sieve go as follows:

5.2. THE SIEVING STEP 41

(i) Create sieve arrays by creating for each b < u an array with 2u posi-
tions consisting of the values a+ bm for −u < a < u.

(ii) For every pj in the factor base:

– sieve through the elements of each array such that a = −bm+kpj
for some integer k and −u < a < u.

– replace the value of a+ bm by (a+ bm)/pj .

– in order to remove all powers of pj , we do a similar procedure to
the one of the QS. We begin the sieve for p2j , p

3
j , . . . , p

e
j , where e

is the first integer with pej too big for the sieving array. And we
replace again (a+ bm) by (a+ bm)/pj .

(iii) Every location containing 1 or −1 is smooth over the factor base and
can be added to T1.

The reason of doing this method instead of trial division with the primes of
the factor base is to avoid useless division where the prime does not divide
a+bm. However, the method just described also has a problem. Many pairs,
after all divisions of the respective diving primes, might end with a value
greater than one, which means that the value a+bm is divisible by a number
higher than the smoothness bound, and we have again produced unnecessary
divisions. Then the same as in the QS method is used, using the fact that
the calculation of the logarithm base a prime pj is a computationally cheaper
calculation compared to division:

(i) Create sieve arrays by creating for each 0 < b < u an array with 2u
positions consisting of the values log(a+ bm) for −u < a < u.

(ii) For every pj in the factor base:

– sieve through the elements of each array such that a = −bm+kpj
for some integer k and −u < a < u.

– replace the value of log(a+ bm) by log(a+ bm)− log(pj).

– in order to remove all powers of pj dividing (a + bm) we do the
same procedure as in the previously presented sieve.

(iii) Every location containing 0 is most likely to be smooth over the factor
base. However, before adding it to T1, for every location containing
0 we divide a + bm by every pj dividing it, to make sure it is indeed
B-smooth. It can then be added to T1. At this point we can also
begin by creating the binary vectors representing the parity of each
prime of the rational factor base dividing a + bm. These vectors will
be completed in the rational sieve step.

This will avoid unnecessary divisions. A similar check will be implemented
for the algebraic sieve.

42 CHAPTER 5. DETAILS OF THE GNFS

5.2.2 The Algebraic Sieve

Finding a square in Z[α] will be slightly different than the previously defined
procedure, but the idea is to follow as much as possible the strategy of the
rational sieve. As we have seen in the section of algebraic number theory,
we define β ∈ Z[α] to be B-smooth if its norm N(β) is B-smooth. One way
to calculate the norm is by calculating the homogeneous polynomial of f(x),
F (a, b) = (−b)df(−a/b). In other notation:

N(a+ bα) = ad − cd−1ad−1b+ · · ·+ (−1)dc0b
d

where ci is the i-th coefficient of f1. Following the steps of the rational sieve,
we must find a set

T2 := {(a, b) ∈ B : a+ bα is B-smooth}

As it has been shown in the section of Algebraic Number Theory in Chapter
3, the first degree prime ideals, p, of Oα are in one-to-one correspondence
with pairs (p, r), where p are prime numbers satisfying N(p) = p for some
first degree prime ideal and r is a root of f modulo p. Also, it has been
proven that a + bα is divisible by p if and only if N(a + bα) ≡ 0 (mod p),
which is similar to saying that a ≡ −br (mod p) for r as defined above. This
later property is what will be used for our algebraic sieve.
Note: If b ≡ 0 mod p then there does not exist an a with (a, b) ∈ B and
N(a + bα) ≡ 0 mod p, due to the condition of a and b being coprime. If
b ≡ 0 mod p, then a ≡ −r0 mod p and therefore a and b share a factor,
contradicting our condition of gcd(a, b) = 1.
Now, as for the previous algorithm, we do the following:

(i) Create sieve arrays by creating for each 0 < b < u an array with 2u
positions consisting of the values log(N(a+ bα)) for −u < a < u.

(ii) For every p in the factor base:

– sieve through the elements of each array such that a = −br + kp
for some integer k and −u < a < u.

– replace the value of log(N(a+ bα)) by log(N(a+ bα))− log(p).

– we again repeat this procedure for the powers of p as in the ra-
tional sieve.

(iii) Every location containing 0 is most likely to be smooth over the factor
base. However, before adding it to T2, for every location containing
0, we perform division to N(a + bα) for every p dividing it, to make
sure it is indeed B-smooth. It can then be added to T2. In this step
we continue the construction of our binary vectors with the parity of
the prime (p, r) dividing N(a+ bα).

5.2. THE SIEVING STEP 43

Our final set of accepted pairs will be the intersection T1 ∩ T2.
In order to handle the fact that the square does not necessarily fall in Z[α],

we just need to calculate the Legendre symbol of
(
a+bs
q

)
for pairs (q, s)

in the quadratic factor base and (a, b) ∈ T1 ∩ T2 as defined in Section 4.3.
Then the binary vectors will finally be constructed by adding the binary
value related to the output of the Legendre symbol, and in this manner, we
have finished constructing the binary vectors used for the linear algebra step.
Before proceeding with the linear algebra step, we will give an overview of
the Lattice sieving.

5.2.3 Lattice Sieving

This method is the one used by the implemented version of the GNFS
considered in this thesis, YAFU [18]. It was published by John Pollard in
1991 [47]. We will give an overview of the method, but we will not go into
detail due to the need to understand lattice theory, which we will not cover
in this thesis.
The goal of this stage of the GNFS is to find enough pairs (a, b) such that
a+ bm and a+ bα are smooth.

Pollard’s algorithm is divided in the following steps:

(i) Divide the rational factor base F into two parts:

S : the small primes: p ≤ B0

M : the medium primes: B0 < p ≤ B1

where the ratio between both bounds should be between 0.1 and 0.5
as specified in [47]. We also use a set of large primes:

L : the large primes: B1 < p ≤ B2

where B2 is much larger.

(ii) Choose a region A from which the pairs (a, b) will be chosen (known
as the sieving region).

(iii) Fix a prime q from M , and sieve only the (a, b) pairs from A with:

a+ bm ≡ 0 (mod q)

For the set of the pairs

T = {(a, b)|a+ br ≡ 0 mod p, with (r, p) a unique ideal, and (a, b) ∈ A}

44 CHAPTER 5. DETAILS OF THE GNFS

the sieve goes through two stages. In a first place to determine whether
a + bm is smooth, in this case it only checks for primes p < q. Secondly
to know whether N(a, b) is smooth checking with all primes of S and M .
With this method, the smoothness check step accepts a value of a+ bm and
N(a, b) which factors completely in the sets S and M and at most one factor
in L.
The idea of this method is to create a lattice with the pairs (a, b) and sieve
through the points of this lattice depending on certain properties. To get
more understanding of how the lattice is created, and how we are sieving
through these elements, knowledge of lattice theory is required, and the
interested reader may refer to [19]. In [47] it is claimed that the number of
integers sieved by this method is much less than the linear sieve by a factor:

λ =
∑
q∈M

1

q
≈ log(1/k)

log(B1)

and still get most of the solutions found by the other method.

5.3 The Linear Algebra Step (Matrix Reduction)

Once enough relations have been found, and having the related binary vec-
tors associated with them, a non-trivial dependency must be found, i.e.
solving the system formed by Ax = 0, where A is the matrix formed with
the binary vectors. To create this matrix, we create binary vectors in the
way explained in Section 4.3.
A näıve way to do this, would be Gaussian elimination, but this would mean
a time complexity of O(u2s), where u is the number of relations, and s is
the number of non-zero entries. As it turns out there are more advanced
algorithms which are used in the GNFS such as the block Wiedemann or
block Lanzcos algorithms. We will use this section to describe Gaussian
elimination, followed by a brief explanation of the Lanzcos algorithm. In
theory, a matrix with one relation more than the size of the binary vector
would suffice to find a dependency among the vectors, but in practice one
is interested in creating a matrix which will contain a high number of de-
pendencies, not “just above” the length of the binary vectors. This is due,
partly, to the ending of a trivial relation of the two squares, resulting in a
trivial factor of n (either 1 or n itself).

5.3.1 Gaussian Elimination

In this section we explain the Gaussian elimination for matrices. In our
case, these matrices will contain only elements in Z/2Z, and therefore the
algorithm will be much simpler, as we will see. We start however with the
general case.

5.3. THE LINEAR ALGEBRA STEP (MATRIX REDUCTION) 45

As input, we have a system of linear equations of the form Ax = w,
with A ∈ Zc×`, x ∈ Z`, w ∈ Zc. The algorithm goes as follows:

• Create a matrix of the form [A|w].

• Use the following row operations to reach row echelon form:

Type 1: Exchange two rows.

Type 2: Multiply a row by a scalar not equal to zero.

Type 3: Add to one row a scalar multiple of another.

• Once reached row echelon form we are ready to determine whether
there are no solutions, one, or infinitely many, and therefore solve the
linear system, in case it is feasible. This is done by reaching reduced
row echelon form, and then solving for each element.

Now follows an example of a matrix in row echelon form: 2 4 1 5
0 3 −1 2
0 0 2 4

To solve this, we start by reaching reduced row echelon form: 1 0 0 −7/6

0 1 0 4/3
0 0 1 2

which then corresponds to:

x1 = −7/6
x2 = 4/3
x3 = 2

and the system of linear equations is solved.
For the case of the GNFS it is slightly different. Our interest in the linear
algebra step is to determine which linear combinations of vectors reach a zero
vector, where all entries in the matrix are in Z/2Z. In this case, we have as
input A ∈ Z`×c2 and we want to solve the following system of equations:

Ax = 0.

We refer to the columns of A as ai for i ∈ {1, . . . , c}. To reach the upper
triangular matrix we perform addition among the rows1 until a matrix in

1Note that in the case of F2 the only row operation is addition among two rows, since
multiplication by a scalar 6≡ 1 (mod 2) will result in a zero vector

46 CHAPTER 5. DETAILS OF THE GNFS

row echelon form form is reached:

a1,1 a1,2 a1,3 · · · a1,c
0 a2,2 a2,3 · · · a2,c

0 0
. . . · · · ...

0 0 · · · ac−1,c−1 ac−1,c
0 0 · · · 0 ac,c
0 0 · · · 0 0
...
0 0 · · · 0 0

If we keep track of the row operations done to produce the zero vectors at
the bottom of the matrix, then we know which vectors can be combined in
order to produce a zero vector. In order to keep track of the row operations,
we can use a binary vector of size ` and we introduce a 1 for every row
appearing in the addition to create a zero vector. Since the entries in
the rows of A represent the exponents of the primes in the factor base
dividing different (a+bm) and (a+bα), the addition among rows represents
multiplication among different (a + bm), (a + bα). Hence the resulting
vectors which are zero modulo two, represent that the exponents have even
power, and therefore we have probably reached our difference of squares.
However, the Gaussian Elimination is very expensive computationally, and
for the implementations of the GNFS, alternatives as block Wiedemann’s
[66] or block Lanczos [44] algorithms are used.

Before starting defining the Lanczos algorithm, it is important to
note that in the case of the GNFS, the matrices that have to be re-
duced are sparse. For example, in [21] which factored a 512-bit RSA
modulus, the matrix M had ` ≈ 7 × 106 and on average 62 non-zero
coefficients per row, and for the RSA-768 factorization in 2009 [37], the
matrix M had ` ≈ 2 × 108 and on average 144 non-zero coefficients per
row. This guides us to work with algorithms which apply to sparse matrices.

5.3.2 Standard Lanczos Algorithm

For the explanation of the standard Lanczos algorithm, we will assume
throughout the section that the field we are working in is Fp. There ex-
ists also a Lanczos algorithm to solve linear systems in the ring of integers,
but for our purpose it is more interesting to concentrate in finite fields. It is
also important to mention that the Lanczos algorithm is defined for symmet-
ric matrices. In order to generalize this condition, the system of equations
will be solved for M = ATA. However, the matrix M would actually never
be computed.

5.3. THE LINEAR ALGEBRA STEP (MATRIX REDUCTION) 47

For the simplicity of the explanation of the algorithm, we will assume that
we are trying to solve the following equation:

Ax = w,

with A ∈ F`×`p , w ∈ F`p. And therefore, this will be our input. For clarifi-
cation, we start by showing the steps of the algorithm and then we follow
with a proper explanation:

(i) Define a sequence of vectors vi which satisfy the following:

vi is A-orthogonal to vj whenever i 6= j, (5.2)

Vi = 〈v0, . . . , vi〉. (5.3)

where 〈·〉 means the span of vectors.

(ii) Proceed by induction to calculate vi+1 as follows:

vi+1 = Avi −
∑
j≤i

vTj A
2vi

vjAvj
vj .

(iii) We end defining x in the following way:

x =
∑
i<k

vTi w

viAvi
vi

where k is the index when vk = 0.

Now we proceed to the explanation of these steps. Let the inner prod-
uct defined from A be vTi Avj for i 6= j. We say that two vectors are A-
orthogonal if their inner product defined from A is zero, and we call a
vector A-isotropic if it is A-orthogonal to itself.
The Lanczos algorithm focuses on the sequence of Krylov subspaces, which
are defined as:

Vi = 〈v0, Av0, A2v0, . . . , A
iv0〉,

where v0 = w. This gives us that Vi ⊆ F`p
It is clear that the sequence of subspaces is strictly increasing, until a
certain point where it remains stationary, i.e.: V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vs =
Vs+1 = Vs+2 = · · ·.

The first step is to define

Vi = 〈v0, Av0, A2v0, . . . , A
iv0〉,

and then define a sequence of vectors vs for 0 ≤ s ≤ i which satisfy (5.2)
and (5.3).

48 CHAPTER 5. DETAILS OF THE GNFS

Theorem 5.3.1. The vectors created with the following recurrence:

vs+1 = Avs −
∑
j≤s

vTj A
2vs

vTj Avj
vj (5.4)

with v0 = w and 0 ≤ s < i, form an orthogonal, linearly independent basis
that span Vi.

Proof. We will begin by showing that these vectors are A-orthogonal. First,
we begin showing the base case, namely that v0 and v1 are orthogonal:

We have v0 and v1 = Av0 − vT0 A
2v0

vT0 AV0
v0. Then:

vT0 AAv0 −
vT0 A

2v0

vT0 AV0
vT0 Av0 = vT0 AAv0 − vT0 A

2v0 = 0 (5.5)

therefore, the base case is satisfied. Now we proceed to show by induction
that vi+1 is orthogonal to all vj ,j ≤ i, and therefore our induction hypothesis
is that it holds for all such vj . Let vi+1 as in (5.4). Then:

(5.6)

vTj Avi+1 = vTj A

Avi −∑
s≤i

vTs A
2vi

vTs Avs
vs

= vTj AAvi −

∑
s≤i

vTs A
2vi

vTs Avs
vTj Avs

= vTj AAvi −
vTj A

2vi

vTj Avj
vTj Avj

= 0

and we have that the vectors are orthogonal.

Our next step is to show that a set of such vectors is linearly inde-
pendent. We assume that vThAvj = 0 for h 6= j and vTj Avj 6= 0. Let
a0v0+ · · ·+aivi = 0 with as ∈ Z for 0 ≤ s ≤ i. Then A(a0v0+ · · ·+aivi) = 0
and hence, for any j with 0 ≤ j ≤ i we have:

0 = vTj · 0 = vTj A(a0v0 + · · ·+ aivi) = vTj (a0Av0 + · · ·+ aiAvi) =

a0(v
T
j Av0) + · · ·+ ai(v

T
j Avi) = aj(v

T
j Avj). (5.7)

Since vTj Avj 6= 0, we have that aj = 0, and since the value of j is arbitrary,
it holds for all j. Hence the set created by vectors formed in such a manner
is linearly independent.

5.3. THE LINEAR ALGEBRA STEP (MATRIX REDUCTION) 49

Now we need to show that (5.3) is satisfied. For i = 0 it is easy to see. We
assume it is true for i, i.e.:

Vi = 〈v0, . . . , vi〉.

Note that:

Vi+1 = 〈v0〉+AVi = 〈v0〉+AVi−1 + 〈Avi〉 = Vi + 〈Avi〉.

It is easy to see that indeed vi+1 ∈ Vi+1 by condition (5.4), and therefore
〈v0, . . . , vi+1〉 ⊆ Vi+1. But since the dimension of Vi+1 and the dimension of
〈v0, . . . , vi+1〉 are equal (due to the independence of the vectors vj for j ∈
{0, . . . , i+ 1}), we have that Vi+1 = 〈v0, . . . , vi+1〉. Note that we mentioned
before that at some point the dimension of Vi does not increase, therefore
we have that

Vi + 〈Avi〉 = Vi

which means that Avi is a linear combination of vj for j ≤ i. Therefore
Avi =

∑
j≤i ajvj for not all aj = 0. Then, using the definition of vi+1:

vi+1 = Avi −
∑
j≤i

vTj A
2vi

vTj Avj
vj =

∑
j≤i

ajvj −
∑
j≤i

vTj A(
∑

j≤i ajvj)

vTj Avj
vj =

=
∑
j≤i

ajvj −
∑
j≤i

aj
vTj Avj

vTj Avj
vj =

∑
j≤i

ajvj −
∑
j≤i

ajvj = 0 (5.8)

and therefore when the dimension of Vi+1 does not increase, neither does
the one of 〈v0, . . . , vi, vi+1〉.

The way to calculate vs for 1 ≤ s ≤ i can be simplified as follows:

vs+1 = Avs − cs+1,svs − cc+1,s−1vs−1,

where,

cs+1,s =
vTs A

2vs
vTs Avs

, cs+1,s−1 =
vTs−1A

2vs

vTs−1Avs−1
,

due to the orthogonality of the basis. Furthermore, we have that Avs−1 ∈
vs + Vs−1, which implies vTs−1A

2vs = vTs Avs, and therefore we can do the
following further simplification:

cs+1,s−1 =
vTs Avs

vTs−1Avs−1
.

So it is clear that the values of vs can be easily computed, but there is one
more condition which is necessary in order to be able to compute the values
of cs+1,s and cs+1,s−1, namely that

∀j ≤ s, vTj Avj 6= 0. (5.9)

50 CHAPTER 5. DETAILS OF THE GNFS

For this last condition, we will assume it is true until some index k, so that
vk = 0, which means Vk = Vk−1, and therefore the space will not increase
with new vectors.
The final step is to define x as:

(5.10)x =
∑
i<k

vTi w

vTi Avi
vi

The following theorem proves that constructing x in such a way gives indeed
a solution to Ax = w.

Theorem 5.3.2. Let 〈v0, v1, . . . , vk−1〉 be a basis of the Krylov subspace
generated by v0 = w

Vk−1 = 〈v0, Av0, . . . , Ak−1v0〉
with vhAvj = 0 for h 6= j and vhAvh 6= 0 for h ∈ {0, . . . , k − 1}. Then the
vector defined as in (5.10) satisfies Ax = w.

Proof. We begin by showing that vT (Ax − w) = 0 for all v ∈ Vk−1. Notice
that:

vTj Ax = vTj A

(∑
s<k

vTs w

vTs Avs
vs

)
=

vT0 w

vT0 Av0
vTj Av0 + · · ·+

vTj w

vTj Avj
vTj Avj+

+ · · ·+ vTk−1w

vTk−1Avk−1
vTj Avk−1 = vTj w (5.11)

for all vj ∈ {v0, . . . , vk−1}. This gives us that

vTj Ax− vTj w = vTj (Ax− w) = 0

for all vj ∈ {v0, . . . , vk−1}. Since {v0, . . . , vk−1} is a basis of Vk−1, we have
that

vTAx− vTw = vT (Ax− w) = 0

for all v ∈ Vk−1.
Now note that Avh ∈ Vk−1 for 0 ≤ h < k−1. By our previous step, we then
have that (Avh)T (Ax − w) = 0, and therefore vTh (A(Ax − w)) = 0 because
A is self-adjoint2.
Since we have that the Krylov subspace is generated by v0 = w, we have
that w ∈ Vk−1. By construction of x we have also that Ax ∈ Vk = Vk−1
and therefore Ax − w ∈ Vk−1, which means it is a linear combination of
{v0, . . . , vk−1}, i.e. Ax− w = a0v0 + a1v1 + · · ·+ ak−1vk−1, therefore:

0 = vTh (A(Ax− w)) = vTh (A(a0v0 + · · ·+ ak−1vk−1))

= a0(v
T
hAv0) + · · ·+ ah(vThAvh) + · · ·+ ak−1(v

T
hAvk−1)

= ah(vThAvh) (5.12)

2It is equal to its conjugate transpose (in this case, symmetric).

5.3. THE LINEAR ALGEBRA STEP (MATRIX REDUCTION) 51

for a0, . . . , ak−1 ∈ Z, and therefore ah = 0. Note that h was chosen arbitrar-
ily, therefore a0, . . . , ak−1 are all equal to zero and hence Ax− w = 0.

Therefore we have a method which will find a solution for Ax = w.
However, there is the possibility that we have vTk Avk = 0 without vk = 0,
i.e. vk is an A-isotropic vector. In this case, the algorithm fails.

Let d be the number of nonzero elements per row in matrix A. Then the
cost per iteration of Lanczos algorithm is O(d`) to multiply by A and O(`)
for the other vector arithmetic. The total running time is O(d`2) +O(`2).

5.3.3 Lanczos in GF(2)

However, when applying Lanczos over the field Z/2Z, there is an impor-
tant issue that must be addressed. The problem is that half of vectors are
A−isotropic, i.e.: vTAv = 0. This forces condition (5.9) to be replaced. To
solve this problem, Montgomery uses sequences of orthogonal subspaces. So
instead of using the A-orthogonality of vectors, he divides the space (Z/2Z)n

into a sequence of subspaces {Wi}m−1i=0 which are pairwise orthogonal. The
condition (5.9) is replaced by the condition

6∃ non zero z ∈ Wi such that zTAzi = 0 ∀zi ∈ Wi.

He also uses the binary nature of the matrix in its favour, since by having a
matrix consisting of 0s and 1s, a numerical computation can be converted
to logical operations, which means that the computer can operate on N
vectors at a time (N being the word size of the computer in question). On a
high level, the algorithm starts by selecting an `×N matrix Y over GF(2),
computes AY and attempts to find an `×N matrix X s.t AX = AY , which
makes us end up with A(X − Y) = 0. Therefore the columns of (X − Y)
will be random vectors of the null space of A. These vectors of (X − Y)
will also be vectors in the null space of B, where A = BTB.

Independently of what method is chosen to do the matrix reduction,
at the end we will end up with a vector x that will determine which
combination of vectors will yield a zero vector. This will give away the
relations that have to be selected in order to find a product which will yield
a square. As previously shown in the thesis, the zero vector in the positions
of the quadratic characters will augment the probability of yielding a
square. Once we have this, we can follow to calculate the square root.

52 CHAPTER 5. DETAILS OF THE GNFS

5.4 Computing the Square Root

In this section, we will describe the last part of the algorithm, namely,
computing a square root. It is now considered to be an ”easy” step of the
GNFS for computing complexity. Moreover this problem has been solved
since the beginning of research for the GNFS. Even if the running time has
been optimized, the most used algorithms date back to 1993, one included
in ‘The development of the Number Field Sieve’ [40] by Couveignes [24],
and another one by Montgomery [43] presented in [63]. In our Thesis
we will not go through any of these algorithms due to its complexity.
However, the interested reader might refer to the algorithm presented by
Peter L. Montgomery in [43] which was used for the latest RSA-challenge
factorization record of a 768-bit RSA modulus [37]. Some alternatives to
this method can be found in [61].
This step of the algorithm, after having found a set U such that (4.2) holds,
proceeds to compute the respective square roots. For the rational case,
it is a simple task, since we know the prime factorization of the product.
However for the algebraic side it is more complicated. Even if the prime
ideal factorization of

∏
(a,b)∈U is known, this is not useful to find its square

root. What is known as the brute force method, consists in computing a
root of the polynomial t2 − β2 in Q(α) [57]. However, methods such as the
previously mentioned by Montgomery try to reduce the size of β2 by means
of complex approximations which results in better practical performance.

Once the square root is calculated, the algorithm outputs the factor
of the number inputed. What could go wrong now is that γ does not yield a
square or that the difference of squares yields a trivial factors (n or 1). This
is the reason why number of relations we seek is higher than the number
of columns of the matrix, in order to have more than one solution for the
linear equation and therefore have the choice with other dependencies of
vectors in the matrix to yield the zero vector.

Chapter 6

The GNFS Algorithm and
the Security of
Cryptographic Keys

This chapter consists of an analysis of the state of the art of factorization
together with the best implementations of the GNFS. A discussion of two
recent vulnerabilities in RSA encryption (FREAK) and Diffie Helmann
key exchange (LogJam) will follow. Both of the attacks were made using
the GNFS, for factorization and discrete logarithms respectively. This
chapter will go through both attacks and explaining briefly the Number
Field Sieve for Discrete Logarithms. We will continue with an explanation
of Telsacrypt ransomware showing that thanks to a flaw in its imple-
mentation and today’s power of factorization, it was possible to recover
compromised files without paying the ransom. The chapter will finish
by presenting what key size is considered to be secure for RSA cryptosystem.

6.1 State of the Art of the GNFS

The GNFS is the most efficient algorithm known for factoring integers of
more than 100 decimal digits, with heuristic complexity [57] of

exp

((
3

√
64

9
+O(1)

)
(log(n))1/3(log(log(n)))2/3

)
= Ln

[
1/3,

3

√
64

9

]
.

Since the algorithm was developed by Pollard in 1993 the idea of “hard
to factor numbers” has totally changed. In 1977, in the original memo of
Rivest, Shamir and Adleman presenting RSA [52], the following was said:
“We estimate that factoring a number of that size [125-digit] could require
40 quadrillion years”

53

54 CHAPTER 6. SECURITY OF CRYPTOGRAPHIC KEYS

In this paper it was mentioned that choosing a composite number which
factors into two prime numbers of length 40 (decimal digits) seemed to be
satisfactory at present. This means using a number n of 80 digits, resulting
in bit size slightly more than 256-bit, which nowadays is an accessible to
factor number to anyone willing to spend a few minutes.

The estimates of Rivest, Shamir and Adleman were made at a time
where the best factoring algorithm was Pollard’s method (explained in
Section 7). Later on, with the Quadratic Sieve and the Number Field Sieve
development, these estimates were rising, as Carl Pomerance said in [49]:
“Twenty years ago, at the dawn of the continued factoring algorithm of
Brillhart and Morrison, factoring hard 50-digit numbers seemed barely
possible, while 100-digit numbers could not even be dreamed about. Ten
years ago, when my quadratic sieve factoring algorithm first began to enjoy
some success, we indeed did dream of 100-digit numbers, and within a few
more years, they were falling regularly. Today, with the number field sieve,
our dreams have moved on the hard 150-digit numbers”.

This was in 1994, and after the factorization in 2009 of a 768-bit
number, the public record made by a research group [37] is set to 232 digits
and it would not be unreasonable to believe that efforts made by nation
states are ahead of academic efforts.
It is to be expected that the computer power will keep developing in the
future which means that the advances in factorization will as well follow.
As we can see in Figure 6.1, the factorization is always advancing hand in
hand with the computer resources available1.

It is important to mention that in this section we will only analyse the
records and factorizations of RSA numbers, which are of the form n = p · q
with p, q random primes of similar size. Otherwise, the Special Number
Field Sieve algorithm could be used to factor numbers up to 1199-bits of
the form 2n − 1 [38].

The RSA laboratories put up the so known “RSA factoring challenge”
in order to encourage research groups to factor RSA-numbers2. We will
mention some of the numbers present in the RSA factoring challenge [9].
In 1999 Cavallar, Dodson, Lenstra, Lioen, Montgomery, Murphy, te Riele,
Aardal, Gilchrist, Guillerm, Leyland, Marchand, Morain, Muffett, Putnam,
Putnam and Zimmermann factored the first 512-bit number [21] in seven
months and hundreds of computers. Currently the record is a 768-bit
number factored in 2.5 calendar years, made by the group of Kleinjung,

1Note that for these results the same algorithm, GNFS, was used. Some modifications
were made to it through time, but the complexity remains almost the same

2These are the numbers presented in Figure 6.1.

6.1. STATE OF THE ART OF THE GNFS 55

Figure 6.1: Advances in factorization through time, with the size of keys in
bits (y-axis) for RSA numbers. Data taken from [9]

Aoki, Franke, Lenstra, Thomé, Bos, Gaudry, Kruppa, Montgomery, Osvik,
Te Riele, Timofeev and Zimmermann presented in [37]. A very important
advance in making factoring accessible is the paper of Valenta, Cohney,
Liao, Fried, Bodduluri and Heninger in [62]. The reason of the importance
of the paper, is the ease in which a non-expert can factor a 512-bit key,
by using the Amazon Elastic Compute Cloud (EC2). As we mentioned
before, the part of the GNFS which has most investigation dedicated is the
polynomial selection, but there is also a huge amount of research on how is
it possible to parallelize the steps of the GNFS, and this is exactly what
has been optimized in [62].

There are many implementations of the number field sieve which
have been published, such as CADO-NFS [60], msieve [46] or ggnfs [39].
These implementations have been used by different software packages,
such as factMsieve.pl [28] which uses the Msieve polynomial selection and
postprocessing and the ggnfs sieving, or YAFU which uses the same as
factMsieve but does not use a perl script.
The CADO-NFS implementation has been in many of the latest fac-
torizations. However, in this particular case of factorization using EC2
[62], CADO-NFS was used only for the stages of polynomial selection and
sieving, while the matrix step and square root where performed with msieve.
This decision was made by the group of the University of Pennsylvania due
to better results of the msieve implementation for the linear algebra step in
Amazon EC2.

56 CHAPTER 6. SECURITY OF CRYPTOGRAPHIC KEYS

It is important to note that even if the record in factorization cur-
rently is at 768-bits, this has been made by research groups five years ago
so it would be cautious to stop using 1024-bit due to the difference in
available resources between research groups and governmental agencies such
as the NSA. It has not been confirmed that such agencies are indeed capa-
ble of doing so (or that have interest to do it...), but one is never ‘too’ careful.

6.2 LogJam and FREAK Attack

The reason why both attacks will be commented in the same section, is
due to the fact that both vulnerabilities are due to a very similar reason
and both of the attacks are against the TLS protocol. In a last layer view,
what these attacks do is downgrade the exchange keys to export cipher
suites, which moves away from the “believed to be” secure keys of today’s
ciphersuites, to less secure ones. Let us go a bit further in this explanation:

In short, export cipher suites were created by the US government in
order to avoid showing their believed to be better encryption to the outside
of the US [11]. Therefore, in order to distribute crypto out of the U.S.,
the security had to deliberately be weakened. But it was still possible to
use strong crypto in the U.S., which raised the problem to U.S. servers to
have to accept both strong and weak cipher suites. Therefore, the SSL
negotiation mechanisms allowed a server to accept weakened cryptography,
and this is where the vulnerabilities were found in order to produce both
attacks. At the end of last century, the U.S. removed most of its export
policies. Nevertheless, the export cipher suites never really disappeared.
Thanks to this and a flaw in TLS, a man in the middle (MITM) attack
could weaken the agreed cryptography between the client and the server,
without the client being aware of this. If there is a connection where the
client is vulnerable and the server supports export ciphersuites (either RSA
or Diffie-Hellman) then the attacker can force down the security of the
connection as shown in Figure 6.2.

The LogJam attack consists of downgrading the DH exchange keys to
DHE EXPORT, which consists of 512-bit primes. Similarly the FREAK
attack consists in downgrading the RSA security to 512-bit RSA numbers.
We now focus on the LogJam attack by briefly describing the Number Field
Sieve for discrete logarithms, and explain how the attack works.

6.2. LOGJAM AND FREAK ATTACK 57

Client MITM Server

Ciphersuit request Change request to
export cipher suite

Accepts

Responds with a
export key

Accepts

Attacker breaks the
export key, which is used
to encrypt master secret.

Able to read and
modify any message

This must happen before
the handshake times out

Figure 6.2: MITM attack overview

6.2.1 LogJam attack

There are several ways of using the downgrade to DHE EXPORT, as ex-
plained in [6], but the scope of this chapter is to focus in the theoretical side
of these attacks, i.e. the usage of the number field sieve for the attack.

Let us first understand how the Diffie Hellman key exchange works in
practice.
Alice and Bob agree on a prime p and a generator g, of a multiplicative
subgroup modulo p. Alice sends ga mod p, Bob sends gb mod p and both
compute gab mod p. The DH assumption says that the most efficient crypt-
analytic attack is computing the discrete log of ga or gb, and the DL assump-
tion says that this is a hard problem. For this, the most efficient algorithm is
the Number Field Sieve for Discrete Logarithms. Explaining this algorithm
is out of the scope of this paper, but we will briefly see how this algorithm
is divided in order to understand the attack.
The algorithm can be divided into four stages:

• Polynomial Selection

• Sieving

• Linear algebra

• Descent

58 CHAPTER 6. SECURITY OF CRYPTOGRAPHIC KEYS

Source Popularity Prime

Apache 82% 9fdb8b8a004544f0045f1737d0ba2e0b
274cdf1a9f588218fb435316a16e3741
71fd19d8d8f37c39bf863fd60e3e3006
80a3030c6e4c3757d08f70e6aa871033

d4bcd52406f69b35994b88de5db89682
c8157f62d8f33633ee5772f11f05ab22
d6b5145b9f241e5acc31ff090a4bc711
48976f76795094e71e7903529f5a824b

(463 distinct primes)

mod ssl 10%

(others) 8%

Figure 6.3: Top 512-bit DH primes for TLS. 8.4% of Alexa Top 1M HTTPS
domains allow DHE EXPORT, of which 92.3% use one of the two most
popular primes, shown here. Taken from [12]

The algorithm is different from the factorization one, but we can find
many similarities. The important fact we need to point out in this chapter,
without going into detail, is the following:
“The algorithm can be divided into two sub processes. The first (pre
computation) will consist on the first three stages, which are only dependent
on the number p, and finally the descent, that is the only one that involves
y = gxmod p.”[12]
And here is where the problem comes. Let us look at Figure 6.3. What the
attacker does, is calculate all the pre-computation steps for many 512-bit
primes p, known to be used in many servers (this is the time consuming
part of the algorithm), and then hope that the DHE happens with one of
these primes. In case it does, the attacker, being a man in the middle, will
have access to the information y = gx mod p needed to extract the secret
key, and the last step, using y = gx mod p takes on average 70 seconds 3

and therefore, the extraction of the secret key can be computed before the
handshake has to finish. The attacker can decrypt the private key of the
symmetric encryption scheme and will have access to read and modify any
message between the client and the server.

The FREAK attack downgrades the RSA key to a 512-bit key. How-
ever, we have seen that a 512-bit key can be factored in around four hours,
but an attacker clearly does not have so much time during a TLS key
exchange. The reason why this attack is successful is due to an implementa-

3Data taken from [12]

6.3. TESLACRYPT MALWARE 59

tion shortcut that generates RSA server keys only on application start, not
on every connection. This same key could last for hours, days or months.
It is due to this that an attack can be successful and the MITM can have
access to the private key of the RSA key encryption. As Nadia Heninger
explained in the talk “Security in Times of Surveillance”, the factorization
needs to be made in real time, due to the change of the ciphersuite name
from “RSA” to “RSA EXPORT” [31].

6.3 TeslaCrypt Malware

The reason why I will be presenting this attack is because the factorization
utility we are using in CrypTool 2 was used in order to exploit the
ransomware4 flaw to recover data. Unfortunately the flaw was fixed and
solved by the newer version of TelsaCrypt. However we will discuss how the
ransomware works and what were the flaws that made possible to recover
the files of the victim.

When a computer is infected with the TelsaCrypt Ransomware it en-
crypts all files of the victim using the AES (Advanced Encryption Scheme)
encryption algorithm, which is a symmetric encryption scheme. Each time
TeslaCrypt was run, a new AES key was generated. Then the ransomware
would open an HTML page in the user’s browser explaining the instructions
to follow, which mainly were paying a ransom of a certain amount in
Bitcoins in exchange of the key to decrypt the files. In this description of
the virus, it also explained that the keys were encrypted using RSA-2048,
so that in case the victim tried to find a way to solve the problem, she
would realize how infeasible it is. However, this was only information to
misguide the victim, since the real encryption method used was AES in the
following way:

• TeslaCrypt creates a symmetric AES key to encrypt your files.

• It then asymmetrically ECDH-encrypts the AES-key, sending the pri-
vate key to the operators of the ransomware (in order to be able to
decrypt the key once the payment has been effectuated).

• It starts encrypting the files in the system one by one.

The ransomware uses one AES key per session, which means that if the
infection is interrupted, new keys will be generated. However, this is irrele-
vant for the scope of this chapter.
The AES [26] and ECDH [3] encryption schemes are safe encryption schemes,

4Type of malicious software designed to block access to a computer system until a sum
of money is paid.

60 CHAPTER 6. SECURITY OF CRYPTOGRAPHIC KEYS

when used with caution and when properly implemented. The implemen-
tation of the encryption schemes was properly done by the attackers, the
problem was how they were storing the keys. As we previously said, the AES
key was encrypted using the ECDH scheme, which is a public key encryp-
tion scheme, and then stored along each encrypted file5. When a computer
is infected, the ransomware generates both the public and private keys of
ECDH, and then sends the private key to the attackers. Then the AES key
is encrypted with ECDH and stored in the encrypted file. Until now, every-
thing is good for the attacker, and probably quite complicated to restore any
encrypted information. However the attackers did not stop there regarding
information of the private key. In order to maintain their credibility (by
making sure they could decrypt the files for the person paying the ransom)
they stored the key of AES together with the secret of the ECDH in the
files, so that if the private key did not reach the attackers upon generation,
they could still restore the files, and therefore fullfil their promise to the
victim who paid. To see this better refer to Figure 6.4.

It is with session ecdh secret mul (which obfuscates the AES key) where

Session Key Generation

session priv Secret key to encrypt files (AES).

Not saved anywhere

session pub AES key encrypted with ECDH

Stored in encrypted files

session ecdh secret Value used to restore the private key

in case of loss.

Generated with a master private key.

session ecdh secret mul session priv ∗ session ecdh secret

Stored in the encrypted file

Figure 6.4: An overview of the session key generation

the victim can benefit from today’s power of factorization. Using a factor-
ing algorithm, the values can be extracted, and therefore proceed to gen-
erate the AES key with the help of Googulator Python scripts (that also
created scripts to accomplish the decrypting automatically [29]). The ses-
sion ecdh secret mul is around a 512-bit number. As we have seen before,
512-bit hard numbers (with two factors of similar size) are possible to factor
for a non-expert from home, but that is not even close to the problem of

5First lines of the encrypted file will be the encrypted AES key.

6.4. CONCLUSION 61

factoring session ecdh secret mul. These numbers not only are 512-bit, but
they are not hard to factor, or in other words, their factors are not of similar
size, nor there are only two. Therefore other methods which do not depend
on the size of n, but on the size of their smaller factors such as ECM6, will
do the factorization much more efficiently. Therefore factorization can be
produced from any modern computer using programs such as factMsieve
[28] or YAFU. In many of the help pages we can see that these are the main
programmes proposed (for easy use) see [4] or [5]. In the YAFU sourceforge
page [18] we can see that once the method to decrypting the infected files
was brought to light, the number of downloads hugely increased as seen in
Figure 6.5:

Figure 6.5: Number of YAFU downloads in the last year. The method to
decrypt infected files was given in December 2015

And as said before, the rest of the procedure to decrypt the files (from
the key extraction till the actual decryption of the files) is done by codes
developed by [29].

6.4 Conclusion

Overall, we could say that usage of RSA modulus of 1024-bits is safe against
a not super powerful attacker. However it is necessary to start using 2048-
bit keys since cryptography also must be applied against super powerful
attackers. Today’s security flaws, as we have seen in the past chapter, are
not the cryptosystems themselves, but rather the storage of the private key,
the size of the later, the key exchange, the creation of secure modulus (not
as random as we would wish) or the implementation of cryptosystems.
The National Institute of Standars and Technology (NIST) of the United
States describes in [13] that the key strength to be used from 2014 through
to 2030, is as shown in Figure 6.4 presented in [13, p.67]. With “applying”
or “processing” it is meant whether it is used to encrypt data or to decrypt
data respectively. ‘Deprecated’ means that it can be used if risk is accepted,

6We give an explanation of the ECM method in Section 7.2

62 CHAPTER 6. SECURITY OF CRYPTOGRAPHIC KEYS

Security Strength

80
Applying

Processing

Deprecated Disallowed

Legacy use

Applying

Processing112 Acceptable Acceptable
Disallowed

128
192
256

Applying/
Processing Acceptable

2011 through
2013

2014 through
2030

2031 and
beyond

Legacy use

Figure 6.6: Security strength through different time frames

while ‘disallowed’ means that it should not be used for applying crypto-
graphic protection. ‘Legacy use’ means that the key can be used to process
cryptographically protected data. Finally with ‘acceptable’ it is meant that
the security strength is not known to be insecure. The first column rep-
resents the bits of security where an algorithm that takes 2X operations
to break is said to have a “security strength of X bits” or to provide “X
bits of security”. In particular, the security of keys for integer factorization
cryptography (IFC) (e.g. RSA), are as follows

Bits of security IFC

80 n=1024
112 n=2048
128 n=3072
192 n=7680
256 n=15360

which means, first of all, that 1024-bit keys should be left aside and
secondly that 2048-bit keys should be useful for at most the next 15 years.

It is also with big concern that the developing of quantum computers
is seen from the cryptographic community. In 1994 Peter Shor developed
an algorithm for integer factorization for usage in quantum computers
[55]. This algorithm runs in polynomial time (as opposed to the GNFS
which runs in sub-exponential time) which implies a huge risk for RSA
cryptosystem. However, this does not mean that the only solution is to
cross fingers and hope that no quantum computer is ever invented. There
is much post-quantum cryptography research ongoing [7] which studies
schemes which are claimed to be safe even against quantum computers.

6.4. CONCLUSION 63

The direction of the research is in the development of such schemes which
are reliable in terms of security but at the same time meet practical
performance requirements. What is of big importance is to manage to
start implementing and using such schemes before quantum computers
are invented. The question is how soon do we need to worry. As very
clearly explained by Andreas Hülsing in the talk of Security in times of
surveillance, using Theorem 1 of slide 9 in [32]:

Theorem 1: If x+ y > z, then worry.

Here x is the time in years we need for our keys to be secure, y the
number of years it would take to re-tool the infrastructure with post-
quantum cryptographic schemes and z the time until a quantum computer
is invented. Since we cannot tell what z is, it is a must to start thinking
about the solutions for a possible post-quantum infrastructure.

64 CHAPTER 6. SECURITY OF CRYPTOGRAPHIC KEYS

Chapter 7

CrypTool 2 Plug-in

Besides giving a theoretical description of the GNFS, my thesis consists
in developing a plug-in for the Windows application CrypTool 2 (CT2).
CrypTool is a widespread open-source e-learning program for cryptography
and cryptanalysis. For this task it is necessary to know C# and .xaml
(programming languages), because CT2 is developed as .NET application
building its user interface with the Windows Presentation Foundation
(WPF). The new plug-in is aimed for factorization using the GNFS – in
addition it also offers several other factoring algorithms.

This chapter introduces the application as a whole, followed by an
explanation of all the algorithms available in the plug-in which have not yet
been explained yet. A description of the tools I used for the development
of the plug-in will follow. Then I will compare the functionality and
performance of the factoring plug-ins already available in CT2 with the one
I developed. I will finish the section with a presentation of the results and
the functionality of the plug-in.

7.1 Introduction to CrypTool 2

Back in 1998, with the development and use spread of computer throughout
financial companies, the financial institute Deutsche Bank decided to launch
a world-wide awareness program for its employees about computer security,
for which they developed CrypTool 1 (CT1). This cryptologic e-learning
program was intended to be interactive with the users, which made it one
of a kind at the time. It was then used by the German Information Security
Agency in 2002, again, for awareness of the citizens, and finally, in 2003,
together with the Technical University Darmstadt, it became open source
software. Since then, the CrypTool project has been in close cooperation
with many universities. What started to be a company awareness program
became a cryptographic e-learning tool for everyone which offers GUI-based

65

66 CHAPTER 7. NEW FACTORING ALGORITHMS FOR CT2

user interaction with state-of-the-art cryptographic methods. By 2007 CT1
was available in 5 different languages. The wide-spread usage encouraged
the developing team to magnify the project and develop .NET and Java
versions, as these offered more modern technologies and allowed a plugin-
based architecture. So there CT2 was born [1]. CT2 offers a more modern
user interface which is based on WPF, and implements the concept of visual
programming (the according prototype has been developed by the University
of Koblenz). So CT2 can visualize the reactions of the algorithms in real
time. The cryptanalytic tools available in CrypTool 2 help to analyze or
even break classical and modern ciphers [2]
One of the most used ciphers today is RSA (Rivest, Shamir, Adleman [53]).
As a cryptographic learning tool, CT2 already offered an interactive plug-
in of the RSA cryptosystem, as well as factorization with the Quadratic
Sieve and factorization with brute force. Nevertheless, it lacked a plug-in
having the algorithm of the state-of-the-art in factorizing big RSA-moduli,
the GNFS. (To be accurate, there was a draft of a plug-in using msieve [46]
and GGNFS [39], but this was not stable). The plug-in presented below
offers to use GNFS, but also to use other factoring algorithms such as the
Quadratic Sieve or Lenstra’s ECM among others.
Before this, I will present the other seven methods which are now available
and have not yet been explained.

7.2 Factoring Algorithms besides GNFS, QS, or
Fermat’s Made Newly Available in CT2

This section will discuss the algorithms available in the plug-in which are
not explained in the first part of this thesis. The aim of this section is not
to go into deep theoretical detail of any method, but rather explain with
simple concepts the algorithms that have not been explained yet. For the
two more complex methods (Multi-Polynomial Quadratic Sieve (MPQS) and
Self-Initializing Quadratic Sieve (SIQS), an understanding of the quadratic
sieve (see Section 2.2) should be sufficient for the usage of the plug-in, and we
will limit the explanations to referencing. We will start with the methods
which are easier to understand from a mathematical perspective, such as
Pollard’s p − 1 method, Pollard’s ρ method, or Shank’s method. We will
finish with two concepts a bit more complex: the Lucas sequences in order
to explain William’s p + 1 method, and elliptic curves, in order to explain
the Elliptic Curve Method (ECM).

(1) Pollard p− 1 method

From Fermat’s little theorem, we know that if p is an odd prime, then
2p−1 ≡ 1 (mod p). From this, we can derive that if p− 1|M , where M ∈ Z,

67

then 2M ≡ 1 (mod p). Therefore, we have that, if p is a prime factor of a
number n, p will divide gcd(2M − 1, n), and this is the result that Pollard
makes use in his p− 1 method for factorizing [25].

Algorithm 7.3. [25] Input is a composite number n, and we select a high
bound B. The output is either none or a non-trivial factor of n.

1. Calculate the list of all primes up to a previously selected bound B.
This may be done using the sieve of Eratosthenes [10].

2. For each prime selected in the previous step, calculate the maximum
integer ci such that pcii ≤ B.

3. Let a = 2

4. For each prime pi compute a = api mod n ci times.

5. Calculate gcd(a− 1, n).

6. If g 6= 1 or n, output g. It is a non trivial factor.

7. Else, replace a by next prime and go to step 4.

An upper bound can be given to a (say 10) in order for the algorithm not
to run indefinitely in case it does not find a non-trivial factor. Alternatively,
one can increase B.

(2) Pollard’s rho meethod

Another method introduced by J. Pollard is the rho (ρ) method. Let f be
a random function from S to itself, where S is a finite set, and consider the
following sequence:

s, f(s), f(f(s)), . . .

Then, it is obvious that at some point, the values will be repeated. This
is from what the algorithm takes the name of “rho”, since if we graph
this behavior, the whole picture looks like the shape of rho (ρ) where the
intersection point is when the two values of f are the same. If the finite
set is S = {0, . . . , p − 1} and the function f(x) is random enough, we
expect the sequence (f (i)(x)), where f (i)(x) is the ith iteration, to repeat
within O(

√
p) steps. Suppose we want to factor n = pq. We clearly do not

have access to p, but if we define F to follow the same function as f but
taken modulo n instead of modulo p then clearly F (x) ≡ f(x) mod p, thus
F (j)(a) ≡ F (k)(a) (mod p), and therefore gcd(F (j)(a) − F (k)(a), n) will be
divisible by p. If the output of the gcd is not n, we have found a non-trivial
factor.

68 CHAPTER 7. NEW FACTORING ALGORITHMS FOR CT2

For this factoring method, the most common function f used is f(x) = x2+1.

The algorithm consists of the following steps:

Algorithm 7.4. As input, number n to factor.

1. Choose random s ∈ [0, n− 1];
U = V = s;
Define function f(x) = x2 + 1 (mod n);

2. U = f(U);
V = f(f(V));
g = gcd(U − V, n);
if g = 1 repeat step;

3. if g = n choose different s and start from step 1. If this step is reached
many times, try other polynomial as for example f(x) = x2 − 1 or
f(x) = x2 + 3.

4. else: return g

This simple algorithm, as explained before, depends on the value of the
smallest prime factor of n, and therefore is a good algorithm to find small
factors. Furthermore, the Pollard rho method stores only the value n and
the current values of U, V , so it uses very little space. However, when the
number n is big and has no small values, it is better to try other algorithms
such as ECM or QS.

(3) Shanks’ method

Shanks’ square forms factorization method (sometimes called squfof) also
makes use of the idea of a difference of squares. Before we present the
algorithm start defining a binary quadratic form, as in Definition 5.2.2 [22,
p.220]:

Definition 7.4.1. A binary quadratic form f is a function f(x, y) =
ax2 + bxy + cy2, where a, b, c are integers. It is denoted as f = (a, b, c).
D = b2 − 4ac is the discriminant of f .

Definition 7.4.2. (Definition 5.6.4 [22, p.258] Let f = (a, b, c) be a
quadratic form. Let a 6= 0 and b be integers. The rho function is de-
fined by:

ρ(f) =

(
c, r(−b, c), r(−b, c)

2 −D
4c

)
where r(b, a) is defined by r ≡ b (mod 2a) with −|a|< r ≤ |a| if |a|>

√
D

and
√
D − 2|a|< r <

√
D if |a|<

√
D.

69

Definition 7.4.3. Let f = (a, b, c) be a quadratic form with discriminant
D. We say f = (a, b, c) is reduced if we have |

√
D − 2|a||< b <

√
D.

Regarding the quadratic forms, I will not spend more time in them
because they are not really relevant to see what the algorithm does.
Nevertheless, in order to understand why it works, knowledge of quadratic
forms is needed. For more information on them, refer to [22].

Algorithm 7.5. [22, Alg. 8.7.2] As input, the number n which is not either
a square or a prime.

1. If n ≡ 1 mod 4, D := n, d := b
√
Dc, b := 2b(d− 1)/2c+ 1,

else D := 4n, d := b
√
Dc, b := 2bd/2c.

Set f := (1, b, (b2 −D)/4), Q := ∅, i := 0, L := b
√
dc.

Q will be used as our queue.

2. f = (A,B,C) = ρ(f), i = i+ 1. If i is odd, go to step 5.

3. Test if A is a square. If it is, let a = +
√
A and if a 6∈ Q go to step 6.

4. If A = 1 break, and output that the algorithm did not find a non-trivial
square form.

5. If |A|≤ L, set Q = Q ∪ {|A|} and go to step 2.

6. Note: at this point we have found a non-trivial square form.
Set s := gcd(a,B,D). If s > 1, output s2 as a factor of n. Else
g := (a,−B, aC) and apply the rho function to g until g is reduced,
and write g = (a, b, c)

7. Let b1 := b and g = (a, b, c) = ρ(g). If b1 6= b, repeat step 7, else
output |a| if a is odd, else, output |a/2|.

As we can see, this algorithm is very simple in terms of programming,
since its code length is really small, and this is one of the reasons why it is at-
tractive. Another reason is that is works exclusively with reduced quadratic
forms, of discriminant at most a small multiple of n, so values a, b, c are
of order n1/2. The downside of the algorithm is that, unlike Pollard’s rho
method or ECM, it depends only on size of n, therefore when the number to
factor becomes bigger and bigger, Shanks’ method will not be useful even if
factors are small. For a more detailed explanation of the algorithm, please
refer to [54].

(4) Williams p plus 1

This method was discovered by H.C. Williams and it is based on the p −
1 method. To understand how this algorithm works, we will first define

70 CHAPTER 7. NEW FACTORING ALGORITHMS FOR CT2

the following Lucas sequences (which is what replaces the multiplications
modulo p in our previous algorithm):

U0 = 0, U1 = 1, V0 = 2, V1 = u

Ur = uUr−1 − Ur−2, Vr = uVr−1 − Vr−2 for r ≥ 2,

where the only condition for u is that it is bigger than 2.

Let D = u2 − 4. Williams proved that an odd prime p divides both

gcd(n,UM) and gcd(n, VM − 2) whenever M is a multiple of p −
(
D
p

)
,

where
(
D
p

)
is the Legendre symbol [67]. Of course, the problem is that we

cannot compute the Legendre symbol, since we do not have the value of p.
What we do is compute the gcd’s with different values of u, to have higher

probability to have
(
D
p

)
= −1.

Firstly, instead of computing am − 1, we compute Vm (mod n), and
instead of gcd(am − 1, n), we compute gcd(Vm − 2, n).
In this step, what we are interested in doing is to find Vm` from V` (index
multiplication), and to do that, we’ll use the following two formulas:

V2` = V 2
` − 2 (duplication formula)

Vm+` = VmV` − Vm−` (addition formula)

Now, we will see the approach we can use to perform index multiplication
by a natural number M .
First we represent the value of M in binary form. Once we have this we
proceed using a method known as Montgomery’s ladder. It goes as follows:

Algorithm 7.6. Montgomery’s ladder.

1. VA ← V0 and VB ← V`.

2. Then for every position of the binary form:

If it is zero then

VB ← VA+B and VA ← V2A

else
VA ← VA+B and VB ← V2B

3. Return VA.

So for instance, 23, in binary form, is 10111, and therefore the index
multiplication to calculate V23` will go as follows:

71

Algorithm 7.7. Example:

1.
VA ← V0;VB ← V`

2.
VA ← Vl;VB ← V2`

3.
VB ← V`+2`;VA ← V2`

4.
VA ← V3`+2`;VB ← V6`

5.
VA ← V5`+6`;VB ← V12`

6.
VA ← V11`+12`

and we are done.

The number M will be at each step a factorial until we reach a bound. Once
this bound is reached, and using the property previously presented, we try
computing gcd(n, VM − 2) in order to determine a non-trivial factorization
of n. For a proper explanation of the whole procedure, we again need to go
into too much detail for the scope of this thesis, so the interested reader
might refer to [67]. This algorithm will be successful if the representation
of p, a factor of n is as follows:

p =
r∏
i=1

qαi
i − 1, with qαi

i ≤ B1 for all i.

(5) Lenstra ECM

This method, discovered by H. W. Lenstra [41], is the most powerful algo-
rithm for big numbers that we will discuss in this section. It is considered
to be weaker than the Quadratic Sieve for RSA numbers, but is still used to
factor some gigantic numbers compared with what the previous algorithms
could do.
Recall that Pollard’s p − 1 method calculates am−1 where m is the least
common multiple of a set of numbers under a bound B.
Lenstra will do the same, but instead of using the multiplicative group of
integers modulo p, he makes use of an elliptic curve group Ea,b modulo p,
with operation of elliptic curve addition. A main advantage of this is that

72 CHAPTER 7. NEW FACTORING ALGORITHMS FOR CT2

there exist many elliptic curves Ea,b modulo p, and therefore if we arrive
to a point where we are stuck, we can just choose a different elliptic curve
and start over. We will see this step in the algorithm. Since the paper is
directed to students with knowledge in mathematics, we will avoid going
through the basics of elliptic curves. For further information [30] and [34]
can be followed. Nevertheless, we will recall the definition of elliptic curve
addition and elliptic curve doubling, since it plays an important role in this
algorithm. Let P = (xP , yP) and Q = (xQ, yQ) be two points on an elliptic
curve E : y2 = x3 + ax+ b with xP 6= ±xQ.

Definition 7.7.1. Then the addition, P +Q = R is defined as follows:

Let s = (yP − yQ)/(xP − xQ), then we have

xR = s2 − xP − xQ and yR = −yP + s(xP − xR).

Definition 7.7.2. Let P be as before, and let yP 6= 0, then the doubling of
P , 2P = R, is defined by:

Let s = (3x2P + a)/(2yP), then we have

xR = s2 − 2xP and yR = −yP + s(xP − xR).

The trick in this algorithm is to define an elliptic curve over the ring
Z/nZ, where n is the number to factor. However, as it is well known,
a curve is well defined over a finite field. Therefore, in this case we will
not have a properly defined curve (since n is a composite number). This
group-law failure will turn out to be the main tool of the factorization
algorithm. In this case, some elements are not invertible, due to the
fact that gcd(n, v) 6= 1, n, where v is the element of which the inverse is
computed. Here we have arrived to a good output of the algorithm.
Let us go step by step through the algorithm:

The elliptic curve (or pseudo-curve, since it is not well defined) will be
Ea,b(Zn) = {(x, y) ∈ Zn ×Zn : y2 = x3 + ax+ b} ∪ {0}, where 0 is the point
at infinity.

Algorithm 7.8. As input, number n to factor.

1. We begin by choosing B1, for instance B1 = 10000

2. Next step is to define a curve Ea,b(Zn) and a non-trivial point (x, y) ∈
E. An easy and effective way to do this is to randomly pick x, y, a ∈
{0, . . . , n − 1} and then compute b = (y2 − x3 − ax) mod n. At this
point we compute g = gcd(4a3 + 27b2, n). If g is equal to n, then we
have to redefine the curve and point. This is because we want a non-
singular elliptic curve. If 1 < g < n then we have found our factor.
Else we keep the curve E and the point P .

73

3. for i in range(1, B1):

Find largest integer ai such that paii ≤ B1

for j in range(1, ai)

P = piP

at each step, at each step, when performing addition, we
calculate gcd(d, n), for d the denominator in the addition
formula.

If non-trivial, return g

4. Else, if the end of the loops come out without a successful factor, we
reset the point and curve, and maybe the bound as well.

For the step in the second loop, we calculate the new values of P using
the addition and doubling formulas that we explained earlier. It is then
when we have to calculate inverse elements to find s. Here is where we
will calculate the gcd(d, n), and if it is not 1 or n, then we exit the loop
successfully. This is due to the fact of working with a non well defined
elliptic curve.
Note, however, that this is a simplified explanation of the method. In
practice ECM is implemented in a different manner, where projective
coordinates are used, and we only check once at the end if the computation
gave 0 in Fp by computing only one gcd.

As explained in [25], the heuristic complexity of ECM is L(p)
√
2+o(1),

where p is the smallest prime factor. Therefore, the worst case scenario for
this algorithm is when both factors of n have roughly the same size. If we
know that the number to be factored is of this type, then it is recommended
to use QS or GNFS. On the other hand, if we have a random number which
is way too big to consider using the QS or GNFS, then it is recommended
to start with ECM and see if we are lucky. This is one interesting feature
of ECM, that the number of steps may vary largely due to the fact that we
are only expecting one successful event to occur [25].

(6) SIQS and MPQS

These two algorithms are modifications of the Quadratic Sieve algorithm.
The multi-polynomial Quadratic Sieve (MPQS) tries to surpass one of the
main problems of the QS: the sieving region. As we need to have more
smooth values than the size of the factor base, we have to sieve through a
huge interval. A solution to this problem is to use multiple polynomials to
generate values, and sieve each polynomial over a smaller interval. For more
information about this algorithm, please refer to [56]. For the self-initializing
QS (SIQS), the idea remains the same of using different polynomials, but in

74 CHAPTER 7. NEW FACTORING ALGORITHMS FOR CT2

their paper they offer a way to calculate them in an efficient way, and their
claim is that with such a method, the sieving area can be even smaller than
in the MPQS, and therefore results in a faster algorithm [23].

7.9 The New GeneralFactorizer

The idea how to broaden CT2 was to add the GNFS for factorization as
an additional feature. For this, some research in the already implemented
versions of the GNFS was done, to analyze which was the best choice for
the Windows application. There were many available choices, from which I
explain the most promising three.

The first one was motivated by the latest record factorizations, CADO-
NFS [60], and was the favorite for this task. However, it has been developed
only for Unix systems, and our interest (usage in Windows) is only partly
supported. During my internship at the headquarters of Deutsche Bank, we
tried to compile CADO-NFS for Windows, but after spending a long period
for this task and not arriving to a solution, we then decided to leave aside
this option.

Then there was GGNFS [39] together with msieve [46], but for usage
in Windows it needed a Python middle layer. This was to be avoided for
CrypTool 2 in order to bypass the requirement of a Python dependency for
the application.

Finally there was YAFU (Yet Another Factorization Utility) [18], which
seemed pretty simple to add to the .NET application and which offered quite
good functionality of, not only GNFS, but also other factoring algorithms.
YAFU makes usage of the msieve library together with GGNFS binaries
(without a Python middle layer), so the decision to re-write the Python
middle layer as a C# code manually was also left aside, and the final decision
of using YAFU was taken.

7.9.1 YAFU (Yet Another Factorization Utility)

YAFU, available for download at [18], offers the following list of 9 factoring
algorithms:

• Self Initializing Quadratic Sieve (SIQS)

• Multiple Polynomial Quadratic Sieve (MPQS)

• Elliptic Curve Method (ECM)

• Pollard’s p− 1 method (p− 1)

• Williams’ p+ 1 method (p+ 1)

• Shanks’ square forms factorization (squfof)

7.9. THE NEW GENERALFACTORIZER 75

• Pollard’s rho method (ρ-method)

• Fermat’s algorithm

• Number Field Sieve (both GNFS and SNFS)

Together with this, there is an implementation which uses several factoring
algorithms instead of sticking to a single one for factorization which is very
useful as we will see in the presentation of the results. It is to mention that
the GNFS algorithm implementation in YAFU is mainly a usage of other
public domain software such as msieve or the lattice sievers of Franke and
Kleinjung [18].
YAFU also provides the user with a prime sieve, prime generations, loga-
rithm calculations, greatest common divisor or RSA moduli generator among
others. It has a very simple and straightforward usage, and it is mainly a
command-line driven tool. This is one of the reasons it was the best choice
in relation to the integration to CrypTool 2. We used the latest available
version of YAFU, version 1.34 (released in 2013).

7.9.2 The Plug-in

The intention of this part of the work was to offer the users of CT2 a plug-in
where the state-of-the-art in factoring could be used. The difference between
the state-of-the-art-factorizations (as mentioned before, 512-bit keys in un-
der four hours) and what is reached with the available plug-in are still huge,
as we will see in the presentation of the results later on the chapter. Never-
theless, the algorithm in use remains the same, and therefore the user can
already get a gasp of how these record factorizations are being attained.
Not only we aim to offer the usage of the GNFS for the user, but also give
a small explanation of what is happening. Following the line of all other
plug-ins in the CT2 application, a documentation is available.

As we have explained before, CT2 is an e-learning platform, so we assume
that not all the users will have deep understanding in mathematics, and
hence, the documentation will be both pedagogical and user friendly.

As previously mentioned, CrypTool was in the first place created as
a program to raise awareness. This plug-in not only wants to enable
the user to factor huge numbers, but also to show what a single com-
puter can do. It can be learned from the experience with the plug-in
(to those interested in following the information given in the app) that
512-bit keys are not secure at all anymore, and if the user wants to
remain really private, a 1024-bit key might be something to start leaving
aside as well. It is to remember that the results given in the previous
chapters are from research groups, which have much less funding and
computer power than government agencies. Of course, we have no idea

76 CHAPTER 7. NEW FACTORING ALGORITHMS FOR CT2

Figure 7.1: GUI of the plug-in

at what point they really are in the developing of computers and algorithms.

The user will have parameters to determine for the factorization to
take place. These parameters will depend on the chosen algorithm, so
for instance, if the chosen factorizer is Trial Division, the user will choose
the bound of the primes with which to try the factorizations. If, on the
other hand, the Quadratic Sieve is chosen, then the number of threads, or
the maximum time for factorizing are some of the possible parameters to
select. For the case of the general factorization (which is the choice where
many algorithms are involved) the user will only decide whether to use
ECM or not, and the number of threads involved. However, for each al-
gorithm there is a meaningful default already chosen when the plug-in starts.

The plug-in offers information about the progress of the selected algo-
rithms, and for the case of Quadratic Sieve and the GNFS, a summary is also
presented. The reason for offering a summary only for these two algorithms
is because they are the most complicated ones to follow. We want to present
an easy to understand interface. One of the differences between CT1 and
CT2 is, that CT2 offers a progress bar, representing how far the algorithm
proceeded. However, it is quite complicated to create a totally accurate bar.
First of all, this is due to the number of selections available for the user, but
mainly because of the two most complex algorithms in the list: Quadratic
Sieve and the GNFS. The progress of these two algorithms is not always
incrementing. For instance, in the sieving step of both algorithms, we can-

7.10. RESULTS AND FURTHER WORK 77

not really know how long it will take in order to find all the relations needed.

The plug-in is intended for factorizations of big numbers. The downside
of this is that in methods aimed for smaller numbers, such as Pollard rho or
Fermat’s factorization method, the factorization might not be complete, in
the sense that the factors outputted might be composite. The plug-in will
output these factors and will specify that they are composite. The user then
has to take these numbers manually and place them back in the factorization
window (as explained in 7.10.2, the automation of this process is meant as
further work).

7.10 Results and Further Work

In this section we present the performance of the new plug-in. We compare
running times of other factoring plug-ins of the CT1 and CT2 applications
with the running times of the GeneralFactorizer. The results presented in
this section are not meant to be compared with the study of the University
of Pennsylvania [62] discussed in the previous chapter. The latter used
much higher computational power, as for those results, they made use of
the Amazon Elastic Compute Cloud (Amazon EC2). Amazon EC2 is a web
service that provides computing capacity over the cloud. The University
of Pennsylvania team made use of this using the largest type of compute-
optimized instances available when their study happened. This instance type
has two Intel Xeon E5-2666 v3 processor chips, with 36 vCPUs in a NUMA
(Non-Uniform Memory Access) configuration with 60GB of RAM. On the
other hand, the machine I run the tests on has one Intel Core i7-3630QM
chip with one CPU at 2.40GHz, with 8 logical processors.

However, the CrypTool 2 team is developing a cloud service where a user
can get computing power in the cloud by using distributed computing. This
service is still in progress, so I could not make use of it as for now, but once
this is finished the GeneralFactorizer could be used in coordination with
this. This will augment the functionality of the plug-in, mainly because the
GNFS is an easy to parallelize algorithm and the running times could be
greatly improved.

7.10.1 Performance of the Plug-in

This subsection covers an analysis of the running times of the plug-in, how-
ever before presenting the running times, we begin by shortly describing
other programs and plug-ins used: mainly the CT1 Factorizer [1], the QS
Factorizer and the old NFS Factorizer in CT2 [2]. Finally we describe the
settings used in the new GeneralFactorizer.

The CT1 factorizer, similar to the GeneralFactorizer, offers a choice of
different algorithms to the user, such as trial factorization, Brent’s method,

78 CHAPTER 7. NEW FACTORING ALGORITHMS FOR CT2

ECM or the Quadratic Sieve. The CT1 factorizer runs all chosen algorithms
in parallel (however, the user can easily stop a thread later) – as opposed to
the GeneralFactorizer that runs them one after the other. The parallelization
of algorithms can be useful when the number is of unknown size, nonetheless,
it might also slow down for certain cases, e.g. when memory is tight. Further
in the subsection will follow a specific case of this type of situation.

The QS Factorizer also makes use of other algorithms different to the
QS, such as trial division. However, it does not have the ECM method
implemented which results in a poor performance for certain numbers.

The old NFS Factorizer factorizes uniquely with the NFS algorithm,
which results in an error for small numbers, and unnecessarily large running
times for numbers of a specific case.

Finally, the GeneralFactorizer, as we have previously seen, has different
algorithms to choose from, but we will aim our study to the choice of the
General Factorization, as shown in Figure 7.2. This choice makes use of

Figure 7.2: Drop down box of available choices

several algorithms, but sequentially in this case. There are also some settings
available to the user, such as the number of threads, whether we want the
process to be in idle priority or not, or the factoring plan1. The last setting
allows the user to choose whether the factorizer should avoid running ECM
or do a light, medium or deep search with ECM as shown in Figure 7.3. For
our results, due to the knowledge of the type of numbers, we chose the plan
to avoid running ECM unless specified otherwise.

The GeneralFactorizer plug-in is the first stable plug-in in CrypTool 2
being able to factor arbitrary numbers with the General Number Field
Sieve. Moreover, it outperforms most of the other plug-ins accessible for

1This last choice is available only for the General Factorization method, which offers
to the user the choice of how deep the search with ECM should be.

7.10. RESULTS AND FURTHER WORK 79

Figure 7.3: Drop down box for determining search of ECM

factorization, and has a similar running time as the NFS Factorizer for
big numbers2. We will now present these results in the form of screen
shots and charts. We begin by comparing the performance with 300-bit
numbers which are products of two primes of similar size. Figures 7.4 and
7.5 show the performance of the GeneralFactorizer and the QS factorizer
respectively3. We can see that the performance of the GeneralFactorizer
plug-in is faster by a third of the running time of the QS plug-in. For smaller
numbers, such as 12883728467056305692694531964950730638489484783416
59088176108882098260435883 (250 bit number) the GeneralFactorizer has
a slightly better performance compared to the QS factorizer, with running
times of 32 and 48 seconds respectively.

We now proceed with a more general analysis of the performances of
CT1 Factorizer, CT2 QS, CT2 NFS and the CT2 GeneralFactorizer. In
order to perform these tests we used two different sets of numbers. One of
them consists in hard to factor numbers, which are numbers that have two
factors of similar size (numbers used as RSA modulus). These numbers will
range from 200-bit till 370-bit numbers, shown in Table A.1. The second set
consists of two special numbers whose factors are chosen in a way that the
Elliptic Curve Method is the most suitable algorithm to factor (i.e. factors
of different size, with one significantly smaller than the other). The results
of the first kind of numbers are presented in Figure 7.6 with the running

2Both plug-ins use the same NFS implementation, mainly the msieve library with the
ggnfs binaries.

3We do not include a screen shot of the NFS plug-in due to the lack of a timer in the
plug-in, which means we had to measure the time manually.

80 CHAPTER 7. NEW FACTORING ALGORITHMS FOR CT2

Figure 7.4: Performance of the GeneralFactorizer for a 300-bit number,
lasting slightly above 8 minutes

Figure 7.5: Performance of the old Quadratic Sieve plug-in for a 300-bit
number, lasting slightly below 12 minutes

times in the y-axis and the bit length in the x-axis, while the results for the

7.10. RESULTS AND FURTHER WORK 81

second group are presented in Figure 7.8.
One notices that performances of the QS plug-in and the NFS plug-in

Figure 7.6: Comparison of performance with time in logarithmic scale. Num-
bers can be found in Table A.1

depend on the size of the number. For numbers of 320-bits or smaller, the
QS is a far better choice4, while with numbers bigger than 320-bit, the NFS
is more performant. For smaller numbers the NFS CT2 was taking way too
long, and it was decided not to run tests.
The GeneralFactorizer not only performs in a better manner in most
of the cases, but it also makes the choice of which algorithm to choose
automatically (depending on the size of the number to factor) and eases
the task to the user.
It is clear that the bigger the number is, the bigger the gap of the running
time becomes compared with the QS. In the case of the 331-bit number the
QS CT2 runs twice as slow. The difference between the GeneralFactorizer
and the NFS CT2, for the case of 331-bit, is of 900 seconds. While in
the case of 350-bit, the NFS CT2 ran on average 2000 seconds faster. In
the case of 370-bit, the NFS CT2 takes much longer than expected. To
be precise, the running time in the chart is an approximation due to slow
performance. After 5 hours, the factorization was only at 50% of the sieving

4For the case of 270-bit, the NFS factorizer was taking around 2 hours, slower than its
own performance for 331-bit numbers.

82 CHAPTER 7. NEW FACTORING ALGORITHMS FOR CT2

stage.

For the case of the CT1 algorithm, these tests where too slow due to its
implementation of the Quadratic Sieve algorithm and for numbers bigger
than 250, the algorithm was taking too long. However, we will see that it
does not perform as bad with the second group of numbers.

In the second group of numbers we are able to understand the ad-
vantage of the different available algorithms. We will also see how higher
degrees of parallelization do not guarantee better performance. For
instance, in the second number of the group studied in Figure 7.8, CT1
Factorizer tried factorization with all methods, and therefore slowing down
the ECM iterations. If we only choose the ECM, the plug-in improves
by 13% its running time. The alternative, which is the one used in the
GeneralFactorizer, is to run the algorithms linearly. The downside of this is

Figure 7.7: Performance of the GeneralFactorizer with number 1 from Table
A.2

if, for instance, we want to factor an RSA modulus without the knowledge
that the number is of that type, results in running ECM. The ECM will

7.10. RESULTS AND FURTHER WORK 83

not find the factors, and therefore it will waste time. As an example, the
factorization presented above of a 250-bit number is delayed to a total of
125% its initial running time.
In Figure 7.8 we can see the performance of CT1 Factorizer (CT1), QS CT2
and GeneralFactorizer CT2 (GenFact CT2) with two special numbers where
Number 1 is a special 420-bit number and number 2 is a 287-bit number,
shown in Table A.2, with factors of different size and therefore suitable for
ECM. We can see how the QS factorizer performs terribly, which is due
to the fact that after finding some of the small factors with methods as
Pollard’s ρ or p − 1, it proceeds directly with the QS for a number of 100
digits. The CT1 Factorizer, even if much slower than the GeneralFactorizer,
performs better than the CT2 QS because it also has Lenstra’s ECM
algorithm implemented in it. In this specific set of numbers we see how
the GeneralFactorizer runs much faster than the available algorithms, by
taking less than a second for number 2, and therefore not appearing in the
logarithmic scale. The reason of this result is, as we explained before, that
ECM depends strongly on the size of the smallest factor of a number, while
the QS is independent of that and is only dependent on n.

Figure 7.8: Comparison of performance with time in logarithmic scale. Num-
bers can be found in Table A.2

These results show that the two old plug-ins in CT2 can be replaced
with the GeneralFactorizer without any disadvantage.

The plug-in is now functional and factorizations work with the General
Number Field Sieve and the 10 other factorization algorithms.

In the following section we will see a few points of further work that
can be added to the plug-in. So, despite the fact that we have achieved our
purpose of offering a stable plug-in, some points can still be improved.

84 CHAPTER 7. NEW FACTORING ALGORITHMS FOR CT2

7.10.2 Further Work for the GeneralFactorizer

Here are some comments regarding further work:

• Algorithms such as Pollard rho, Fermat’s method, p − 1, etc. output
always a pair of factors, due to the fact that these algorithms find
factors with the difference of squares, x2 ≡ y2 (mod n). An idea for
further work is to automatically continue factoring these numbers if
they are composite or to offer the user to factor these without needing
to copy and paste them in the input window.
The reason why this is not implemented is because the main intention
of this plug-in in the first place was to offer a plug-in able to factor
big RSA numbers, mainly with the GNFS so that the first split gives
the full factorization.

• The progress bar is not totally accurate (it will be hard to manage it,
due to the complixity of the GNFS) and some modifications might be
useful.

• The development of the CT2 CrypCloud is still under progress, but
once this is managed, it would be interesting to port the GeneralFac-
torization plug-in into the CrypCloud. For this it is important to know
that YAFU is already implemented to distribute the process among
different cores. However this is only performed in the two ‘easy’ steps
to parallelize, mainly the polynomial selection and the sieving, while
the parallelization of the linear algebra is not optimal. A good paper
explaining how to distribute this process in an effective way is the one
of the group of the University of Pennsylvania [62].

• It would also be interesting to check the progress of CADO-NFS and
see whether they develop the program for Windows operating systems,
and in this case, if there is interest in using the state-of-the-art in
factoring, trying to include it. Furthermore, CADO-NFS is updated
more often than YAFU (the last update of the latter was in 2013),
and therefore is more likely to have the latest advances in the GNFS
factorization from within CADO-NFS.

• A final change that could be done to the plug-in would be to add
references to this paper once it is online. We could have four main
links redirecting to different parts of this paper. First would be The
theory behind the GNFS redirecting the user to the second chapter
(to follow until the end of chapter four). Second link might refer to
The four steps of the GNFS taking the user to chapter five where
explanations are given about the four main steps of the algorithm.
Third important section would be How much is the GNFS a danger
for our encryption which would redirect the user to chapter 6, and

7.10. RESULTS AND FURTHER WORK 85

finally a fourth option giving More details of the plug-in sending the
user to this chapter, chapter 7.

86 CHAPTER 7. NEW FACTORING ALGORITHMS FOR CT2

Appendices

87

Appendix A

Numbers used for
performance tests

Some tests were made with more than one number, so the numbers in A.1
are mainly representative. All of the numbers in Table A.1 (as well as the
ones used in the performance tests) were generated by YAFU, using the
command “rsa(s)”, with s the number of bits.

Table A.2 give the numbers with special form to make ECM the most
suitable algorithm to use, taken from the README file of YAFU.

89

90 APPENDIX A. NUMBERS USED FOR PERFORMANCE TESTS

Bit Length

1197143477033289400345490340603978981510549252806031826867156

726588301839393

1459420954682274614333956623722781584306385064034111509349056

056233440002496102477

1775493011499636357853216095985966832494033326220981414659996

746683023630554396549621114303

14998440144448365351743896248229096566789401199189582988986462

06230765153756621816927493546374371

131325194100087731340262627519210817143977604063177529501742638

7595463765266683262103645164214644845373903

236585825226547353168697810107995429639344073759398738016538425

7507818645474001192704343841118011909692019728541

1577918532112654333223216834840589517321825004569168686462331

286249

1420795552156657914899236212440230170883564633098606022036373200

220

250

270

300

320

350

370

Number

Table A.1: Hard to factor numbers

Bit Length

287 (#2) 140870298550359924914704160737419905257747544866892632000062896

476968602578482966342704

400 (#1) 205680248086810064637572125157555549440889738737573795588217004

5672576386016591560879707933101909539325829251496440620798637813

Number

Table A.2: Special numbers

Bibliography

[1] CrypTool 1. https://www.cryptool.org/en/cryptool1.

[2] CrypTool 2. https://www.cryptool.org/en/cryptool2.

[3] Elliptic Curve Diffie-Hellman. https://en.wikipedia.org/wiki/

Elliptic_curve_Diffie-Hellman.

[4] Help forum for Telsacrypt Ransomware.
https://community.spiceworks.com/how_to/

125475-teslacrypt-2-2-0-removal-and-decryption.

[5] Help forum for Telsacrypt Ransomware. http://mersenneforum.org/
showthread.php?t=20779.

[6] LogJam attack. https://www.mitls.org/pages/attacks/Logjam.

[7] Post-quantum cryptography. https://en.wikipedia.org/wiki/

Post-quantum_cryptography.

[8] Primality testing. https://en.wikipedia.org/wiki/Primality_

test.

[9] RSA Challenge Numbers. http://www.emc.com/emc-plus/rsa-labs/
historical/the-rsa-factoring-challenge.htm.

[10] Sieve of Eratosthenes. https://en.wikipedia.org/wiki/Sieve_of_

Eratosthenes.

[11] United States Cryptography Export/Import Laws. http:

//www.emc.com/emc-plus/rsa-labs/standards-initiatives/

united-states-cryptography-export-import.htm.

[12] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. Van-
derSloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann. Im-
perfect Forward Secrecy: How Diffie-Hellman Fails in Practice. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’15, pages 5–17, New York, NY, USA, 2015.
ACM.

91

https://www.cryptool.org/en/cryptool1
https://www.cryptool.org/en/cryptool2
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie-Hellman
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie-Hellman
https://community.spiceworks.com/how_to/125475-teslacrypt-2-2-0-removal-and-decryption
https://community.spiceworks.com/how_to/125475-teslacrypt-2-2-0-removal-and-decryption
http://mersenneforum.org/showthread.php?t=20779
http://mersenneforum.org/showthread.php?t=20779
https://www.mitls.org/pages/attacks/Logjam
https://en.wikipedia.org/wiki/Post-quantum_cryptography
https://en.wikipedia.org/wiki/Post-quantum_cryptography
https://en.wikipedia.org/wiki/Primality_test
https://en.wikipedia.org/wiki/Primality_test
http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm
http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/united-states-cryptography-export-import.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/united-states-cryptography-export-import.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/united-states-cryptography-export-import.htm

92 BIBLIOGRAPHY

[13] E. B. Barker, W. C. Barker, W. E. Burr, W. T. Polk, and M. E. Smid.
SP 800-57. Recommendation for Key Management, Part 1: General
(Revised). Technical report, Gaithersburg, MD, United States, 2007,
National Institute of Standards & Technology.

[14] E. R. Berlekamp. Factoring Polynomials over Large Finite Fields. In
Proceedings of the Second ACM Symposium on Symbolic and Algebraic
Manipulation, SYMSAC ’71, pages 223–, New York, NY, USA, 1971.
ACM.

[15] D. J. Bernstein and A. K. Lenstra. A general number field sieve imple-
mentation, pages 103–126 in [40]. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1993.

[16] M. E. Briggs. An Introduction to the General Number Field Sieve, Mas-
ter thesis. https://www.math.vt.edu/people/brown/doc/briggs_

gnfs_thesis.pdf, 1998.

[17] J. P. Buhler, H. W. Lenstra, and C. Pomerance. Factoring integers with
the number field sieve, pages 50–94 of [40]. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1993.

[18] B. Buhrow. Yet Another Factoring Utility (YAFU). https://sites.

google.com/site/bbuhrow/.

[19] P. J. Cameron. Projective and Polar Spaces. Queen Mary College Dept.
of Mathematics, 2nd edition, 2000.

[20] D. G. Cantor and H. Zassenhaus. A New Algorithm for Factoring Poly-
nomials Over Finite Fields. Mathematics of Computation, 36(154):587–
592, 1981.

[21] S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery,
B. Murphy, H. T. Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. Ley-
land, J. Marchand, F. Morain, A. Muffett, C. Putnam, C. Putnam, and
P. Zimmermann. Factorization of a 512-bit RSA Modulus. In Proceed-
ings of the 19th International Conference on Theory and Application of
Cryptographic Techniques, EUROCRYPT’00, pages 1–18, Berlin, Hei-
delberg, 2000. Springer-Verlag.

[22] H. Cohen. A course in computational algebraic number theory, volume
138 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

[23] S. P. Contini. Factoring integers with the self-initializing quadratic
sieve. University of Georgia, http://www.crypto-world.com/

documents/contini_siqs.pdf, 1997.

https://www.math.vt.edu/people/brown/doc/briggs_gnfs_thesis.pdf
https://www.math.vt.edu/people/brown/doc/briggs_gnfs_thesis.pdf
https://sites.google.com/site/bbuhrow/
https://sites.google.com/site/bbuhrow/
http://www.crypto-world.com/documents/contini_siqs.pdf
http://www.crypto-world.com/documents/contini_siqs.pdf

BIBLIOGRAPHY 93

[24] J.-M. Couveignes. Computing a square root for the number field sieve,
pages 95–102 of [40]. Springer Berlin Heidelberg, Berlin, Heidelberg,
1993.

[25] R. Crandall, C. Pomerance, R. Crandall, and C. Pomerance. Prime
numbers: a computational perspective. Second Edition, 2005, Springer-
Verlag New York.

[26] J. Daemen and V. Rijmen. AES Proposal: Rijndael,1999, 1999.

[27] J. D. Dixon. Asymptotically fast factorization of integers. Mathematics
of Computation, 36:255–260, 1981.

[28] J. Gilchrist. factMsieve, http: // gilchrist. ca/ jeff/ factoring/

nfs_ beginners_ guide_ perl. html .

[29] Googulator. TeslaCrack. https://github.com/Googulator/

TeslaCrack.

[30] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2003.

[31] N. Heninger and J. A. Halderman. The legacy of export-grade cryptog-
raphy in the 21st century. http://summerschool-croatia.cs.ru.nl/
2016/slides/NadiaHeninger.pdf, 2016.

[32] A. Hülsing. Quantum Computing vs. Your Privacy.
https://huelsing.files.wordpress.com/2013/04/20160526_

pqcryptoforprivacy.pdf.

[33] T. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics.
Springer New York, 2003.

[34] D. Husemöller. Elliptic curves, volume 111 of Graduate texts in math-
ematics. Springer, New York, 2004.

[35] F. Jarvis. Algebraic Number Theory. Springer Undergraduate Mathe-
matics Series. Springer International Publishing, 2014.

[36] T. Kleinjung. On polynomial selection for the general number field sieve.
Mathematics of Computation, 75(256):2037–2047, 2006.

[37] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos,
P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, H. Te Riele,
A. Timofeev, and P. Zimmermann. Factorization of a 768-bit RSA
Modulus. In Proceedings of the 30th Annual Conference on Advances
in Cryptology, volume 6223, Lecture Notes in Computer Science of
CRYPTO’10, pages 333–350, Berlin, Heidelberg, 2010. Springer-Verlag.

http://gilchrist.ca/jeff/factoring/nfs_beginners_guide_perl.html
http://gilchrist.ca/jeff/factoring/nfs_beginners_guide_perl.html
https://github.com/Googulator/TeslaCrack
https://github.com/Googulator/TeslaCrack
http://summerschool-croatia.cs.ru.nl/2016/slides/NadiaHeninger.pdf
http://summerschool-croatia.cs.ru.nl/2016/slides/NadiaHeninger.pdf
https://huelsing.files.wordpress.com/2013/04/20160526_pqcryptoforprivacy.pdf
https://huelsing.files.wordpress.com/2013/04/20160526_pqcryptoforprivacy.pdf

94 BIBLIOGRAPHY

[38] T. Kleinjung, J. W. Bos, and A. K. Lenstra. Mersenne Factoriza-
tion Factory. In Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014. Proceedings, Part I, pages 358–377, 2014.

[39] A. Korobeynikov. ggnfs, https: // sourceforge. net/ projects/

ggnfs/ .

[40] A. K. Lenstra and J. Hendrik W. Lenstra, editors. The development of
the number field sieve, volume 1554 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1993.

[41] H. W. Lenstra. Factoring integers with elliptic curves. Annals of Math-
ematics, Second Series, Vol. 126, No. 3, pp. 649-673.

[42] R. A. Mollin. Algebraic Number Theory, Second Edition. Chapman &
Hall/CRC, 2nd edition, 2011.

[43] P. L. Montgomery. Square roots of products of algebraic numbers. [63],
pages 567–571.

[44] P. L. Montgomery. A Block Lanczos Algorithm for Finding Dependen-
cies over GF(2). In Advances in Cryptology — EUROCRYPT ’95: In-
ternational Conference on the Theory and Application of Cryptographic
Techniques Saint-Malo, France, May 21–25, 1995 Proceedings, EURO-
CRYPT ’95, 1995.

[45] B. A. Murphy. Polynomial Selection for the Number Field
Sieve Integer Factorisation Algorithm. PhD thesis, Autralian Na-
tional University, https://maths-people.anu.edu.au/~brent/pd/

Murphy-thesis.pdf.

[46] J. Papadopoulos. msieve. https://sourceforge.net/projects/

msieve/.

[47] J. M. Pollard. The lattice sieve, pages 43–49 in [40]. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1993.

[48] C. Pomerance. Smooth numbers and the Quadratic Sieve. Algorithmic
Number Theory, MSRI Publications, 2008.

[49] C. Pomerance. The number field sieve. pages 465–480, in Proceedings
of Symposia in Applied Mathematics, Volume 48, 1994.

[50] T. Prest and P. Zimmermann. Non-linear polynomial selection for the
number field sieve. J. Symb. Comput., 47(4):401–409, 2012.

https://sourceforge.net/projects/ggnfs/
https://sourceforge.net/projects/ggnfs/
https://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf
https://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf
https://sourceforge.net/projects/msieve/
https://sourceforge.net/projects/msieve/

BIBLIOGRAPHY 95

[51] N. Rezola. Unique Prime Factorization of Ideals in the Ring of Alge-
braic Integers of an Imaginary Quadratic Number Field, 2015, Master
thesis, California State University, http://scholarworks.lib.csusb.
edu/cgi/viewcontent.cgi?article=1223&context=etd.

[52] R. Rivest, A. Shamir, and L. Adleman. On Digital Signatures and
Public-Key Cryptosystems. Massachusetts Inst Of Tech Cambridge Lab
for Computer Science, 1977, Technical Memo.

[53] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtain-
ing Digital Signatures and Public-key Cryptosystems. Commun. ACM,
21(2):120–126, Feb. 1978.

[54] D. Shanks. Analysis and Improvement of the Continued Fraction
Method of Factorization. https://www.usna.edu/Users/math/wdj/

_files/documents/mcmath/shanks_analysis.pdf.

[55] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput.,
26(5):1484–1509, Oct. 1997.

[56] R. D. Silverman. The Multiple Polynomial Quadratic Sieve. Mathe-
matics of Computation, 48(177):329–339, 1987.

[57] P. Stevenhagen. The Number Field Sieve, pages 83–100. Mathematical
Sciences Research Institute Publications, 2008.

[58] I. Stewart and D. Tall. Algebraic Number Theory and Fermat’s Last
Theorem: Third Edition. AK Peters Series. Taylor & Francis, 2001.

[59] R. Thangadurai. Irreducibility of Polynomials Whose Coefficients are
Integers. Mathematics Newsletter, 17:29–61, 2007.

[60] The CADO NFS Development Team. CADO-NFS, An Implementation
of the Number Field Sieve Algorithm, 2015. Release 2.2.0.

[61] E. Thomé. Square root algorithms for the number field sieve. In F. Özbu-
dak and F. Rodŕıguez-Henŕıquez, editors, 4th International Workshop
on Arithmetic in Finite Fields - WAIFI 2012, Lecture Notes in Com-
puter Science, volume 7369, pages 208–224, Bochum, Germany, July
2012. Springer.

[62] L. Valenta, S. Cohney, A. Liao, J. Fried, S. Bodduluri, and N. Heninger.
Factoring as a Service. Financial Cryptography and Data Security,
2015. http://eprint.iacr.org/2015/1000.

[63] B. Vancouver. Mathematics of computation 1943-1993: A half-century
of computational mathematics, January 1995. American Mathematical
Soc.

http://scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=1223&context=etd
http://scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=1223&context=etd
https://www.usna.edu/Users/math/wdj/_files/documents/mcmath/shanks_analysis.pdf
https://www.usna.edu/Users/math/wdj/_files/documents/mcmath/shanks_analysis.pdf
http://eprint.iacr.org/2015/1000

96 BIBLIOGRAPHY

[64] S. S. Wagstaff. The Joy of Factoring. Student mathematical library.
American Mathematical Society, 2013.

[65] S. H. Weintraub. Factorization: Unique and Otherwise. AK Peters
Series. Taylor & Francis, 2008.

[66] D. H. Wiedemann. Solving sparse linear equations over finite fields.
IEEE Transactions on Information Theory, 32:54 – 62, 1986.

[67] H. C. Williams. A p+ 1 method of factoring. Mathematics of Compu-
tation, Vol. 39:pp. 225–234, Jul., 1982.

[68] R. Williams. Cubic Polynomials in the Number Field Sieve. MSc Thesis,
Texas Technical University, http://www.math.ttu.edu/~cmonico/

research/Williams_Ronnie_Thesis.pdf.

[69] M. Yang, Q. Meng, Z. yi Wang, L. Wang, and H. Zhang. Polynomial
selection for the number field sieve in geometric view. IACR Cryptology
ePrint Archive, 2013:583, 2013.

http://www.math.ttu.edu/~cmonico/research/Williams_Ronnie_Thesis.pdf
http://www.math.ttu.edu/~cmonico/research/Williams_Ronnie_Thesis.pdf

	Abstract
	Acknowledgements
	List of Figures
	List of Variables
	Introduction
	Factorizing Algorithms Using the Difference of Squares
	Fermat's Factorizing Algorithm
	Dixon's Method and the Quadratic Sieve

	Interlude
	Introduction
	Algebraic Number Theory
	Theory of Ideals

	The General Number Field Sieve
	Creating a Difference of Squares
	Smoothness and the Algebraic Factor Base
	Creating Squares in O_

	Details of the General Number Field Sieve
	The Polynomial Selection Problem
	The Sieving Step
	The Rational Sieve
	The Algebraic Sieve
	Lattice Sieving

	The Linear Algebra Step (Matrix Reduction)
	Gaussian Elimination
	Standard Lanczos Algorithm
	Lanczos in GF(2)

	Computing the Square Root

	The GNFS Algorithm and the Security of Cryptographic Keys
	State of the Art of the GNFS
	LogJam and FREAK Attack
	LogJam attack

	TeslaCrypt Malware
	Conclusion

	CrypTool 2 Plug-in
	Introduction to CrypTool 2
	Factoring Algorithms besides GNFS, QS, or Fermat's Made Newly Available in CT2
	The New GeneralFactorizer
	YAFU (Yet Another Factorization Utility)
	The Plug-in

	Results and Further Work
	Performance of the Plug-in
	Further Work for the GeneralFactorizer

	Appendices
	Numbers used for performance tests

