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Abstract

Key exchange is a prerequisite of most types of secure communication. Its purpose is
to allow an arbitrarily large number of users n to communicate securely over an insecure
line (the Internet). The Diffie-Hellman key exchange protocol is the most famous proto-
col that achieves key exchange for the case of two users only; this protocol was originally
implemented only in finite fields of prime order.

It is the purpose of this thesis to describe several other settings in which cryptography
may be implemented: namely elliptic curves and pairings on elliptic curves. The translation
of the Diffie-Hellman protocol to elliptic curves is explained and the two settings are com-
pared. For the pairing setting, the Tate and Weil pairings are presented, and a basic overview
of pairing-friendly curves with embedding degrees k = 2 and k = 12 is given. As a basic ar-
rangement for three-partite key exchange in a pairing setting, a protocol by Joux is described
and analysed. Finally, for arbitrary values of n, two versions of the BD I (named after its
inventors Burmester and Desmedt) key exchange protocol and the BD II key exchange pro-
tocol are presented in finite fields and in the pairing setting. New additions to the protocols
already described in the literature are: a slight extension for the BD II protocol in the pairing
setting to include cases in which users might have only one child instead of two on one of its
branches, and a turn-based BD I protocol for the pairing setting. For each of the protocols
in the pairing setting, an explicit method has been given of how to modify the protocol for
elliptic curves that do not support distortion maps.

It was also the intention of this master project to implement multi-partite key exchange
in JCrypTool – a didactic tool that demonstrates various cryptographic and security-related
topics. Some details of this implementation are also presented in this thesis.
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Chapter 1

Introduction

Key exchange is an important step in any type of secure communication over an insecure
line. Suppose that we have a situation where several users want to securely communicate
with each other. An example of secure internet communication which occurs increasingly
often is internet-shopping. In such cases, a user – the home-shopper – attempts to establish
a secure connection to a server. The server must prove its identity to the home-shopper, while
the remote user must be provided sufficient security to send sensitive bank information
across the internet.

Another example of secure communication may occur when various parties want to hold
an online conference. In this case, all the parties need to be able to verify the identities of
their peers and must have the security that the information they send and receive can only be
decrypted by those involved in the conference. The connection between these parties takes
place via internet; thus the sent and received information is accessible by eavesdroppers. In
this situation, the security of the communication has to be provided by cryptography.

A practical, standardised method of ensuring secure multipartite communication is the
TLS protocol as described by [11]. This protocol is currently in use and supported by sev-
eral applications, such as HTTP, FTP, SMTP, NNTP, or XMPP; in order to work properly,
it requires the existence of a reliable information transport protocol, such as TCP. When for
example HTTP is used together with TLS, it has as result HTTPS. This protocol is secure
against both passive and active adversaries; that is to say, using HTTPS ensures protection
against eavesdropping, message tampering, and message forgery. This protocol is used in
internet shopping and is identified by the "https" appearing in the URL. A bank transaction
via internet banking, or even a payment on www.amazon.com will be made via HTTPS. The
protocol needs to be supported by the browser so as to minimise the user’s involvement; for
the convenience of the communicating parties, it is also necessary for the protocol to be fast.
There are three phases in the TLS protocol, the second of which is key exchange:

1. Peer negotiation for algorithm support;

2. Authenticated key exchange;
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3. Authenticated symmetric encryption during message exchange.

During authentication, each identity – a server, a user – is bound to a set of private and
public keys. An entity must prove its identity by proving it knows the secret key correspond-
ing to its public key. There are different levels of security that can be considered in a TLS
protocol; when more parties are required to authenticate themselves, it becomes less likely
for an adversary to disrupt communication by impersonation attacks. Ideally, of course, ev-
ery communicating party needs to authenticate itself. However, each entity that requires
authentication needs to have a certificate issued by some trusted authority; for this, each
participant is usually involved in a PKI – Public Key Infrastructure (as an alternative to the
rather centralised PKI model, one could also use the web of trust model in PGP). HTTPS
usually provides communication between only two parties – a user and a server – and the
tendency is to minimise user involvement. Therefore, most HTTPS communications will
only authenticate the server and not both parties. However, when several users wish to com-
municate securely, they will all need to be authenticated.

This thesis concerns key exchange in greater detail; an instance of this process occurs
as the second phase of the TLS protocol, but it is not restricted to it. Key exchange is a pre-
requisite of any exchange of information in which symmetric cryptography occurs, and the
keys that the users obtain as a consequence are used in symmetric encryption and decryp-
tion. The situation we consider is that of more than two parties wishing to communicate
securely. If we are to examine TLS, we notice that key exchange is preceded by an initial
contact between the underlying structures of the users’ web browsers, which ensures peer
negotiation for algorithm support and establishes the algorithms that are subsequently used
in authentication, key exchange, and cryptography algorithms. For further information on
the peer negotiation phase in TLS, we refer to [11].

Key exchange occurs as a second phase of the TLS protocol, and as a first phase in other
types of cryptographic communication. This phase is meant to provide each of the parties
involved in secure communication with a conference key, which further enables them to use
symmetric encryption. Because key exchange is only the first step in secure communication,
it must be efficient and secure. Authentication must be provided in order to prevent active
attackers, in particular attackers impersonating one of the users, intercepting and sending
messages of its own without being detected.

Several key exchange protocols exist and are already in use. For two-party key exchange,
the most classical protocol is the Diffie-Hellman key exchange protocol – which will also
be presented in the course of this thesis. This is one of the standard key exchange pro-
tocols used by TLS. The focus of the present work, however, is the case when more than
two participants are considered; we call this multi-partite key exchange. At the moment,
several implementations of such protocols exist; the mathematical background for these is
presented in chapter 2.

The Burmester Desmedt (BD) protocols provide key exchange for any number n of par-
ticipants, and can be implemented both in finite fields and in a pairing setting. In finite
fields, the BD I protocol arranges the users in a circle; when pairings are considered, the
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arrangement is made up of triangular units.
Should the participants to the protocol be organised in a hierarchical structure, such as a

binary tree, key exchange could be achieved by means of the BD II protocol. In finite fields,
the BD II protocol arranges its users in a binary tree, while in the pairing setting, the users
are arranged in a triangle-based tree.

Once all the users know which key exchange protocol suits all of them and is supported
by their hardware and software, i.e. their browsers, computers, laptops, or mobile phones,
the protocol can be put into use and results in a conference key. This key will then be used
for message encryption and authentication.

Bi-partite key exchange is the basis of general key exchange, and the case for two users
can be extended to more participants. We show a practical example of how authenticated
bi-partite key exchange works, without restricting ourselves to a particular protocol. We can
think of this protocol as the one used in TLS. We call the users Alice and Bob, and we as-
sume that they have somehow agreed on protocols Aauth for authentication, Akexch for key
exchange, and Acrypt for further symmetric cryptography.

Phase Two: Key Exchange

Alice Bob
knows: Saauth, Paauth knows: Sbauth, Pbauth

gets: Pbauth gets: Paauth

generates: Sakexch generates: Sbkexch
computes σa = Sign(Pakexch, Saauth) computes σb = Sign(Pbkexch, Sbauth)

computes: m1kexch = {Pakexch, σa} −→ receives: m1kexch
checks: σa with Paauth

gets: Pakexch
receives: m2kexch ←− computes: m2kexch = {Pbkexch, σb}

checks: σb with Pbauth
gets: Pbkexch

computes: Kkexch computes: Kkexch

In the key exchange phase, authentication is used with every message sent through pub-
lic channels. The users are assumed to know the public authentication keys of all the other
peers before the beginning of the protocol. This could be done for example by using lists that
bind identities with public keys. The key exchange protocol dictates then how the generated
secret and public keys are used in finding the conference key Kexch. Symmetric cryptography
is afterwards used to encrypt and decrypt messages such as t1.

As stated before, it is the purpose of this thesis to investigate multi-partite key exchange
protocols. In particular, the protocols shown in this paper are: Diffie-Hellman, Joux’ tripar-
tite key exchange, BD I, and BD II. The algorithms are presented in various settings: finite
fields, elliptic curves, and pairings. Moreover, Java implementations of these protocols were
provided and incorporated in CrypTool – [8].
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CrypTool is an open source project that aims at enhancing worldwide awareness of cryp-
tography and its uses; it is also used as an educational tool in several institutions, such as for
example the University College in Utrecht. The Deutsche Bank and several universities are
involved in the development of CrypTool; there are also several independent contributors
involved. Their combined efforts have led to the development of an open source tool that
shows several classic and modern methods of cryptography, amongst which: Caesar ciphers,
Enigma, RSA, AES, and various methods of cryptanalysis.

At the moment, two versions of CrypTool are available: one containing implementa-
tions in C# and one in Java; the latter is called JCrypTool. It was the aim of this project
to integrate key exchange in JCrypTool and provide online help and usable interfaces for the
multi-partite key exchange protocols mentioned above. Chapter 7 shows the implementation
aspect in more detail. Several mathematical tricks that have been used for the programming
are described in the Appendix.

For the readers who are not already familiar with cryptographically relevant notions of
group theory, finite fields, elliptic curves, and pairings, we include a brief mathematical
background in chapter 2. An overview of several relevant cryptographic settings is shown in
chapter 3, and the respective, relevant hard problems that ensure security on these settings
are stated in chapter 4. The multi-partite key exchange protocols mentioned above are de-
scribed and analysed in chapter 5, and details about authentication are further explained in
chapter 6. Finally, several conclusions are presented in chapter 8.
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Chapter 2

Mathematical Background

In this chapter, a brief overview is given of the more important mathamatical concepts used
throughout this paper. The results presented here are also found in the literature, of which
we mention in particular [2], [5], and [28].

2.1 Groups

Definition 2.1.1. A group is a set G together with an operation ◦ : G × G −→ G for which the
following properties hold:

1. Closure: For any two elements a, b ∈ G, a ◦ b ∈ G;

2. Associativity: For any three elements a, b, c ∈ G, a ◦ (b ◦ c) = (a ◦ b) ◦ c;

3. Identity element: There exists an element I ∈ G such that for any element a ∈ G, I ◦ a =
a ◦ I = a;

4. Inverse element: For any a ∈ G, there exists b = a such that a ◦ b = b ◦ a = I. The element
a is called the inverse of a.

In many cases, a group is denoted by the symbol of the set it is built on. For example, the
group of integers modulo p under addition is denoted Fp, rather than (Fp,+). This short
notation will also be used in this thesis, when the context is clear.
Special kinds of groups are Abelian and cyclic groups.

Definition 2.1.2. A group (G, ◦) is called Abelian if additionally for any a, b ∈ G it holds that
a ◦ b = b ◦ a.

As a matter of notation, we denote the repeated use of the group operation ◦ on an
element g as gn , and we call it exponentiation. Therefore, g3

= g ◦ g ◦ g, and so forth. We
write I = g0 for any element g ∈ G.
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Definition 2.1.3. A group (G, ◦) is called cyclic if there exists an element g ∈ G such that all
elements h ∈ G can be written as h = gk for some k ∈ Z. The element g is then called generator
of the group.

We also introduce the notions of element and group order.

Definition 2.1.4. Let G be a group under the operation ◦ and consider an arbitrary element g ∈ G.
The order of g is the smallest positive integer k such that gk

= I, or infinity.

Definition 2.1.5. Let (G, ◦) be a group. The order of this group is the cardinality of G, i.e. the
number of elements in G.

A concept that will appear frequently in the subsequent chapters is that of a subgroup.

Definition 2.1.6. Let (G, ◦) be a group. H ⊆ G is a subgroup of G if (H, ◦) is a group.

We further define the concepts of cosets and quotient groups, as these structures are neces-
sary when defining pairings.

Definition 2.1.7. Let H be a subgroup of the group (G, ◦). Let g ∈ G be an arbitrary group
element. Then:

gH = {g ◦ h, h ∈ H} and

Hg = {h ◦ g, h ∈ H}

are left and right cosets of H. Clearly, if G is an Abelian group, the two cosets are identical.

Definition 2.1.8. A subgroup H of (G, ◦) is normal if and only if gH = Hg for all elements
g ∈ G.

Definition 2.1.9. Let H be a normal subgroup of a group (G, ◦). Then the quotient group G/H
is the set of all left cosets of H in G; in other words:

G/H = {gH : g ∈ G}. (2.1)

The elements of G/H are sets, and the cardinality of G/H is usually less than the cardinality
of G. We define set product as an operation, and mention that it can be used on the quotient
group G/H :

Definition 2.1.10. Let (G, ◦) be a group, and consider S1, S2 ⊂ G. We consider the product of S1
and S2 to be:

S1S2 = {s1 ◦ s2 , s1 ∈ S1, s2 ∈ S2}. (2.2)
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Set product defines a group operation on G = G/H . The product of two elements of G/H ,
S1 = g1 H and S2 = g2 H , is again an element of G/H as S1S2 = (g1 H)(g2 H) = (g1 ◦ g2)H ,
or ĝH for ĝ := g1 ◦ g2.
Some groups can be related to one another by means of special maps called homomor-
phisms:

Definition 2.1.11. Let (G, ◦) and (H, •) be two groups. A group homomorphism from G to H
is a map φ : G −→ H such that for all u, v ∈ G, φ(u ◦ v) = φ(u) • φ(v).

Important structures related to homomorphisms are the kernel and the image of the map.

Definition 2.1.12. Let φ : G −→ H be a homomorphism between the two groups (G, ◦) and
(H, •). The kernel of φ is Kφ = {g ∈ G : φ(g) = IH }; the image of the homomorphism is
Iφ = {φ(g) : g ∈ G}.

A notion that will be useful in the understanding of finite fields is equivalence. In what
follows we define equivalence and several related notions.

Definition 2.1.13. Let S be a set. An equivalence relation is a binary relation ∼ that relates two
elements of a, b ∈ S – we say that a is equivalent to b if a ∼ b. The relation ∼ should have the
following properties:

• Reflexivity: a ∼ a;

• Symmetry: a ∼ b implies b ∼ a;

• Transitivity: a ∼ b and b ∼ c imply a ∼ c.

Definition 2.1.14. Let a be an element in S. An equivalence class [a] under the relation ∼ is the
set of all b such that a ∼ b. Note that a ∈ [b] by the reflexivity of the relation ∼.

Definition 2.1.15. The set of all possible equivalence classes [s] of S under ∼ is the quotient set of S
by ∼.

2.2 Fields and Finite Fields

Definition 2.2.1. A field is a set K together with two operations – generally called addition and
multiplication and denoted + and · – such that the following properties hold:

• Closure under + and ·: for all a, b ∈ K, a + b ∈ K and a · b ∈ K;

• Associativity under + and ·: for all a, b, c ∈ K, (a+ b)+ c = a+ (b+ c) and (a · b) · c =
a · (b · c);
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• Commutativity of + and ·: for all a, b ∈ K, it holds that a + b = b + a and a · b = b · a;

• Identity elements for + and ·: there exist elements 0 6= I such that for all a ∈ K: a + 0 =
0+ a = a and a · I = I · a = a;

• Inverses under +: all elements a ∈ K have an inverse (−a) under addition;

• Inverses under ·: all elements a 6= 0 have an inverse a−1 under multiplication;

• Distributivity: multiplication is distributive with respect to addition. For all elements a, b, c ∈
K, it holds that a · (b + c) = (a · b)+ (a · c).

In other words, K is an Abelian group under addition, K \ {0} is an Abelian group under
multiplication, and the law of distributivity holds.
A particular type of field is a finite field.

Definition 2.2.2. A finite field is a field that has finitely many elements.

In order to correlate structures, such as groups and fields, we require the concept of an
isomorphism. We have already defined group homomorphisms; we now translate this defi-
nition to fields as follows:

Definition 2.2.3. Let (K1,+, ·, 0K1, 1K1) and (K2,⊕,�, 0K2, 1K2) be two fields. A field homo-
morphism is a map f : K1 −→ K2 with the following properties:

• For a, b ∈ K1, f (a + b) = f (a)⊕ f (b);

• For a, b ∈ K2, f (a · b) = f (a)� f (b);

• f (0K1) = 0K2 and f (1K1) = 1K2 .

Definition 2.2.4. Let K1 and K2 be two fields as above. An isomorphism φ is a bijective map
such that both φ and φ−1 are field homomorphisms.

The order of a finite field is either a prime p, or a prime power pk for some positive integer
k. The prime p is called the characteristic of the finite field. For every prime power pk , there
exists exactly one finite field of order pk (up to isomorphism).
Consider a finite field with p elements, where p is a prime number. This finite field is
isomorphic to Z/pZ and we use Fp to denote it. The isomorphism provides a representation
of Fp as equivalence classes, where a ∼ b ⇔ a ≡ b mod p ⇔ ∃m ∈ Z s.t. a − b = mp. For
ease of notation, we generally represent elements of Fp by the smallest positive element in
the equivalence class.

Definition 2.2.5. Let (L,+, ·, 0, 1) be a field. If there exists a subset K ⊂ L such that (K,+, ·, 0, 1)
is a field, then we call L an extension field of K and we write L/K.
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The finite field with pk elements is an extension field of Fp. They can be constructed from
the ring of polynomials over Fp, which is denoted Fp[X ], by considering an irreducible
polynomial f ∈ Fp[X ] of degree k. The elements of Fpk are equivalence classes in Fp[X ]
defined on the relation ∼ such that a ∼ b if and only if a − b = g f , where g ∈ Fp[X ]. Each
of these classes is represented by a single element, which we call a representative. We will
represent the elements of Fpk by the smallest degree element in the equivalence class.
A particular kind of extension is an algebraic extension.

Definition 2.2.6. Let L be an extension field of K. The extension L/K is algebraic if every element
of L is algebraic over K, that is to say every element of the field L is a root of a non-zero polynomial
f with coefficients in K.

Definition 2.2.7. A field K is algebraically closed if every polynomial a ∈ K[X ] with deg(a) ≥ 1
has a root in K.

Definition 2.2.8. Let K be a field. The algebraic closure K is the smallest algebraic extension of
K that is algebraically closed.

2.3 Elliptic Curves

Definition 2.3.1. Let K be a field. An elliptic curve over this field is a curve defined by the follow-
ing affine equation:

E : y2
+ a1xy + a3y = x3

+ a2x2
+ a4x + a6. (2.3)

Here, a1, a2, a3, a4, a6 ∈ K are taken such that for any point P = (x1, y1) ∈ E with x1, y1 ∈ K
the partial derivatives 2y1+a1x1+a2 and 3x2

1 +2a2x1+a4−a1y1 do not vanish simultaneously.
This condition ensures that the curve is nonsingular, or in other words it is smooth. We identify the
elliptic curve with the points on it over K:

E := {(x, y) ∈ K×K s.t. y2
+ a1xy + a3y = x3

+ a2x2
+ a4x + a6} ∪ {O} . (2.4)

In this equation, O is the point at infinity.

Definition 2.3.2. Let E be an elliptic curve defined over the field K with equation as in (2.3). Its
discriminant is defined as:

1 = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6. (2.5)
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Herein, we have: b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6, and b8 = a2
1a6 + 4a2a6 −

a1a3a4 + a2a2
3 − a2

4 .

An elliptic curve is nonsingular if 1 6= 0. We consider the K-rational points on the curve E .

Definition 2.3.3. Let E be an elliptic curve defined over some field K. Let L ⊇ K be an algebraic
extension of K. The set of L-rational points of this curve is:

E(L) = {(x, y) ∈ E : x, y ∈ L} ∪ {O} . (2.6)

We denote the size of the set of L-rational points on the elliptic curve by #E(L).

Theorem 2.3.1. Let E be an elliptic curve defined over the finite field K = Fq . Then the number
#E(K) of K-rational points are bounded from above and below as follows:

|#E(K)− (q + 1)| ≤ 2g
√

q . (2.7)

We can define a group operation on the set of points on the elliptic curve E . We write the
group additively, and thus speak of scalar multiplication instead of exponentiation. We can
define addition in two ways: by means of the chord-and-tangent method or by means of
divisors. In what follows, we explain chord-and-tangent point addition, while some notions
on divisors are given later.
Consider points P, Q ∈ E . By means of, for instance, Bézout’s theorem, we can see that,
if we take the point at infinity into consideration as well, a line (a curve of degree 1) will
intersect an elliptic curve (of degree 3) in exactly 1∗ 3 = 3 points. Thus, if we draw a straight
line between two points, the line will intersect the elliptic curve in another point (which
could be the point at infinity as well).

Figure 2.1: A straight line intersects an elliptic curve in 3 points
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If the characteristic of the field is greater than 3, an elliptic curve is isomorphic to a curve
in short Weierstrass form: y2

= x3
+ ax + b. For such curves therefore, if the point (x, y)

is on the curve, then the point (x,−y) is also on the curve and the graph of the curve is
symmetric with respect to the x -axis. Figure 2.1 shows such an elliptic curve over the real
numbers R. The addition P + Q is defined as follows: we draw the straight line between P
and Q, and find the point S where the straight line intersects the curve for the third time.
Let the coordinates of point S be (xS, yS). Then P + Q = R for R = (xS,−yS).

Figure 2.2: Point Addition

If P = Q, P + Q = P + P is called point doubling, and it works like addition with the
intersecting line through P and Q replaced by the tangent to E at P . If the line is vertical
in any of the cases, the result is the point at infinity. If Q = O, adding a point P to Q
involves drawing the vertical line through P (this is the line between P and O); the third
point of intersection is therefore the point with coordinates (xP ,−yP), and reflecting this
point through the x -axis will give P . Thus: P +O = P . If P = Q = O, then P + Q = O.
Consider the example of an elliptic curve with equation y2

= x3
+ ax + b and P = (xP , yP),

Q = (xQ, yQ) ∈ E with P 6= ±Q, the slope of the line through P and Q is given by:
λ =

yQ−yP
xQ−xP

. The straight line with slope λ going through the point P has equation: y− yP =

λ(x − xP), which is equivalent to y = λ(x − xP) + yP . The intersection between this line
and the elliptic curve will give three possible solutions for x : xP , xQ , and xS = λ

2
− xP − xQ .

This can be shown as follows: equate y2
= (λ(x − xP) + yP)

2
= x3

+ ax + b. Then
x3
− (λ(x − xP) + yP)

2
+ ax + b = 0, which is a third degree equation and thus has three

solutions: xP , xQ , and xS . We write: x3
−(λ(x−xP)+yP)

2
+ax+b = (x−xP)(x−xQ)(x−xS)

and equate the coefficient of x2 on both sides of the equation: −λ2
= −(xP+ xQ+ xS). Thus

xS = λ
2
− xP − xQ . Clearly now, the y-coordinate of the point of intersection of the line and

the elliptic curve is yS = λ(xR − xP) + yP . The chord-and-tangent rule now indicates that
the point R = P + Q has coordinates xR = xS and yR = −yS .

12



We can prove that the structure (E,+,O) with + denoting the addition defined previously
and O the point at infinity is a group. Indeed, it holds that:

• Closure: if P, Q ∈ E , then P + Q ∈ E ;

• Associativity: for P, Q, R ∈ E , it holds that (P + Q)+ R = P + (Q + R);

• Identity element: the point at infinity O is the neutral element, since for all P ∈ E , we
have: P +O = O + P = P ;

• Inverse element: ∀ P = (xP , yP) ∈ E ∃ (−P) ∈ E s.t. P + (−P) = O, with O being
the point at infinity. We have: (−P) = (xP ,−yP) in general, and −O = O.

As stated before, point doubling represents the addition of a point to itself; it is done by
drawing a tangent to the curve at point P and then finding the third point of intersection.
The slope of the tangent to the curve is found by implicit differentiation of the short Weier-
strass equation, giving:

λ =
dy
dx
=

3x2
+ a

2y
. (2.8)

The equation of the line with slope λ going through the point P is, as given above, y =
λ(x − xP) + yP . Just as before, we find the x coordinate of R = 2P to be: xR = λ

2
− 2xP

and yR = λ(xP − xR)− yP .
It is possible that either the tangent to the curve at point P or the line between points P and
Q is vertical. In both case, the third point of intersection is O and the result of the doubling
and respectively of the addition is O itself – the point at infinity.
Depending on the application for which elliptic curves are needed, one might choose to work
with Jacobian coordinates instead of affine coordinates – see for example [17] or [1]. Jacobian
coordinates are useful when the cost of a field inversion is much higher than the cost of a
field multiplication, as working with Jacobian coordinates will exchange inversions for mul-
tiplications. A point with Jacobian coordinates (X, Y, Z) represents the affine point (x, y)
with x = X

Z2 and y = Y
Z3 . Efficient algorithms for point addition and doubling in Jacobian

coordinates may be found in [14]. Apart from the regular Jacobian addition and point dou-
bling, one can also use mixed addition, that is the addition of a point in Jacobian coordinates
with a point with affine coordinates, both points different from the point at infinity. A pos-
sibility for mixed addition is to follow the algorithm for regular Jacobian addition, with the
single exception that the Z -coordinate of the affine point is taken by default as 1.
We have already defined the notion of group order in the previous sections. Having proved
that the points on an elliptic curve form a group under point addition, we can define the
order of a point P ∈ E .

Definition 2.3.4. Let E be an elliptic curve defined over a field K, and consider a K-rational point
P ∈ E(K). The order of P is the smallest integer k such that k P = O.

13



We connect the notion of point order to that of torsion points.

Definition 2.3.5. Let E(K) be an elliptic curve on a field K and l an integer. An l-torsion point is
a point for which l P = O. Therefore, the order of P must be a divisor of the integer l.

For applications in cryptography, one uses a prime integer l. We denote the set of all K-
rational l-torsion points on the curve by E(K)[l]. We have proved that the points on the
elliptic curve form a group under addition; we now consider a subgroup of the K-rational
points on the elliptic curve E .

Lemma 2.3.1. Let K = Fp, the finite field of integers modulo a prime p. Let l be a prime number.
Then the set E(Fp)[l] forms a group under the operation of point addition.

Proof: We point out that if l does not divide the number of points on the elliptic curve, the set
E(Fp)[l] = {O}, which is the trivial group under addition. This follows because any l-torsion
point on E other than O has order l 6= 1, which must divide the number of K-rational points
on the elliptic curve.

As we have proven the points on an elliptic curve to form a group under the operation
of point addition, it holds that also l-torsion points in particular are associative under point
addition. Similarly, we have that O is the identity element of point addition and that each
point P ∈ E has an inverse (−P) ∈ E . It remains to prove the closure of l-torsion points
under point addition, and the fact that both O and the inverse of each P ∈ E(Fp)[l] are
themselves l-torsion points. We use several properties of point addition and prove this:

1. Closure: Let P, Q ∈ E(Fp)[l] be l-torsion points on the elliptic curve E(Fp). It holds
that l P = O and l Q = O. Then: O = l P + l Q = l(P + Q) and P + Q ∈ E(Fp)[l].

2. Identity Element: O ∈ E(Fp)[l] as lO = O ∈ E(Fp)[l].

3. Inverse: Let P ∈ E(Fp)[l] be a point on the elliptic curve and let (−P) be its inverse
under addition. It holds that l(−P) = −l P = −O = O. Therefore, the inverse of an
l-torsion point is itself an l-torsion point.

As preparation for the notion of pairings, which will be defined in the following section, we
give a short overview of divisors and recommend [1] to the interested reader. In what follows,
we consider an elliptic curve E over a field K and denote the set of K-rational points on E by
E(K).

Definition 2.3.6. A divisor is a finite formal sum of points on the elliptic curve. D =
∑

P∈E aP(P)
with aP ∈ Z and P ∈ E is a divisor if there are only finitely many aP ’s that are non-zero. We write
(P) for the divisor consisting of P to differentiate the formal sum of points from the sum introduced
in Section 1.1.1. Therefore P + Q gives as a result a point R, while (P)+ (Q) is a divisor.
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Divisors on an elliptic curve E(K) form an Abelian group under divisor addition; we will
denote this group by DivE . The addition of two divisors is straight-forward.

Definition 2.3.7. Let D1 =
∑

P∈E aPD1(P) and D2 =
∑

P∈E aPD2(P) be divisors. Then:

D1 ⊕D2 =
∑
P∈E

(aPD1 + aPD2)(P). (2.9)

The operation + is point addition as defined above; by contrast, divisor addition is denoted ⊕.

The fact that DivE is an Abelian group follows because Z is an Abelian group under addition.
We can define a norm for the group of divisors.

Definition 2.3.8. The degree function deg : DivE −→ Z is defined as: deg(D) =
∑

P∈E aP for
D =

∑
P∈E aP(P). The map deg is a homomorphism of groups and its kernel must be a group

itself – the group of divisors that have degree 0. We denote this group by Div0
E .

We further define functions on elliptic curves.

Definition 2.3.9. A function f on a curve E(K) is a rational function f (x, y) ∈ K(x, y)/E .
We can evaluate a function in a certain point P = (xP , yP) ∈ E(K) and we write: f (P) =
f (xP , yP).

Divisors can be assigned to each function. We write div( f ) =
∑

P∈E v f (P), where v f
is the valuation of the function f at P . This valuation gives 0 if f (P) is defined and
f (P) 6= 0, and it gives the order of the zero at P with positive multiplicity and the order
of the pole at P with negative multiplicity otherwise. Let us take as an example a line L
that passes through three different points, P, Q, and S. This line will have a zero of order
1 for each of these points, and a pole of order 3 in the point at infinity. Therefore, we have
div(L) = (P)+ (Q)+ (S)− 3(O).

Definition 2.3.10. Let D be a divisor. If there exists a function f such that D = div( f ), then D
is a principal divisor.

We notice in the example above that the degree of the divisor is zero. Indeed, this holds for
all principal divisors. Without proving it, we state that if we count with multiplicities, there
are as many roots as poles in such a function and that these are finitely many. Therefore all
the principal divisors are contained in the group Div0

E .
We furthermore look at multiplication of functions on the elliptic curves, denoted here by ◦.
The result of function multiplication is of course a new function. It is not difficult to show
that for functions f and g it holds that:

div( f ◦ g) = div( f )⊕ div(g). (2.10)

In fact, the set of principal divisors together with addition (⊕) forms a group with neutral
element the 0 divisor, i.e. the divisor of a constant function f ≡ k, where k is any constant
in K∗. We call this group PrincE . We also know that PrincE ⊂ Div0

E . We can now define
equivalence of divisors.
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Definition 2.3.11. Two divisors D1 and D2 are said to be equivalent if D1 −D2 ∈ PrincE . We
can thus define equivalence classes in Div0

E .

We will now work in the quotient group Pic0
E = Div0

E/PrincE . Point addition can also be
related to divisors. We recall the chord-and-tangent point addition:

Figure 2.3: Point Addition

The line through P, Q, and S is denoted L , and the vertical line connecting S and R is
denoted V . Each of these lines represents a function. It holds that:

div(L) = (P)+ (Q)+ (S)− 3(O)
div(V ) = (R)+ (S)− 2(O).

These two are both principal divisors on the elliptic curve, since they are the divisors of two
line-functions. When we add in the quotient group Pic0

E , we compute modulo a principal
divisor. Thus, it holds that:

(P)+ (Q)− 2(O) = ((P)+ (Q)− 2(O))	 div(L) =
= ((P)+ (Q)− 2(O))− ((P)+ (Q)+ (S)− 3(O)) =

= −(S)+ (O) = (−(S)+ (O))⊕ div(V ) =
= (R)− (O).
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This formal approach towards addition will be of great further use in the explanation and
computation of the Weil and Tate pairings, which are presented in the following section. My
internship report, [27], contains more details about elliptic curves and their arithmetic. In
the remainder of this thesis, we refer to elliptic curves over finite fields, both fields of prime
order and extension fields, rather than general fields K.

2.4 Pairings

Let G1, G2, and G3 be groups of order l, where l is prime. Let G1 and G2 be groups under
addition and G3 be a group under multiplication.

Definition 2.4.1. A pairing is a bilinear map of the form e : G1×G2 −→ G3 with the properties
([6]):

• Bilinear: For a, b ∈ Z and elements P ∈ G1 and Q ∈ G2, it holds: e(a P, bQ) =
e(P, Q)ab. Note that in the left hand side, the first argument of the pairing involves scalar
multiplication on G1 and the second argument concerns scalar multiplication on G2. The
right hand side concerns exponentiation in G3.

• Nondegenerate: Not all pairs (P, Q) ∈ G1 × G2 are mapped to the identity element in G3.

• Computable: There exists an efficient algorithm for the computation of this pairing.

For cryptography, we require the notion of a cryptographic pairing.

Definition 2.4.2. A cryptographic pairing is a pairing with the additional property:

Computable: There exists an efficient algorithm for the computation of this pairing.

In practice, pairings are constructed on elliptic or hyperelliptic curves. Not every curve can
support an efficiently computable pairing; those that do are called pairing-friendly curves.
We define such a curve after establishing the notion of an embedding degree.

Definition 2.4.3. Let E be an elliptic curve defined over a finite field Fq ; let l be a large prime
dividing the number of points on the elliptic curve, i.e. l|#E(Fq). The embedding degree with
respect to l is the smallest integer k such that l|qk

− 1.

Definition 2.4.4. A non-supersingular elliptic curve over Fp is called pairing-friendly if it contains
a subgroup of order l whose embedding degree k is not too large, which means that computations in
the field Fpk are feasible.

In what follows we describe two of the most used types of pairings on elliptic curves: the
Weil and the Tate pairings. Let q be a prime or a prime power and l a large prime such that
l|E(Fq); let the subgroup of Fq -rational points of order l on E be denoted G. Let k be the
embedding degree of E with respect to l and let k > 1. By [3], all l-torsion points are defined
over Fqk . Denote the set of Fqk -rational l-torsion points by E(Fqk )[l] and observe that it is a
group under addition.
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Definition 2.4.5. The Weil pairing ([6]) is a bilinear map defined by w : E(Fq)[l]×E(Fqk )[l] −→
µl . Here, the group µl represents the group of the l th roots of unity of F∗qk . The mapping is given

by:

w (P, Q) =
fP(Q̃)

fQ(P̃)
. (2.11)

In this expression, P ∈ E(Fq)[l] and Q ∈ E(Fqk )[l]. The functions fP and fQ will be described

in more detail below – they are functions on the elliptic curve. Q̃ and P̃ are divisors equivalent
to (Q) − (O) and (P) − (O); they are chosen so that the functions fP and fQ are defined and
non-zero on their support.

In practice, the second argument of the pairing is a point in a subset of E(Fqk ) of order l.
It holds that l P = O, as P is an l-torsion point. Remembering the equivalence of divisors
(see the previous section), we can write in the divisor setting: l((P)− (O)) ∈ PrincE . Thus,
there is a function fP depending on this point P such that l((P) − (O)) = div( fP). This
is the function specified above, and it depends on the point P . The function fQ is defined
analogously.
This pairing gives as a result an l th root of unity. However, the fact that (by construction)
w (P, P) = 1 is a serious problem for some protocols assuming that G2 = G1. One way out
is to generalise the protocol; this is done e.g. for BN curves (see chapter 3). Another way out
is to introduce distortion maps from G1 to G2.

Definition 2.4.6. A distortion map is an endomorphism φ : E(Fq) −→ E(Fqk ), so that
e(P, φ(P)) 6= 1.

While the Weil pairing is defined on any elliptic curve, usually it is not efficiently computable.
It is generally quite difficult to find an elliptic curve, a corresponding embedding degree, and
choose a pairing such that the setting is secure and efficiently computable. In applications
therefore, the value of k should be small in order for the pairings to be computable, but not
too small, as the larger k is, the smaller q needs to be for a cryptographic setting to be secure.
Because of security considerations, however, q may also not become too small.
Boneh and Franklin illustrate the definition of distortion maps by considering the elliptic
curve E defined over Fq by: y2

= x3
+ 1. In this setting, a distortion map φ can be defined

by φ(x, y) = (ζ x, y), where 1 6= ζ ∈ Fq2 is a solution of x3
− 1 = 0. The parameters chosen

by Boneh and Franklin in this example are not sufficiently good for secure communication,
as the Decisional Diffie-Hellman problem (see chapter 4) is not hard enough in this setting
– see [20].
Once we have a distortion map, we define the modified Weil pairing: ŵ : E(Fq)[l] ×
E(Fq)[l] −→ µl with:

ŵ (P, Q) = w (P, φ(Q)). (2.12)
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This new mapping preserves all the properties of the initial Weil pairing, but satisfies ŵ (P, P) 6=
1. This makes e.g. key exchange protocols work with the pairing.
The Tate pairing offers a faster computation than the Weil pairing.
Consider the bilinear, nondegenerate map: T : E(Fq)[l]×(E(Fqk )/ l E(Fqk )) −→ F∗qk/(F∗qk )

l

with:

T (P, Q) = fP(Q̃), (2.13)

where fP and Q̃ are defined as in the case of the Weil pairing. Let k > 1. We have that
(E(Fqk )/ l E(Fqk )) ∼= E(Fqk )[l].

Definition 2.4.7. The modified Tate pairing is defined as: T̂ : E(Fq)[l]×(E(Fqk )/ l E(Fqk )) −→

µl , with:

T̂ (P, Q) = (T (P, Q))
qk
−1
l . (2.14)

The output of the pairing is indeed an l th root of unity, as ((T (P, Q))
qk
−1
l )l = (T (P, Q))q

k
−1
=

1. We can use a distortion map as before to map a point on E(Fq) to a point in E(Fqk )\E(Fq).
The computation needed for this modified Tate pairing is therefore about half the computa-
tion needed for the Weil pairing, with the extra exponentiation at the end.
Miller’s algorithm computes fP evaluated at a divisor; this result can be used to compute
of the Tate and Weil pairings as defined above. As before, in the definition of the Weil
pairing, Q̃ ≡ (Q) − (O). To choose an equivalent divisor, we pick a random S and put
(Q)− (O) = (Q)+ (S)− (S)− (O) = (Q + S)− (S). The addition of Q and S is point addi-
tion, while (Q)+(S) represents a formal addition of points, leading to a divisor. It holds that:

fP(Q̃) = fP((Q + S)− (S)) =
fP(Q + S)

fP(S)
. (2.15)

The computation of fP is done step by step, evaluating the argument in every step of the
computation. We have as input P ∈ E(Fq)[l] and Q ∈ E(Fqk )[l], as well as an m + 1-bit
prime l. We first write: l =

∑m
i=0 li 2i , where li ∈ {0, 1} and lm = 1. The output will be the

modified Tate pairing of P and Q, i.e. T̂ (P, Q). Write R = Q + S. The algorithm is:

Miller’s Algorithm

19



1. T ← P ; f1← 1;

2. FOR i = m − 1,m − 2, . . . , 1, 0 DO:

(a) f1← f 2
1

lT,T (R)·v2T (S)
v2T (R)·lT,T (S)

;

T ← 2T ;

(b) If li = 1 THEN: f1← f1
lT,P (R)·vT+P (S)
vT+P (R)·lT,P (S)

;

T ← T + P .

3. RETURN: f
qk
−1
l

1 .

In this algorithm, lT,P denotes the equation of the line through T and P . The expression
lT,P(R) denotes the evaluation of the line function through T and P in the point R. That
means: in a line equation of the kind y = mx + c, we replace y by the y-coordinate of the
point R and x with its x -coordinate. The notation vP represents the vertical line through P ,
i.e. the line through P and O. Similarly, vP(Q) is the evaluation of the vertical line equation
through P at the point Q. By extension, vT+P(S) is the vertical line through T + P evaluated
at point S. The computation of the Weil pairing involves using Miller’s algorithm to compute
fP(Q) and fQ(P) without the final exponentiation.
There are certain speed-ups that can be used for this algorithm. A particular speed-up ap-
pears for k even. Choose Q ∈ E(Fqk ) with xQ ∈ F

q
k
2

and yQ ∈ Fqk and not defined over a

smaller field. Clearly, the vertical line through the point 2T and the vertical line through the
point T + P involve x and not y, and so the evaluation of these functions in Q gives a value

in F
q

k
2
. We have that v2T (Q) = xQ − x2T . Thus, v2T (Q)

qk
−1
l = (xQ − x2T )

qk
−1
l . We denote

xQ − x2T = α. Since xQ ∈ F
q

k
2

and x2T ∈ Fq , it holds that α ∈ F
q

k
2
.

Since k is the embedding degree and thus chosen minimal so that l|qk
− 1, l does not divide

q
k
2 − 1. Therefore, the map ϕ : x −→ x l is a bijection in F

q
k
2
. There exists therefore a

β ∈ F
q

k
2

such that:

β = ϕ−1(α). (2.16)

This translates to: α = ϕ(β) = βl . The pairing algorithm ends by raising the result to the

power qk
−1
l . All the contributions to f1 are multiplicative and the exponentiation can thus

be applied to each factor separately. Therefore:
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(v2T (Q))
qk
−1
l = α

qk
−1
l = (βl)

qk
−1
l = β(q

k
−1)
= 1. (2.17)

The same argument can be used for the second vertical line, vP+T (Q). The point S can be
chosen in E(Fq) itself so that all contributions of S are annihilated. Therefore, both division
steps become obsolete for Tate pairings for which the embedding degree is even. Similarly,
all computations involving only S in Miller’s algorithm can be eliminated as soon as k > 1.
In elliptic curve cryptography, pairings can be used to improve speed, but their existence has
a few consequences. One such consequence is that one of the hard problems in elliptic curve
cryptography becomes easily solvable. More details regarding hard problems for pairing
based cryptography can be found in chapter 4.
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Chapter 3

Various Cryptographic Settings

Throughout the course of this thesis, we will often refer to the notion of a cryptographic
setting. This term is only used in this thesis, and so we define it locally as an underlying
cryptographic primitive – for example a field – and the arithmetic associated with it, which
permits secure communication by means of several pre-established algorithms.

There are several cryptographic settings that are already in use. Most of the protocols that
can perform cryptography in these settings can be translated from one setting to another;
most such protocols can also be abstractly stated in a cyclic group.

3.1 The Finite Fields Setting

Let p be a prime number and denote Fp the finite field of integers modulo p under addition
and multiplication. Let l be a prime such that l|p − 1. The identity element of addition is
in the equivalence class of 0, while the identity element of multiplication is the equivalence
class of 1. We consider the multiplicative group of Fp, i.e. the set F∗p = Fp \{0}. We consider
an element g ∈ F∗p such that g has prime multiplicative order l.

The fact that g has prime order l means that g1, . . . , gl−1 are all different and not equiv-
alent to g0

= 1 (if any of them were equivalent to 1, then there would exist an integer k < l
such that gk

= 1; this cannot happen as l is the order of g). For the sake of clarity, we men-
tion that whenever calculations are made in Fp, the result is automatically reduced modulo
p. Therefore, we will use the notation a = b for a ≡ b mod p. Clearly, under multiplication
modulo p, g generates a finite cyclic subgroup of order l within F∗p. Key exchange can be
performed in this subgroup.

The parameters p, l, and g are public in all key-exchange protocols. The final section of
this chapter and the next chapter add a few considerations on the size of these parameters;
we denote the bit size of p by sp and the size of l by sl . The method to generate these
parameters is to begin by finding a suitable sl -bit prime l.

At this point, we state Fermat’s little theorem:

Theorem 3.1.1. (Fermat’s Little Theorem:) Let p be a prime number. Then for any integer g,
the number g p

− g is divisible by p.
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A proof of Fermat’s little theorem can be found in [2].
This theorem can be reformulated in finite field arithmetic as follows: for any element

g ∈ F∗p it holds that g p
= g, or equivalently g p−1

= 1.
Thus it holds that l|(p − 1). We can write: p − 1 = lm. Having already found a prime

l of size sl , we now randomly pick an integer m of sp − sl bits and check whether lm + 1 is
prime. If it is, then we set p = lm + 1. If it isn’t, then we choose another m and repeat the
procedure until a suitable p has been found. All that is left now is to find an element g ∈ Fp
of order l. This can be done as follows: pick a random element a and check if ak

= 1. If that
doesn’t hold, write g = am . If am

= 1, then pick another a and start over again.
The fact that am has order l if am

6= 1 is not difficult to see. By Fermat’s little theorem, it
holds that a p−1

= 1, so alm
= 1. Therefore (am)l = 1. l is prime, therefore the order of am

must be l. Together, the two primes p and l, and the element g form a finite field setting for
key exchange protocols; they are generally called system parameters.

3.2 The Elliptic Curve Setting

Elliptic curves offer another cyclic group for cryptography to be applied upon. A few notions
on elliptic curves are described in chapter 2.

We recall that any curve over a field of characteristic greater than 3 is isomorphic to one
in short Weierstrass form:

y2
= x3

+ ax + b . (3.1)

In this thesis, we work with curves of large characteristics, therefore the curves we con-
sider will have the short Weierstrass form and can be determined by two integers, a, b ∈ Fq .

Let E be an elliptic curve defined over Fq and let l be a prime such that l|#E(Fq) and
l2 - #E(Fq). Consider an l-torsion Fq -rational point on E and denote this point P . Similar to
the case of integers modulo q , we have that P generates a finite cyclic subgroup of l-torsion
points of cardinality l. We denote the point at infinity on E by O; this point is part of the
subgroup E(Fq)[l] generated by P . We denote point addition on E by +. Repeated addition
on the elliptic curve is called scalar multiplication.

The elements of the cyclic subgroup of l-torsion Fq -rational points of E generated by P
are given by {O, P, ...(l − 1)P}. These are all distinct points, and l P = O. It is within this
cyclic group that cryptography can be used.

Choosing the parameters, i.e. l and q , depends on the desired level of security, as in
the case of finite fields. More details on hard problems on elliptic curves follow in the next
chapter, but it suffices to say that usually the parameters in elliptic curve cryptography are
much smaller in size than in the finite field case. That is where the advantage of using
elliptic curve cryptography lies.

Choosing parameters for an elliptic curve is not an easy task. For cryptography on elliptic
curves, the sizes of the integers q and l, which we denote sq and sl respectively, are compa-
rable. NIST and SECG have both presented documentation relating recommended choices
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for the domain parameters in elliptic curve cryptography. These documents provide suitable
q, l, E , and m = q−1

l .
It still remains to find a point P 6= O of prime order l. Similar to the finite field case, we

simply pick a random point Q on the elliptic curve and check if m Q = O. If so, we repeat
the procedure until we find Q for which m Q 6= O. We set P = m Q and have the point of
prime order l on E . The point P now generates a finite cyclic subgroup of order l in E(Fq).

A cryptographic setting for elliptic curve based key exchange includes the two primes q
and l, the elliptic curve E defined on Fq , and a point P of order l generating a cyclic subgroup
on E(Fq).

3.3 The Pairing Setting

Some details on pairings have already been presented in chapter 2. We now add a few
practical considerations related to the pairing setting. First, we consider the embedding
degree. Let Fq be a finite field, with q prime or a prime power, and consider an elliptic curve
E over Fq . Let l be a large prime with l|#E(Fq). At this point, we state without further
explanations that the choice of the embedding degree is a trade-off between making the
parameters (mainly q) as small as possible and still keeping the pairing computable and the
DLP in E(Fq) and E(Fgk ) (see chapter 4) secure. Implementations of key exchange protocols
in pairing settings exist already for various values of k, such as for k = 2, k = 6, k = 10, and
k = 12.

For some of these values of k, pairings can be considered with distortion maps; in other
cases, distortion maps do not exist and so the protocols are modified. As we have seen in
chapter 2, while k > 1, both the Weil and Tate pairings are unsuitable for cryptography if
they take their arguments from the same group, for example from the subgroup of l-torsion
points generated by a point P . The distortion map modifies the second argument of the
pairing by applying a transformation on P ; if distortion maps do not exist, the solution is to
choose the second argument from a subgroup of l-torsion points generated by a point Q not
in the subgroup of l-torsion points generated by P .

The parameters for key exchange in a pairing setting therefore are: q, l, P as in the elliptic
curve setting, to which one additionally needs the embedding degree k. If a distortion map
exists, the distortion map φ is part of the setting; if it does not exist, then the point Q is a
part of the setting. It is possible that additional conditions on q are necessary so as to suit
the choice of the distortion map.

In what follows, we give a brief overview of some choices of elliptic curves for the smallest
non-trivial embedding degree, k = 2, and for the BN-curves – which are some of the more
efficient pairing environments and have k = 12.

3.3.1 The Case for k = 2

The choice of pairing and distortion map depends very much on the choice of elliptic curve.
For the case of k = 2, the parameters of the pairing setting need still be relatively large, with
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q of 512 bits and l of 160 bits providing minimal security. Boneh and Franklin ([6]) give a
few examples of suitable pairing settings for an embedding degree of 2. We give here a brief
overview of two such settings and refer the reader to the original paper for more details.

We first consider the case when q is a prime with q = 2 mod 3. We choose the elliptic
curve E with equation y2

= x3
+ 1 on Fq . This curve has q + 1 points. The condition that

q = 2 mod 3 ensures that q2
= 1 mod 3 and such that Fq2 contains a third root of unity,

which Fq does not.
In this environment, we consider a pairing e – which could be for example the Tate

pairing – and a distortion map given by φ(x, y) = (ζ x, y), for 1 6= ζ ∈ Fq2 . The modified
Tate pairing for this distortion map is ê defined with ê(P, Q) = ê(P, φ(Q)).

This choice of parameters, though valid, is slow. This is a consequence of the fact that the
distortion map φ maps the x−coordinate of the point in the extension field Fq2 . Therefore,
the computational speed-ups in 2 do not apply.

A choice which does allow for all the shortcuts described in the previous chapter has also
been given by Boneh and Franklin. This setting has been used for the implementation of
pairing-based BD I in [27]. We take q to be a prime with the property that q = 3 mod 4. This
property will ensure that q2

= 1 mod 4, so that Fq2 contains a fourth root of unity ζ 6∈ Fq .
Over Fq we now define the elliptic curve E by the equation: y2

= x3
+ x . We take a

pairing e and modify it to ê with the aid of a distortion map φ with φ(x, y) = (−x, ζ y), such
that ζ 2

+ 1 = 0 in Fq2 . We note that ζ is equivalent to the complex i . In this case, since the
coordinate x was already in Fq , its negative will also be an element of the same field, and
Miller’s algorithm will be computed without inversions.

Once more, the choosing of the parameters begins with finding the prime order l. We
denote the sizes of l and q sl and sq respectively. The paper [6] provides a few examples
of elliptic curves that can be used for cryptography; these are not always secure, however.
Finding an elliptic curve that is suitable for performing key exchange is quite a difficult task;
a simple example that should nevertheless not be used for secure applications is E : y2

=

x3
+ x . The number of points on E is #E(Fq) = q + 1, so we are looking for a prime q

such that l|#E(Fq) and l2 - #E(Fq). We write, as in section 3.1, q + 1 = lm for some integer
m. Once a suitable prime l has been found, one repeatedly searches for an integer m of size
sq − sl so as to ensure that the number lm − 1 is prime. Once such an m is found, one sets
q = lm − 1. Subsequently finding a point P of prime order l is done by the same method as
shown in the previous section.

An example of suitably chosen parameters q, l, and P ∈ E(Fq) of prime order l can be
found in [27].

3.3.2 The Case for k = 12

The main advantage of elliptic curves is that they can provide a high level of security with
relatively small-sized parameters. This advantage can also be provided by pairings, as the
security of cryptographic protocols on pairing settings depends on bilinear hard problems in
G1 and on finite fields hard problems in G3 (see chapter 4 for details on hard problems). The
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higher the embedding degree, the smaller the value of q; therefore an embedding degree of
12 puts pairings to much greater advantage than k = 2. Paulo Barreto and Michael Naehrig
have proposed a method of finding pairing-friendly elliptic curves in [4].

Let E be a pairing-friendly BN curve and let the setting parameters q and l be chosen
such that the curve has an embedding degree k = 12. BN curves do not admit distortion
maps. Therefore, pairing-based cryptographic protocols must be modified for this case in
order to make sure that e(P, P) 6= 1 for a point P on the elliptic curve and for the pairing e.

In their work, the authors of [4] provide improvements for computations in cryptographic
applications, namely what they name point compression and pairing compression. Without
going into further details, we mention that by means of a sextic twist, Barreto and Naehrig
are able to write points in E(Fq12) as points in E ′(Fq2), where the elliptic curve E ′ is obtained
by twisting E . The same trick allows for the use of only Fq and Fq2 arithmetic for non-pairing
operations – such as for example key generation.

[4] further optimises the cryptography on these curves by representing points on the
twisted elliptic curve E ′ by means of their y coordinate only. Some concrete examples are
given at the end of [4], based on an elliptic curve of the form y2

= x3
+ 3. The primes q

and l are explicitly given, with q chosen such that the computation of cubic roots is easy
(this step is required for pairing compressions and the representation of points by their y
coordinate only). For q of 160 bits, we already obtain a level of security comparable to a finite
field setting where p is chosen to have 1820 bits.

3.4 An Overview of these Three Settings

The three settings presented above appear rather different. Nevertheless, they allow the
translation, from one to the other, of several established cryptographic key exchange proto-
cols. We give a comparative overview of the three settings below. The sizes specified at the
bottom of the table are those recommended for an 80-bit security (equivalent to choosing
p of 1024 bits in a finite field setting). We relate a level of security of b bits to parameter
sizes that ensure that the best known attack against the hard problems (see chapter 4) in
that setting is of time complexity of order 2b. In the elliptic curve setting, the Pollard Rho
method (presented in chapter 4) is the best known attack, and therefore the elliptic curve set-
ting demands 2b bits of security. On finite fields, the best known attack is the Index Calculus
method, so the parameters asymptotically converge to b3 bits.
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Finite Fields Elliptic Curves Pairings
Fp E(Fq) E(Fq)

l|p − 1 l|#E(Fq) l|#E(Fq)

g ∈ Fp P ∈ E(Fq) P ∈ E(Fq)

– – k
– – φ

integers mod p points on E(Fq) point pairs on E(Fq)

multiplication mod p point addition on E(Fq) pairings on E(Fq)

sp = 1024 sq = 160 sq ≥ 160
sl = 160 sl = 160 sl = 160

As a further condition in the pairing setting, it must hold that ksq = 1024 bits.
As the table shows, several parallels may be drawn between the three different settings

presented already. It is important to note that a natural correspondence exists between the
elements present in the three settings: integers modulo p, points on an elliptic curve E , and
pairs of points on an elliptic curve. Each type of element is related to a natural operation
defined on its respective setting.

We note that multiplication and exponentiation modulo p are very simple and efficient
operations, which require very little time and computation power. Point addition on elliptic
curves is somewhat more labourious, requiring several finite field multiplications. Finally,
pairing computations are even more complicated, requiring several point additions. There-
fore, it would appear that the latter settings are less efficient than finite fields.

However, there are two points in favour of using pairings rather than finite fields. The
first is that applications in the pairing setting generally try to contain as few pairing computa-
tions as possible, therefore much of the arithmetic involved in a cryptographic key exchange
protocol in pairing settings is made up of simple finite field operations.

Secondly, the nature of the pairing and elliptic curve settings allow for smaller parameters
(for reasons explained in the following chapter). Therefore, although the individual opera-
tions might be simpler in finite fields, they are performed in larger fields, and are therefore
more time consuming. We also note that, while there are several natural correspondences
between the three settings, there are several fundamental differences in their structures.
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Chapter 4

Hard Problems in Various Settings

Information theoretic security for cryptographic key exchange protocols is difficult to achieve.
Quantum cryptography attempts to achieve this by means of detecting eavesdropping and
aborting the connection if too much interference is detected. In this way, information theo-
retic security can be achieved. For the protocols and settings presented in this paper, security
is measured in the time and computation power it takes for an attacker to break the system;
breaking the system generally boils down to solving one or more hard problems. In the
remainder of this chapter, we give some of the important hard problems that exist in the
various settings presented in chapter 3 and two of the more important methods that solve
these problems.

4.1 Hard Problems in Finite Fields

The setting is as follows. We have prime numbers p and l such that l|(p−1), and an element
g ∈ Fp such that the order of g is l.

• DLP – Discrete Logarithm Problem – Given g and gx
∈ Fp, with x ∈ {2, . . . , l − 1},

find x .

• (C)DHP – (Computational) Diffie-Hellman Problem – Given g, gx , and gy , with x, y ∈
{2, . . . , l − 1}, find gxy .

• DDHP – Decisional DHP – Given g, gx , gy , and gz decide whether gxy
= gz .

The Diffie-Hellman problem is referred to as the computational Diffie-Hellman problem
(CDHP) as soon as one needs to consider the DDHP. This is done so as to distinguish
between the two versions of the problem.
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It is obvious that solving the discrete logarithm problem will solve the other two hard
problems as well. It is not sure, however, that the only way to solve the CDHP and DDHP
is via solving the DLP. There are a few methods to solve the DLP in finite fields, the most
notable of which are the Pollard Rho and the Index Calculus methods. In the following
section, we present these methods in short.

4.2 The Pollard Rho and Index Calculus Methods

We consider the setting of the previous section. We have primes p and l, such that l|p − 1.
We also have an element g of prime order l, such that g generates a cyclic subgroup G ⊂ F∗p.
Given now h ∈ G, h 6∈ {0, 1}, we wish to find x such that h = gx .

The fastest method to solve the DLP in finite fields is the Index Calculus method. The
second fastest solution is given by the Pollard Rho method, and the reason we present this
method here is that in the elliptic curve setting, this is the fastest method. The details of
these methods as well as other algorithms to solve the DLP are given in [28].

4.2.1 The Pollard Rho Method

We consider the DLP as given in the introductory paragraph of section 4.2. The multi-
plicative subgroup G is now partitioned in three subsets, G1,G2,G3 as determined by the
following equivalence relation:

x ∈ Gi ⇔ x ≡ i ( mod 3). (4.1)

We recall that the existence of a partition means that the resulting subsets are disjoint,
i.e. that they have no elements in common. Having this partition, we now define a recursive
sequence {xi }i≥0 recursively, with x0 = g and xi+1 = f (xi ):

f (xi ) = x2
i mod p if xi ∈ G1

f (xi ) = hxi mod p if xi ∈ G2

f (xi ) = gxi mod p if xi ∈ G3

Since we are in a finite field, the sequence xi will eventually begin to cycle back and yield
the same function value for an x dependent only on g. The characteristic shape of this cycle
– as shown below – resembles the Greek symbol Rho; hence the method was named Pollard
Rho, after its inventor, Pollard.
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Figure 4.1: Pollard’s Rho

We now create two additional sequences {ai }i≥0 and {bi }i≥0 such that xi = gai hbi for
any i . We must take a0 and b0 with a0 = 1 and b0 = 0 and then construct the sequences
recursively as follows:

ai+1 = 2ai mod l and bi+1 = 2bi mod l if xi ∈ G1

ai+1 = ai mod l and bi+1 = bi + 1 mod l if xi ∈ G2

ai+1 = ai + 1 mod l and bi+1 = bi mod l if xi ∈ G3

It can be proven that indeed xi = gai hbi . Take first the case xi ∈ G1. Then xi+1 = x2
i =

(gai hbi )2 = g2ai h2bi = gai+1hbi+1 . Then take xi ∈ G2. It follows that xi+1 = hxi = hgai hbi =

gai hbi+1
= gai+1hbi+1 . Finally, if xi ∈ G3, we have that: xi+1 = gxi = ggai hbi = gai+1hbi =

gai+1hbi+1 . This is an inductive proof, and the basis of the induction is that x0 = g = g1h0,
with a0 = 1 and b0 = 0.

The main idea of the Pollard Rho method is now to find indices i 6= j such that xi = x j .
This would mean gai hbi = ga j hb j . Thus, gai−a j = hb j−bi and thus, since h = gx for some
unknown x , gai−a j = gx(b j−bi ) and x ≡ a j−ai

bi−b j
mod l.

Although it is quite unlikely, it might be the case that bi = b j . If that happens, we write
h′ = g · h and note that h′ = gx+1. In this case we now solve h′ = gx ′ , for x ′ = x + 1. Having
found x ′, we find x .

In order to find i and j such that xi = x j , we use a method called Floyd’s cycle-finding
algorithm (see [22]), which attempts to find an index i such that xi = x2i . We start with the
pair (x1, x2) and then calculate (xi+1, x2i+2) from (xi , x2i ) by the general rule: xi+1 = f (xi )

and x2i+2 = f ( f (x2i )). This algorithm minimises the storage requirements for the Pollard
Rho method. The computations necessary to find the secret index x are expected to be
finished in O(

√
p).

4.2.2 The Index Calculus Method

Once more, we consider a finite field setting, with p, l primes such that l|p− 1. We have an
element g ∈ Fp generating a cyclic, multiplicative subgroup G of prime order l, containing
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the elements {1, g, . . . , gl−1
}. Given h ∈ G, we must find x ∈ {2, . . . , l−1} such that gx

= h.
As stated before, the elements of Fp and F∗p are represented by the smallest positive

representative in their equivalence classes. In what follows, these representatives are them
embedded in Z, thus obtaining integers.

The Index Calculus method proceeds then according to the following basic steps:

1. We first select an appropriate S ⊂ {1, . . . p−1} such that many elements of {1 . . . p−1}
can be efficiently written as a product of elements of S. We call S a factor base. We call
an element that can be efficiently written in terms of the elements in S is called smooth
with respect to S. We denote |S| = n, for some n. The natural choice for the set S
would be for instance a set of primes in {1, . . . p − 1}. Our goal now is to find the
discrete logarithm of each s = gas ∈ Fp such that s is represented by an s ∈ Fp.

2. Find a set I of exponents i such that for all i ∈ I , gi can be efficiently expressed in
terms of elements of S. We will then have a set of equalities of the form:

gi
= sui,1

1 sui,2
2 . . . sui,n

n . (4.2)

If we take the discrete logarithm to the base g on both sides, we will have, for all i ∈ I ,
a set of linear equations of the form:

i ≡ ui,1 logg(s1)+ ui,2 logg(s2)+ · · · + ui,n logg(sn) mod l. (4.3)

In these equations, i and the exponents ui,1, . . . , ui,n are known for every i . We treat
logg(s j ) for j ∈ {1, 2, . . . , n} as unknowns. If we have at least n independent equa-
tions, then we can solve the system of linear equations.

3. We solve the system of linear congruence equations in the unknowns logg(s j ), for
1 ≤ j ≤ n. At this moment we can write all the elements s j in the form s j = gx j .

We have, at the moment, solved the DLP for the elements in the factor base S.

4. We now pick a random r ∈ {1, . . . , l − 1} and try to write gr h as a product of elements
in S. If that succeeds, then gr h = gr+x

= sv1
1 sv2

2 . . . svn
n and by taking the g-logarithm

on both sides, we can write:

r + x = v1 logg(s1)+ · · · + vn logg(sn). (4.4)

We know all the g-logarithms of the elements of S, and we have chosen r ourselves,
thus the only unknown remains x . Clearly, the size of S should be large enough for a
random element gr h ∈ G to be likely to be written in terms of elements in S. On the
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other hand, the size of S needs to be small, for the sake of storage and so as to be able
to compute step 3.

In the situation described at the beginning of this section, the easiest choice of a factor
base is to include the first n prime numbers. For a sufficiently large n, we will have enough
elements easily expressed in terms of the elements of S. To write an element in G in terms
of the elements of S, we need to successively divide the element by the various primes.

The complexity of this method is expC
√

ln(p) ln(ln(p)). This is a subexponential complexity,
and in general will yield the result quicker than the Pollard Rho method.

4.2.3 Consequences of the two Methods

As stated before, the Pollard Rho algorithm is slower than the Index Calculus method in
finding the exponent x . In fact, the Pollard Rho method runs in exponential time in the
group order, while the Index Calculus method reaches a solution in subexponential time
in the field size. However, while it is relatively easy to translate the Pollard Rho approach
from a finite field to an elliptic curve setting (by exchanging integers modulo p and their
multiplication by elliptic curve points and their addition), there are a few tricky points in
translating the Index Calculus method, namely:

• How to effectively choose S.

• How to write elements of G in terms of elements of S.

In general, there are few environments that permit an easy and logical choice of S. Finite
fields are one such structure, but elliptic curves are not. We generally pick a point P and
generate the subgroup E(Fq)[l]; though in fact all the points in this subgroup – apart from
the point at infinity – are generators, in the remainder of this thesis, we generally refer to
P as "the" generator of E(Fq)[l]. Apart from P , there are no special points that could serve
as a factor base. Additionally, even once those points were found, it is hard to find a way of
writing the elements of the subgroup in terms of the components of the factor base. The
direct consequence of this is that, while finite field cryptography has to be able to resist Index
Calculus attacks, elliptic curve cryptography only has to withstand Pollard Rho attacks, which
are less effective and have higher complexity.

It follows that the length of the finite field parameter p has to be much greater than the
corresponding elliptic curve parameter q. The size ratio is given, without further explana-
tion, in section 3.4. The individual finite field operations therefore are more efficient in the
elliptic curve setting than in finite fields.

4.3 Hard Problems on Elliptic Curves

The setting is as follows. We have an elliptic curve E defined on a finite field Fq , for q a
prime or a prime power. Let l be a prime such that l|#E(Fq), and P 6= O an l-torsion point
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on the elliptic curve (as l is prime, this means that l is the order of P). Let G be the cyclic
subgroup of E(Fq)[l] generated by P . The hard problems in the elliptic curve setting are as
follows:

• ECDLP – Elliptic curve DLP – Given P and Q = k P in G, find k.

• ECCDHP – Elliptic curve CDHP – Given P , Q = a P , R = bP in G, find abP .

• ECDDHP – Elliptic curve DDHP – given P , Q = a P , R = bP , S = cP in G, decide
whether c ≡ ab (mod l).

On elliptic curves, the solution of the ECDLP is most efficiently solved by the Pollard
Rho method. As it is not possible to solve the discrete logarithm problem with the aid of the
Index Calculus method on elliptic curves, the size of the parameters may be much smaller.
According to [13], the key size needs to be 160 bits long for 80-bit security on the elliptic
curve.

4.4 Bilinear Hard Problems

While pairings are theoretically achievable on all elliptic curves, usually they are not effi-
ciently computable, as explained in section 3.2. We consider here a pairing defined as
e : G1 × G2 −→ G3; this pairing is generally based on the Weil and Tate pairings. The
existence of computable pairings has two main security-related implications. Firstly, the dis-
crete logarithm problem in the group G1 is no harder than the discrete logarithm problem
in the group G3. This has been proved in [26]. Therefore, in order to make this map secure
with respect to the discrete logarithm problem, one has to choose the groups G1 and G3
such that both the security degrees are acceptable.

We consider the elliptic curve setting with E an elliptic curve over Fq , for q a prime or
a prime power. Furthermore, we consider a point P ∈ E(Fq) of prime order l|#E(Fq); let
furthermore G1 :=< P >, the subgroup of E(Fq) generated by P . We consider a given,
acceptably-large embedding degree k. We consider an efficiently computable, bilinear, non-
degenerate map e : G1×G2 −→ G3, with G3 the subset of l th roots of unity and G2 another
group of points such that a map exists between G1 and G2 and it is known. We denote the
second argument of the pairing by Q̂ rather than Q.

In this setting, the ECDDHP is easily solvable when efficient pairing computation exists.
Indeed, for the ECDDHP, given a P and bP , one can calculate e(a P, bP̂) = e(P, P̂)ab. We
can also calculate: e(P, cP̂) = e(P, P̂)c. If the two values are equal, clearly c ≡ ab mod l.

For settings such as these, one can base cryptographic protocols on the bilinear versions
of the hard problems that exist on finite fields and elliptic curves. These bilinear hard prob-
lems are shown below:
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• DLP – ECDLP – given P and Q = a P , find a.

• BCDHP – Bilinear CDHP – given P , Q = a P , R = bP , S = cP in G, find e(P, P̂)abc.

• BDDHP – Bilinear DDHP – given P , Q = a P , R = bP , S = cP in G, and e(P, P̂)w,
decide if abc ≡ w mod l.

In the pairing setting, several types of attacks are possible. While each pairing computa-
tion owes its security degree to the bilinear hard problems, the results of pairings and any
subsequent arithmetic performed on them are elements of the group G3, and they rely on
the hardness of the DLP in G3, just as well as on that in G1 and G2.

4.5 Overview of Hard Problems

The hard problems in the three different settings are relatively similar to each other. An
easy correspondence can be made between them, when one considers the particularities of
their environments, as presented in chapter 3. We attempt to give the reader a feeling of
the similarities by placing the three settings head to head, in the table below. To eliminate
superfluous wording, we introduce the notation a  b for the text: "Given a, find b."

Finite Fields Elliptic Curves Pairings

Parameters

Fp E(Fq) E(Fq)

l|p − 1 l|#E(Fq) l|#E(Fq)

g inFp P ∈ E(Fq) P ∈ E(Fq)

– – k
– – φ

– – e

Hard Problems

g, gx  x P,m P  m P,m P  m
g, gx , gy  gxy P, a P, bP  abP P, a P, bP, cP  e(P, P̂)abc

g, gx , gy, gz  P, a P, bP, cP  P, a P, bP, cP, e(P, P̂)w  
? xy ≡ z mod l ? c ≡ ab mod l ? w ≡ abc mod l

It is visible from this overview that all the hard problems specific to the pairing setting
have an additional known variable, due to the fact that pairings take two parameters rather
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than the simple, linear operations in finite fields and on elliptic curves, which only take one
parameter.

A number of cryptographic protocols, such as bipartite and tripartite key exchange, and
multipartite key exchange, rely on the computational hardness of these problems. We present
a few such protocols in the following chapter.
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Chapter 5

Protocols in Various Settings

Under the security assumptions from chapter 4, key exchange can now take place in any of
the settings presented in chapter 3. The general setting of the protocol is the following: we
have n parties wishing to securely communicate together, preferably with a single, common
key. An initial, particular instance of key exchange for a small number of participants can be
built in each setting, which can then be used to develop a general protocol for larger values
of n. We will show that the smallest unit of key exchange in finite fields and in a basic
elliptic curve setting is a line – two users – while with pairings, the basic unit is tripartite key
exchange, arranged in a triangle shape. The two very-most basic protocols that achieve this
minimal-user key exchange are Diffie-Hellman and Joux, respectively.

In section 5.1, we show basic key exchange for two and three users, respectively. These
protocols will be further generalised to n users in section 5.2.

5.1 Basic Key Exchange in Various Settings

5.1.1 The Diffie-Hellman Key Exchange

In the finite field setting and on elliptic curves, we consider the case for two users, Alice and
Bob, in short A and B. They can communicate with each other over an insecure channel,
which can be eavesdropped by a third party, Eve. We consider Eve to be a passive attacker,
i.e. she can intercept any message between A and B, but she cannot intervene in the com-
munication. In what follows, we will show a protocol due to Diffie and Hellman ([12]) which
ensures secure key exchange for Alice and Bob.

We first consider the finite fields key exchange setting. Let A and B both agree on a public
set of finite fields parameters: p, l, and g, such that p and l are primes, with l|p − 1. We
consider G to be the cyclic subgroup of Fp generated by an element g of order l.
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Alice Bob

knows p, l, g knows p, l, g

Step One

chooses sA ∈ {2, . . . , l − 1} chooses sB ∈ {2, . . . , l − 1}
computes: pA = gsA −→ receives: pA

receives: pB ←− computes: pB = gsB

Step Two

computes: K A = psA
B computes: K B = psB

A

Though we have shown the exchange of Alice and Bob’s public keys in a sequential man-
ner, this is not a requirement of the protocol. As Bob’s transmission does not depend on
Alice’s, they can both send their messages at the same time.

The key computed by Alice is K A = psA
B = gsBsA , while the key computed by Bob is

K B = psB
A = gsAsB . The two keys are therefore equal. The protocol has two steps (but

only one round, as the number of rounds refers to the number of communication steps that
are necessary), and each user needs to perform two exponentiations in Fp, for coefficients
in {2, . . . , l − 1}. We call sA and sB secret keys, and pA and pB public keys. Note that
sA, sB ∈ {2, . . . , l − 1}, while pA, pB ∈ G. In the remainder of this thesis, we will refer to a
finite field key pair of the form (si , pi ) with pi = gsi for a known public parameter g by the
name Diffie-Hellman finite field key pair. We call K A and K B the common session key, as
we have shown them to be equal.

As far as security goes, we now look at the information that is available to an eavesdropper
Eve. It is assumed that she knows the setting parameters p, l, and g, as well as the exact
nature of the protocol. The security of the Diffie-Hellman exchange protocol depends on the
security of each of the two steps. In step one, each user computes a Diffie-Hellman finite
field key pair (si , pi ), for i ∈ {A, B}. Eve can see the public keys pA and pB . The security of
the protocol depends firstly on Eve’s inability to compute the secret keys si from the public
keys pi , i ∈ {A, B}. Eve’s capacity to find the secret keys is in fact measured by her capacity
to break the discrete logarithm problem. Essentially, Eve is trying, given pi = gsi for known
g and pi , to find si , i ∈ {A, B}. This is the discrete logarithm problem and for a size of p of
1024 bits and a size of l of 160 bits, this step of the protocol is secure.

The second step presents a somewhat different security issue. Eve now possesses both
public keys and is trying to compute the common conference key K = K A = K B = gsAsB .
This situation is in fact the setting of the computational Diffie-Hellman problem. Eve has
g, gsA, andgsB and wishes to calculate gsAsB . As at the moment there is no other way to solve
the CDHP than by means of the DLP, the security of the chosen parameters guarantees that
the key exchange protocol presents a 80 bit security for Eve. In this case, therefore, just the
computational Diffie-Hellman problem is relevant. However, should we want the protocol
to be provably secure, we also need the indistinguishability property, and must also consider
the DDHP.
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On elliptic curves, the protocol is nearly identical. The public parameters of the setting
are now q, l, P with q a prime or a prime power. We define E to be an elliptic curve over Fq
and take the prime l to divide #E(Fq). P is a point on E of order l and it generates a cyclic
subgroup under point addition, which we call G. The protocol now proceeds as follows:

Alice Bob

knows q, l, P, E knows q, l, P, E

Step One

chooses sA ∈ {2, . . . , l − 1} chooses sB ∈ {2, . . . , l − 1}
computes: Q A = sA P −→ receives: Q A

receives: Q B ←− computes: Q B = sB P

Step Two

computes: K A = sA Q B computes: K B = sB Q A

Again, we have that K A = K B , as K A = sAsB P and K B = sBsA P ; we call K = K A = K B
the common session key. Identically to the protocol in finite fields, the Diffie-Hellman key
exchange in elliptic curves has two steps, and each user performs two scalar multiplications
on E(Fq), involving factors in {2, . . . , l − 1}. sA and sB are secret keys, while Q A and Q B
are public keys. Note that, though sA and sB are integers as in the finite field case, the public
keys are no longer integers modulo p, but points on the elliptic curve E . We refer to a pair
of the form (s, Q) with Q = s P by the name Diffie-Hellman elliptic curve key pair.

The security of the protocol is reduced, in a similar manner as presented above, to the
ECDLP and the ECCDHP (as described in 4.3). We note that in both cases, the eavesdropper
Eve has to work with points on the elliptic curve, i.e. she has to solve the problems: P, Qi  
si and P, Q A, Q B  K . Since the security of the elliptic curve DLP and CDHP cannot be
breached by the Index Calculus method, the parameters involved are much smaller, i.e. q
and l are both 160 bits for security comparable to a finite field security of 1024 bits for p
and 160 bits for l. Of course, the trade-off is that the individual group operations are more
complicated on elliptic curves. We refer to the appendix for some computational details
regarding the operations performed during the protocol.

In order to better show the correspondence between the two settings, we show in the
following table the protocol as seen as only one of the parties, for example Alice. A clear par-
allel can be drawn between the finite fields and the elliptic curve approach now, based on the
correspondence between integers modulo p and points on the elliptic curve E , as well as be-
tween multiplication/exponentiation in finite fields and point addition/scalar multiplication
on elliptic curves.
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Finite Fields Elliptic Curves

knows p, l, g knows q, l, P

Step One

chooses sA ∈ {2, . . . , l − 1} chooses sA ∈ {2, . . . , l − 1}
computes: pA = gsA computes: Q A = sA P
receives: pB = gsB receives: Q B = sB P

Step Two

computes: K A = psA
B computes: K A = sA Q B

5.1.2 Tripartite Key Exchange

While the Diffie-Hellman key exchange is the best, most efficient, and most natural choice
of protocol for the case where there are only two parties involved, tripartite key exchange is
most naturally done with the aid of pairings. It has been mentioned before that the group
operations in finite fields and on elliptic curves only take a single parameter and thus it is
logical that the smallest key exchange unit comprises two users. Pairings, however, are bi-
linear and take two parameters; therefore the key exchange unit becomes three. The pairing
equivalent of Diffie-Hellman is for three users and has been proposed by Joux ([19]).

The setting is as follows. We consider the parameters q, E, l, P of an elliptic curve
setting, and denote by ê a suitably modified pairing for a given embedding degree k such
ê(P, P) 6= 1. The protocol now runs as follows:

Tripartite Key Exchange

• Step 1:

Each user Ui , for i = 1, 2, 3 generates a Diffie-Hellman elliptic curve key pair (si , Qi )

and broadcasts Qi . Take U0 = U3 and define all the indices modulo 3.

• Step 2:

Each user Ui , with i = 1, 2, 3 computes the common session key:

Ki = e(Qi+1, Qi+2)
si . (5.1)

This protocol is somewhat more complicated than the simple Diffie-Hellman key ex-
change, but it also contains two steps. By bilinearity, we have that K1 = ê(s2 P, s3 P)s1 =

ê(P, P)s1s2s3 , and the same reasoning applies to other two users. The common session key
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is thus K = K1 = K2 = K3 = ê(P, P)s1s2s3 . Each user computes one scalar multiplication
on elliptic curves, one pairing, and one exponentiation in Fqk .

The security of this key exchange protocol depends on the security of two problems in
different settings. Firstly, the eavesdropper must not be able to compute the secret key si
from Qi for any i ∈ {1, 2, 3}. This is true as long as the parameters are taken to be large
enough for the ECDLP (as we are dealing with Diffie-Hellman elliptic curve key pairs) to be
unsolvable. Thus, both q and l can be of size 160 bits.

The second security issue comes in the computation of the key pair. This time, the eaves-
dropper has P, Q1 = s1 P, Q2 = s2 P, and Q3 = s3 P , and needs to calculate ê(P, P)s1s2s3 .
By the BCDHP, the key exchange protocol is secure as long as qk has 1024 bits. Therefore,
the size of q should be about 1024

k bits.
The tripartite key exchange protocol represents the smallest key exchange unit for pair-

ings. It is in fact the pairing equivalent of the Diffie-Hellman key exchange. The following
table shows the bipartite finite field key exchange in section 5.1.1 and the tripartite pairing
key exchange, both described from the point of view of user 1 (equivalent to Alice in the
notation of the previous section).

Finite Fields Pairings

knows p, l, g knows q, l, P, E, ê, k

Step One

chooses s1 ∈ {2, . . . , l − 1} chooses s1 ∈ {2, . . . , l − 1}
computes: p1 = gs1 computes: Q1 = s1 P
receives: p2 = gs2 receives: Q2 = s2 P and Q3 = s3 P

Step Two

computes: K1 = ps1
2 computes: K1 = ê(Q2, Q3)

s1

The correspondence between the finite field environment and the pairing setting, there-
fore, is two to three users as a basic unit, and exponentiation to pairing computation. As the
simple elliptic curve setting is nearly identical to the finite field setting, we do not include it
in the table, mentioning that a similar parallel can be easily drawn between the two settings.
Though the computation is harder in the case of pairings than for simple finite fields or
elliptic curves, the setting parameters can be taken smaller, and also more users now have
the possibility of sharing the same key than in the Diffie-Hellman bipartite key exchange.

An important consideration in the case of a protocol in the pairing setting is the existence
of a distortion map. For the fast BN curves, no such maps exist, and therefore the protocol
must be slightly altered to allow for this. We consider a pairing e : G1×G2 −→ G3 with G1
and G2 both of prime order l and G1 linearly independent from G2 (we want to avoid having
to use e(P, P) = 1). Linear independence means that the points Q ∈ G2 cannot be written
as r P for any positive integer r . Take P to be a generator of G1 and S a generator of G2. The
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protocol changes as follows:

Modified Tripartite Key Exchange

• Step 1:

User U1 generates triplet (si , Qi , Ri ) with Q1 = s1 P and R1 = s1S. User U2 gener-
ates (s2, R2) with R2 = s2S. User U3 generates (s3, Q3), with Q3 = s3 P . The values:
Q1, R1, R2, Q3 are broadcast.

• Step 2:

Each user Ui , with i = 1, 2, 3 computes the common session key:

K1 = e(s3 P, s2S)s1 ,

K2 = e(s3 P, s1S)s2 ,

K3 = e(s1 P, s2S)s3 .

The common session key in this case is K = e(P, S)s1s2s3 . The workload of the users
is asymmetric, as one of the users must compute an additional scalar multiplication. We
notice that the system parameters in this case must also include the second point S, though
in this case the distortion map does not appear.

In what follows, we generalise the basic key exchange units presented in this section to
the case of n users, with n arbitrarily large.

5.2 Multipartite Key Exchange in Various Settings

Like in the case of a tripartite key exchange, the main question regarding the development of
an efficient protocol to generate a common conference key is how to arrange the participants
and what setting would be most natural to use. Though finite fields provide often enough a
good setting, the increasing demands in security make elliptic curves a more reliable choice
for the future.

We now consider the case of n users wanting to communicate in a secure way. We note
that for n = 2 and n = 3, the protocols of the previous sections are sufficient and a preferable
choice. Let n therefore be an integer larger than 3. There are several arrangements to be
considered, two of which are discussed in the following sections.

Finally, just as in the case of the tripartite key exchange protocol due to Joux, there are
elliptic curves which do not support distortion maps, though they have computable pairings.
For these elliptic curves, we must change the protocol. The necessary modifications are
shown in the last section of this chapter.

41



5.2.1 BD I

The BD I key exchange protocol (named after its inventors Burmester and Desmedt – [7])
has the n participants arranged in a circle. Though the setting for the classical BD I is finite
fields, Desmedt and Lange have extended it to pairings – see [9]. We therefore first consider
the BD I protocol in finite fields.

The setting for the protocol is as considered in 3.1. We have the primes p and l such
that l|p − 1, and an element g ∈ Fp of order l generating a cyclic subgroup of Fp, which we
denote by G. The n users are denoted U1, U2, . . . , Un , and define U0 = Un . The indices are
taken modulo n. The figure below shows this arrangement:

Figure 5.1: The BD I arrangement in finite fields

The protocol now works as follows:

Broadcast BD I in Finite Fields

• Step 1

Each Ui computes a Diffie-Hellman finite fields key pair (ri , zi ) and broadcasts zi .

• Step 2

Each Ui computes and broadcasts X i =
(

zi+1
zi−1

)ri
.

• Step 3

Each Ui computes the conference key:

Ki ≡ (zi−1)
n ri · Xn−1

i · Xn−2
i+1 · · · · · X i−2 . (5.2)
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We can show that all the users will compute the same key K , as given by the expression
below:

K ≡ gr1r2+r2r3+···+rnr1 . (5.3)

Two different ways of proving this relation are given in [7] and [27] respectively. We will
not repeat the proof here. We call this protocol fully contributory, as the secret exponent
of each user appears in the expression of the common conference key. As opposed to the
Diffie-Hellman finite fields key pair, the BD I protocol involves a key triplet (ri , zi , X i ), with
ri being secret and zi and X i public.

As it is visible, this protocol includes 3 steps, as opposed to only 2 in the bipartite and
tripartite key exchange (and 2 communication rounds compared to 1). The quality of inter-
party communication is therefore even more important in this case. If communications
are known to be stable and fast, however, an even faster version of the protocol is available
and described both in [7] and [27]. We show this turn-based form of the protocol in the
next section. Without going too deep into the details at this point, we simply state that this
different version trades individual computation expense for communication overhead, i.e. it
contains more steps, but each participant needs to do less computations.

In this so-called broadcast version of the BD I protocol, each participant performs three
exponentiations, one inversion, and 2n + 1 multiplications. This boundary is reached if the
implementation is done efficiently, using several computational tricks such as the Horner-
like method for the computation of products of powers presented in the appendix. De-
pending on the programming platform, one could gain speed by trading the inversion for 3
multiplications, such as in Montgomery’s trick (see the appendix).

The security of the BD I protocol in finite fields depends in steps 1 and 2 on the DLP,
as in both cases a public parameter is taken to the secret exponent ri . The CDHP offers
security in the key computation, as the secrecy of the key lies in the (zi−1)

nri factor, of which
(zi−1)

ri = gri−1ri is unknown.
In finite fields therefore, the BD I protocol takes a circular arrangement regardless of the

value of n (as long as n > 2). This reflects the linear structure of the key exchange unit in
finite fields. In the pairing setting, however, the basic unit is the Joux triangle, and this is
reflected in the user arrangement that Desmedt and Lange use in [9].

We consider now the setting with n > 3 participants and define m = bn
2c. When n

is even, the first user is identified with the last user, as in finite field. Instead of linear
communication, however, the Desmedt Lange (DL) arrangement features triangular cells, as
shown in the figure below:
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Figure 5.2: The BD I arrangement for parings

If the number of users n is odd, participant n = 2m + 1 exists and occupies the last
vertex. In what follows we consider that the participants are denoted U1, . . .Un , and vertex
U2m+1 = U1 if n = 2m and U2m+1 = Un otherwise. The (publicly known) setting is now
given as in section 3.3. Let q be a prime or prime power, and consider an elliptic curve E
defined over Fq . Furthermore, we have a prime l|#E(Fq) and P a point on E of prime order
l, generating a cyclic subgroup of l-torsion points. We are given an efficiently computable
pairing ê which includes in its definition the distortion map φ for a suitable embedding
degree k.

The protocol now works as follows:

Broadcast BD I with Pairings

• Step 1

Each user Ui , for i = 1, 2, . . . , n generates a Diffie-Hellman elliptic curve key pair
(ri , Zi ) and broadcasts Zi .

• Step 2

Each user Ui , with i odd and i = 3, . . . , 2m − 1 computes and broadcasts:

X i =

(
ê(Zi+1, Zi+2)

ê(Zi−2, Zi−1)

)ri

(5.4)

and X−1
i .

• Step 3

Each user Ui computes its conference key Ki as follows:

K1 = (ê(Z2, Z3))
(m−1)r1 Xm−2

3 Xm−3
5 . . . X2m−3,
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Ki = T (m−1)ri
i (X3 X2

5 . . . X j−1
2 j−1)

−1(Xm− j−1
2 j+1 Xm− j−2

2 j+3 . . . X2m−3) i 6= 1. (5.5)

In the last equation, j = b i
2c and Ti = ê(Zi−1, Zi+1) for i even and Ti = ê(Zi−2, Zi−1)

for i odd.

It can be shown that all the users compute the same key, K = ê(P, P)d , with d =
r1r2r3 + r3r4r5 + . . . r2m−3r2m−2r2m−1. This has been proven in [9]. As opposed to the BD I
in finite fields, therefore, the DL protocol is not fully contributory, since the contributions of
users U2m and, if he exists, U2m+1 are not present in K . However, though not all the secret
keys of the n users appear in the common conference key, the computations do depend on
all these values. There are clearly two types of users as far as computation and storage are
concerned.

The group which has a lighter computational burden is made up of users U1,U2m+1,
and the even users. These users perform: one pairing, one scalar multiplication on ellip-
tic curves, and m − 2 multiplications. They only use a Diffie-Hellman elliptic curve key
pair. A group of users that have more computations to perform are the odd users with
U3, . . . ,U2m−1. We call this group the "odd" users, although users U1 and U2m+1 are not
included. These participants perform: 2 pairings, 2 inversions, 1 scalar multiplication, and
2 exponentiations, and they use a key triplet, (ri , Zi , X i ). As in the finite field case, imple-
menting Montgomery’s trick will exchange inversions for multiplications.

The security of the BD I protocol in the pairing setting depends in step 1 on the security
of the ECDLP. In steps 2 and 3, the security is based on the assumption of the BCDHP for
the pairing ê. Therefore the size of the parameter qk should be at least 1024 bits.

The two protocols run in similar ways, with pairings replacing some of the finite field
exponentiations required in the Fp setting. The linear key exchange unit is further replaced
by Joux triangles. The main difference, however, is in the size of the parameters. While the
main operation in the finite field environment is exponentiation in a 1024-bit finite field,
in the pairing setting the size of the parameter q is only 1024

k bits. In the following tables,
we show the correspondence between the contributions of an individual user in the classic
finite field BD I and the contributions of an even and an odd user in the pairing setting.

To ease notation, we remark that usually all the indices are taken modulo n.
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Finite Fields Pairings – even user

knows p, l, g knows q, l, P, E, ê, k

Step One

chooses ri ∈ {2, . . . , l − 1} chooses ri ∈ {2, . . . , l − 1}
computes: zi = gr1 computes: Zi = ri P
receives: zi−1, zi+1 receives: Zi−1, Zi+1

Step Two

computes: X i =
(

zi+1
zi−1

)ri
–

receives: X1, . . . , Xn receives: {X3, X−1
3 , . . . , X2m−1, X−1

2m−1} \ {X i , X−1
i }

Step Three

computes: computes: Ki = ê(Zi−1, Zi+1)
(m−1)ri

Ki = (zi−1)
nri Xn−1

i . . . X i−2 (X3 X5 . . . X
i
2−1
i−1 )

−1(X
m− i

2−1
i+1 . . . X2m−3)

Similarly, for the odd participants we have:

Finite Fields Pairings – odd user

knows p, l, g knows q, l, P, E, ê, k

Step One

chooses ri ∈ {2, . . . , l − 1} chooses ri ∈ {2, . . . , l − 1}
computes: zi = gri computes: Zi = ri P
receives: zi−1, zi+1 receives: Zi−2, Zi−1, Zi+1, Zi+2

Step Two

computes: X i =
(

zi+1
zi−1

)ri
computes: X i =

(
ê(Zi+1,Zi+2)
ê(Zi−2,Zi−1)

)ri
and X−1

i ;

receives: X1, . . . , Xn receives:
{X3, X−1

3 , . . . , X2m−1, X−1
2m−1} \ {X i , X−1

i }

Step Three

computes: computes: Ki = ê(Zi−2, Zi−1)
(m−1)ri

Ki = (zi−1)
nri Xn−1

i . . . X i−2 (X3 X5 . . . X
i−1

2 −1
i−2 )−1(X

m− i−1
2 −1

i . . . X2m−3)

As it is visible, the two protocols are essentially the same, though their arrangements are
slightly different. While the X i in the classical finite fields is computed based on public keys
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that are elements of Fp, in the pairing setting, it is computed based on pairings. Similarly,
the public keys zi in finite fields are replaced by pairings in the computation of the key. Over-
all, the two settings present similar communication overhead, and comparative efficiency. In
fact, [27] shows that, for very large values of n, the computation load is comparable even for
a small value of the embedding degree k in the pairing setting. It is expected that for 128 bit
security (equivalent to a field size of 12256 bits for finite fields), the implementation of the
protocol in a k = 12 pairing environment on the fast BN curves would be much faster than
in finite fields.

5.2.2 Turn-based BD I

As stated before, a turn-based version of the BD I protocol will ensure key exchange in more
steps, but each of the n users involved will have less computations to perform. A version of
the turn-based BD I protocol has already been presented in [7], and we repeat it here. This
protocol takes place in a classical finite field setting as in section 3.1. The algorithm runs
now as follows:

Turn-based BD I in Finite Fields

• Step 1

Each Ui selects a random ri ∈ {2, 3, . . . , l − 1}. Each user computes and multicasts
zi = gri to its two neighbours.

• Step 2

Each Ui computes X i =
(

zi+1
zi−1

)ri
.

• Step 3

User U1 initialises: i ← 2, s1← t1← X1.

• Step 2+ i

User Ui receives: si−1 and ti−1, and computes and sends to Ui+1: si = si−1 · X i and
ti = ti−1 · si−1. Do: i ← i + 1.

• Step 3+ n

User U1 receives: sn and tn , and initialises: j ← 2 and d1← sntn X−n
1 .
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• Step 2+ n + j

User U j receives: sn and d j−1, and computes and sends to U j+1: d j = sn · d j−1 · X−n
j .

Do: j ← j + 1.

• Step 2n + 3

Each user Ui , i ∈ {1, . . . , n} computes the key:

Ki = di−1 · (zi−1)
n ri = (zi−1)

n ri · Xn−1
i · Xn−2

i+1 · · · · · X i−2 . (5.6)

As stated within the protocol itself, there are 2n+ 3 steps in this protocol, though each of
the computational rounds is simpler than its correspondent in the broadcast BD I algorithm
from the previous section. In this case, the values of zi need not be broadcast, but multicast
to the neighbours of user Ui . Similarly, in step 2 the values of the X i need not be broadcast,
as they are only used by the user itself; however, we have left this computation as a separate
step in order to preserve the resemblance with the broadcast protocol. After step two, each
user computes: five multiplications, one inversion, and two exponentiations. As opposed
to the broadcast version of BD I, the key computation is not left to every user individually,
but each user contributes to the computation of all the keys. On the other hand, the key
calculation remains secure, as the participants only use public parameters in the additional
steps 3 and 2n + 2.

We hereby present also the turn-based version of the BD I protocol in the pairing setting.
For this, we consider the same setting as in section 3.3. The protocol has less steps than its
equivalent in finite fields. Furthermore, an additional attempt has been made to make the
computations asymmetric, so that the already heavier-loaded participants are responsible for
most of the extra calculations. In this way, the users who have the lighter burden will have
even less to do. In the pairing setting, the protocol works as follows:

Turn-based BD I with Pairings

• Step 1

Each user Ui , for i = 1, 2, . . . , n generates a Diffie-Hellman elliptic curve key pair
(ri , Zi ) and multicasts Zi to its neighbours.

• Step 2

Each user Ui , with i odd and i = 3, . . . , 2m − 1 computes:

X i =

(
ê(Zi+1, Zi+2)

ê(Zi−2, Zi−1)

)ri

. (5.7)
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and X−1
i .

• Step 3

User U3 initialises: s3← t3← X1 and j ← 5.

• Step 2+ j−1
2

U j receives s j−2 and t j−2; then it computes and sends to U j+2: s j = s j−2 · X j and
t j = s j · t j−2. Do: j ← j + 2.

• Step m

User U2m−3 receives s2m−5 and t2m−5, then computes s2m−3 = s2m−5 X2m−3 and t2m−3 =

s2m−3t2m−5. User U2m−3 multicasts t2m−3 to U1, U2, and U3.

• Step m + 1

User U3 initialises: i = 5, k4 = t2m−3(X−1
3 )m−1 and sends it to users U5 and U4.

• Step m + i−1
2

User Ui receives ki−1, then computes and sends to Ui+1 and Ui+2: ki+1 = ki−1 ·

[(X j )
−1
]
m−1. Do: i ← i + 2.

• Step 2m

Each user Ui with i ∈ {1, 2, . . . , n} computes the key:

K1 = t2m−3ê(Z2, Z3)
(m−1)r1;

Ki = ki (Ti )
(m−1)ri i even;

Ki = ki−1(Ti )
(m−1)ri i odd.

In the last equation, Ti = ê(Zi−1, Zi+1) for i even and Ti = ê(Zi−2, Zi−1) for i odd.

Once more, we point out that there are only 2m − 2 communication rounds involved
in this version of the protocol, and that only multicasts are necessary instead of broadcasts.
The second public key X i need also not be distributed to other users than user Ui itself; this
step is once more set aside so as to show the resemblance with the broadcast version. In the
turn-based protocol, the odd users compute four multiplications and two exponentiations
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after step 2, while the even participants need to perform one multiplication and one expo-
nentiation. The computed key is the same as in the broadcast setting. We can show this

easily by noticing that s j = X3 . . . X j and t j = X
j−1
2

3 . . . X j , for j ∈ {3, 5, . . . , 2m−3}. It also

holds that k j = (X3 . . . X
j−2
2

j−1)
−1(X

m−1− j
2

j+1 . . . X2m−3) for j ∈ {2, 4, . . . 2m}.

Therefore, in the key computation step, we have: K1 = Xm−2
3 . . . X j , Ki = T (m−1)ri

i

(X3 . . . X
i−2

2
i−1)

−1(X
m−1− i

2
i+1 . . . X2m−3) for i = 2 j and Ki = T (m−1)ri

i (X3 . . . X
i−3

2
i−2)

−1
·

(X
m−1− i−1

2
i . . . X2m−3) for i = 2 j + 1. This expression is equivalent to that of relation (4.5).

The security is not compromised because the si ’s, ti ’s, and ki are all made up of public
parameters.

The turn-based version of the BD I protocol – whether in finite fields or in the pairing
setting – is a trade-off between the computational burden of each user and the number of
interactions between the users. As opposed to the broadcast version, where the algorithm’s
speed depends on the speed of the participants’ individual hardware, the turn-based version
is only as fast as its slowest odd participant. However, it is no longer necessary to broadcast
the values of the public keys generated in step 1; it suffices for each user to multicast its pub-
lic key to its neighbour. It is paramount therefore that this system be implemented only in
situations where it is known that all the users can interact efficiently and in a timely fashion.
Therefore, using this version of the protocol is not recommended for wireless networks or
mobile phones.

It is visible that in finite fields, the turn-based BD I protocol has more than twice the
number of steps as the pairing-based version. In both versions, the values of the computed
X i need not be broadcast, as they are only used by the users who have computed them.
Though there are a lot of computational steps involved, however, the number of steps per
user is still quite small: three for each of the users in the finite fields setting, and three and
one respectively for the heavily burdened and for the lightly burdened users in the pairing-
based setting. We show a more detailed comparison in what follows. Once more, all the
indexes are taken modulo n.

In order to make a comparison, we consider communication rounds rather than the steps
as described above.
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Finite Fields Pairings – even user

knows p, l, g knows q, l, P, E, ê, k

Round One

chooses ri ∈ {2, . . . , l − 1} chooses ri ∈ {2, . . . , l − 1}
computes: zi = gr1 computes: Zi = ri P
receives: zi−1, zi+1 receives: Zi−1, Zi+1

Round Two

computes: X i =
(

zi+1
zi−1

)ri
–

receives: si−1, ti−1 –
computes: si = si−1 X i –

ti = ti−1si –
sends to Ui+1: si , ti receives: t2m−3

Round Three

receives: di−1, sn –
computes: di = sn · di−1 · X−n

i –
sends to Ui+1: di receives: ki

computes: Ki = di−1 · (zi−1)
n ri computes: Ki = ki ê(Zi−1, Zi+1)

(m−1)ri

Similarly, for the odd participants we have:

Finite Fields Pairings – odd user

knows p, l, g knows q, l, P, E, ê, k

Round One

chooses ri ∈ {2, . . . , l − 1} chooses ri ∈ {2, . . . , l − 1}
computes: zi = gr1 computes: Zi = ri P
receives: zi−1, zi+1 receives: Zi−1, Zi+1

Round Two

computes: X i =
(

zi+1
zi−1

)ri
computes: X i =

(
ê(Zi+1,Zi+2)
ê(Zi−2,Zi−1)

)ri
and X−1

i

receives: si−1, ti−1 receives: si−2, ti−2
computes: si = si−1 X i computes: si = si−2 X i

ti = ti−1si ti = ti−2si
sends to Ui+1: si , ti sends to Ui+2: si , ti

receives: t2m−3
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Round Three

receives: di−1, sn receives ki−1
computes: di = sn · di−1 · X−n

i computes: ki+1 = ki−1 · [(X j )
−1
]
m−1

sends to Ui+1: di sends to Ui+2: ki
computes: Ki = di−1 · (zi−1)

n ri computes: Ki = ki−1(Ti )
(m−1)ri

5.2.3 BD II

Another possible arrangement for the general key exchange for n users is a tree arrange-
ment. Classically, the setting for the BD II is finite fields, based on the linear key exchange
unit that we saw in the BD I as well.

We consider the same p, l, g setting as in the previous section. The n users, U1, . . . ,Un
with n > 2 are arranged in a binary tree whose root has been removed and the top two users
have been connected. Each user has a level LvlUi = blog2(i + 1)c. Each user has a parent –
for every user Ui with i 6∈ {1, 2}, we define its parent to be U

b
i−1

2 c
, and we set U1 and U2 to

be each other’s parent – and apart from the users in the last level – also called leaves – each
user has one or two children, which are U2i+1 (left child) and U2i+2 (right child). We denote
the list of ancestors of a user Ui all its ancestors, including the user himself, but excluding
both users 1 and 2: AncUi = {Ui ,Ub i−1

2 c
, . . . ,U

b(i−1)/(2lvlUi
−1
)c
} \ {U1,U2}. The arrangement

is shown in the figure below.

Figure 5.3: The BD II in finite fields

For this figure, the participants in level 3 are the leaves. User U5 has as parent U2 and
its children are: lchild(U5) = U11 and rchild(U5) = U12. The set of ancestors of user U11 is:
AncU11 = {U11,U5}. We note that this structure, though it might seem more artificial than
the circular arrangement in BD I, is actually inherent in certain types of communications,
for example in hierarchic structures.

Once this arrangement and the public setting parameters are known to all the users, the
protocol works as follows:
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The BD II protocol

• Step 1

Each Ui computes a Diffie-Hellman finite fields key pair (ri , zi ) and sends it to his
parent and children.

• Step 2

Each Ui apart from the leaves computes and multicasts to its children X lchild(Ui ) =(
zparent(Ui )
zlchild(Ui )

)ri
and Xrchild(Ui ) =

(
zparent(Ui )
zrchild(Ui )

)ri
.

• Step 3

Each Ui computes the conference key:

Ki = (zparent(Ui ))
ri ·

∏
j∈AncUi

X j . (5.8)

In this protocol, each participant uses a key triplet (ri , zi , X i ); however, as opposed to the
previous protocols, the second public key X i is not computed by the user itself, but by its
parent. Therefore, users U1 and U2 compute the keys X3, X4 and X5, X6 respectively, but not
their own X1 and X2. The protocol is not fully contributory, as the common key computed
by all the users is K = gr1r2 (as it was proven in for instance [10]). However, as noted also
in the case of the BD I protocol in the pairing setting, the computation of the key requires
contributions from all the users.

The security of the protocol is also proven formally in [10]. We mention here only that
the recommended sizes of the system parameters for an 80–bit security are those given
in section 3.4. The computational burden of each user depends on its level. The leaves,
which do not have to compute their own X i , perform two exponentiations and lvlUi − 1
multiplications. Each user needs only input from its direct ancestors; the cardinality of
AncUi is blog2(i + 1)c. Therefore the complexity of the protocol is now logarithmic, instead
of linear in n. All the users that are not leaves compute an extra inversion, multiplication,
and exponentiation per each child.

The BD II protocol can be translated to the pairing setting, an idea which has been pre-
sented by Desmedt and Lange in [9]. In the finite field setting, the key exchange unit remains
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somewhat linear, i.e. each participant is connected to a single parent and two children. In
the pairing setting, the structure becomes more convoluted.

We consider a situation when n > 3 users U1, . . . ,Un wish to communicate in a secure
fashion, in a setting as described in section 3.3. Instead of two roots, as in the finite field
environment, the pairing case includes three special users U1,U2,U3. Each user has four
children, two left children – U4i+2 and U4i+3 – and two right children – U4i and U4i+1. The
parent of all the users apart from the three users is given by Ubi/4c. For a user Ui , the other
child of parent(Ui ) from the same branch is called Ui ’s sibling, and it is denoted sibling(Ui ).
The set of ancestors of a user Ui is defined as before: the user itself and all its ancestors, but
not including users U1,U2, and U3. This arrangement may be clearer in the figure below.

Figure 5.4: The BD II arrangement for parings

For the users in the first level, it holds: parent(U1) = U2, parent(U2) = U3, and
parent(U3) = U1, while sibling(U1) = U3, sibling(U2) = U1, and sibling(U3) = U2.

As an example, we consider user U4. For this user, parent(U4) = U1, sibling(U4) = U5,
the left children are: lchild1(U4) = U18 and lchild2(U4) = U19, while the right children are:
rchild1(U4) = U16 and rchild2(U4) = U17. The set of ancestors of, for instance, user U17
is: AncU17 = {U17,U4}. In their paper [10], Desmedt and Lange have suggested the idea of
the protocol for a set of participants who all have two children each. This document tries to
generalise their approach to any number of users.

We consider the general pairing setting described in 3.2. The protocol now proceeds as
follows:

The BD II protocol in a pairing setting

• Step 1

Each Ui computes a Diffie-Hellman elliptic curve key pair (ri , Zi ) and sends it to his
parent, sibling, and children.
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• Step 2

Each Ui apart from the leaves computes and multicasts to its descendants X lchildren(Ui ) =(
ê(Zparent(Ui ),Zsibling(Ui ))

ê(Z lchild1(Ui ),Z lchild2(Ui ))

)ri
and Xrchildren(Ui ) =

(
ê(Zparent(Ui ),Zsibling(Ui ))

ê(Zrchild1(Ui ),Zrchild2(Ui ))

)ri
. If the user has

only one child, it uses that child’s public key twice in the denominator. For example,
let us assume that the user only has a single right child, namely rchild1(U1). Then

Xrchild1(Ui ) =

(
ê(Zparent(Ui ),Zsibling(Ui ))

ê(Zrchild1(Ui ),Zrchild1(Ui ))

)ri
.

• Step 3

Each Ui computes the conference key:

Ki = (ê(Zparent(Ui ), Zsibling(Ui )))
ri ·

∏
j∈AncUi

X j . (5.9)

In the key computation, if the user has no sibling, then the user uses his own public
key, instead computing:

Ki = (ê(Zparent(Ui ), ZUi ))
ri ·

∏
j∈AncUi

X j . (5.10)

Just as in the case of finite fields, the third key in the key triplet (ri , Zi , X i ) is computed
by the parent of Ui and not Ui itself. The common conference key computed by all the par-
ticipants is ê(P, P)r1r2r3 . The protocol therefore is once more not fully contributory, though
the contributions of all the ancestors are used in the computation of the key. The security of
the protocol can be proven similarly as for the finite field case; in a pairing setting, however,
the size of the parameters is much smaller.

The leaves each have to compute: 1 scalar multiplication on the elliptic curve, 1 pairing,
1 exponentiation, and 2 log4(n) − 1 multiplications. By contrast, regular users with 3 − 4
children need to compute 2 additional pairings, 2 additional inversions, 2 multiplications,
and 2 exponentiations. Each user depends on the contributions of its ancestors, thus the
complexity of the protocol is logarithmic, O(log4(n)).

The two protocols can be even more effectively compared if we show the contributions of
an individually chosen, non-leaf and non-root user Ui :
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Finite Fields Pairings

knows p, l, g knows q, l, P, E, ê, k

Step One

chooses ri ∈ {2, . . . , l − 1} chooses ri ∈ {2, . . . , l − 1}
computes: zi = gr1 computes: Zi = ri P

receives: zparent(Ui ), zrchild(Ui ), zlchild(Ui ) receives: Zparent(Ui ), Zrchild1(Ui ), Zrchild2(Ui )

Zsibling(Ui ), Z lchild1(Ui ), Z lchild2(Ui )

Step Two

computes: X lchild(Ui ) =

(
zparent(Ui )
zlchild(Ui )

)ri
computes: X lchildren =

(
ê(Zparent(Ui ),Zsibling(Ui ))

ê(Z lchild1(Ui ),Z lchild2(Ui ))

)ri

computes: Xrchild(Ui ) =

(
zparent(Ui )
zrchild(Ui )

)ri
computes: Xrchildren =

(
ê(Zparent(Ui ),Zsibling(Ui ))

ê(Zrchild1(Ui ),Zrchild2(Ui ))

)ri

receives: X j for j ∈ AncUi receives: X j for j ∈ AncUi

Step Three

computes: computes:
Ki = (zparent(Ui ))

ri
∏

j∈AncUi
X j mod p Ki = ê(Zparent(Ui ), Zsibling(Ui ))

ri
∏

j∈AncUi
X j

Once more, the two protocols are very similar, though the computations are done in
different settings. As in the case of the BD I, the pairing version has as few computations of
pairings as possible. In both protocols, the third set of keys X i is computed by the parents of
the users, and not by the users themselves. In the case of the BD I protocol, the complexity
is linear in the number of users; for the BD II protocol, the complexity is O(log2(n)) in finite
fields and O(log4(n)) in the pairing setting. Furthermore, most of the users (about half in
the finite fields case and about 3

4n in the pairing setting) are leaves and thus do not have to
compute their own X i . If one chooses the fast, BN curves setting, it is very possible for the
protocol to run faster with pairings than with finite fields. In fact, the larger the value of n,
the larger the difference in computation speed.

5.2.4 Modified Key Exchange

In the case of BN curves and other curves on which distortion maps cannot be defined, we
consider as additional setting parameter the generator of the group G2 – the group where
the second argument of the pairing is taken from. We denote this generator by S. The
modifications required by the BD I protocol will be the same for both the broadcast and the
turn-based version, as they only concern the key generation step and sometimes the order of
the arguments in the computation of the pairing.

We recall that the BD I arrangement for pairings is based on triangular units, as in the
figure below. The easiest way to modify the protocol would be to have all users compute key
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triplets (si , Zi , Ri ) with Zi = si P and Ri = si S; however, there exist also more efficient ways
to achieve this.

Figure 5.5: The BD I arrangement for parings

In what follows, we present the modified broadcast BD I protocol and state that the same
modifications will achieve the successful modification of the turn-based version. We use the
notations: Zi for P-based pubic keys, and Ri for S-based public keys. Let m = bn

2c and if n
is even, take U2m+1 = U1.

Modified Broadcast BD I with Pairings

• Step 1

Each user Ui , for i ∈ {1, 3, . . . , 2m+1} and i mod 4 = 1 generates a triplet (si , Zi , Ri ).
If U2m+1 does not exist, it is identified with user U1 after key generation, and so has
the first user’s keys. Each even user Ui with i = 2, 4, . . . , 2m generates the key pair
(si , Zi ). Each user Ui with i ∈ {1, 3, . . . , 2m + 1} and i mod 4 = 3 generates the key
pair (si , Ri ).

• Step 2

Each user Ui , with i odd and i = 3, . . . , 2m − 1 computes and broadcasts:

X i =

(
ê(Zi+1, Ri+2)

ê(Zi−1, Ri−2)

)si

(5.11)

and X−1
i .

• Step 3

Each user Ui computes its conference key Ki as follows:

K1 = (ê(Z2, R3))
(m−1)s1 Xm−2

3 Xm−3
5 . . . X2m−3,
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Ki = T (m−1)si
i (X3 X2

5 . . . X j−1
2 j−1)

−1(Xm− j−1
2 j+1 Xm− j−2

2 j+3 . . . X2m−3) i 6= 1. (5.12)

In the last equation, j = b i
2c and Ti = ê(Zi−1, Ri+1) for i even and Ti = ê(Zi−1, Ri−2)

for i odd.

The resulting common conference key is K = e(P, S)d with d = s1s2s3 + s3s4s5 + ... +

s2m−3s2m−2s2m−1. The users that compute an extra scalar multiplication are users Ui with i
odd and i mod 4 = 1; their proportion is maximal when the number of users n ≡ 1 mod 4,
and then it is equal to n−1

4 + 1. After the key generation step, the general rule is for the
first argument of each pairing to contain P and the second argument to contain S. For this
purpose, the arguments of the pairings in the denominator of X i are switched. The same
strategy can be applied in the turn-based protocol.

For the BD II protocol, the situation is slightly more complicated. We remind the reader
of the general arrangement of the users. Instead of two roots, as in the finite field environ-
ment, we consider three special users U1,U2,U3. The left children of user Ui are U4i+2 and
U4i+3; its right children are: U4i and U4i+1. The parent of all the users apart from the three
special users is given by Ubi/4c. Ui ’s sibling is the other child of parent(Ui ) from the same
branch, and it is denoted sibling(Ui ). The set of ancestors of a user Ui contains Ui and all
its ancestors, but not including users U1,U2, and U3.

Figure 5.6: The BD II arrangement for parings

Let the cardinality of the set of ancestors of Un be m. Let the set I = {i1, ..., im, im+1}

include the indices of all these users in decreasing order of their indices and im+1 is index of
the parent of Uim , one of the users U1,U2,U3. So i1 = i , i2 is the index of the parent of Ui ,
and so forth. The notation of the private and public key pairs remains as above. Furthermore,
if Ui is a user, we denote pari the index of its parent. So Upari

is the parent of Ui . In this
setting, the protocol is modified as follows:
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The BD II protocol in a pairing setting

• Step 1

For each user Ui , we find j ∈ I such that i j+1 < i ≤ i j . If j is odd, all Ui with
i mod 2 = i j+1 mod 2 that have siblings generate key pair (si , Ri ) and all Ui with
i mod 2 6= i j+1 mod 2 that has siblings generate key pair (si , Zi ). If j is even, all Ui
generate key triplets (si , Zi , Ri ). If im+1 = 3 and m is even, U1 generates a key triplet.
All users Ui without siblings generate key triplets. Each user sends its public keys to
its parent, siblings, and children.

• Step 2

Each Ui apart from the leaves computes and multicasts to its descendants X lchildren(Ui ) =(
ê(Zparent(Ui ),Rsibling(Ui ))

ê(Z lchild1(Ui ),Rlchild2(Ui ))

)si
and Xrchildren(Ui ) =

(
ê(Zparent(Ui ),Rsibling(Ui ))

ê(Zrchild1(Ui ),Rrchild2(Ui ))

)si
. If the user has

only one child, it uses that child’s public key twice in the denominator. For example,
let us assume that the user only has a single right child, namely rchild1(U1). Then

Xrchild1(Ui ) =

(
ê(Zparent(Ui ),Rsibling(Ui ))

ê(Zrchild1(Ui ),Rrchild1(Ui ))

)si
. The arguments of the pairings can be inverted

so as to use the keys that the neighbouring users have.

• Step 3

Each Ui computes the conference key:

Ki = (ê(Zparent(Ui ), Rsibling(Ui )))
si ·

∏
j∈AncUi

X j . (5.13)

In the key computation, if the user has no sibling, then the user uses his own public
key, instead computing:

Ki = (ê(Zparent(Ui ), RUi ))
si ·

∏
j∈AncUi

X j . (5.14)

The common conference key computed by all the participants is ê(P, S)r1r2r3 . We point
out that most of the users will compute only a key pair, and only a few users will compute an
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extra scalar multiplication. Every other layer of users will compute a key triplet, beginning
with the second layer. Two siblings will either have different types of public keys (one being
P-based and one being S-based) or will both have both types of public keys.
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Chapter 6

Authentication and the Katz Yung Compiler

The protocols already described so far are key exchange (KE) protocols. It is useful to men-
tion here what this entails and how the protocol can be made more secure by means of
authentication. For years, authentication has been a topic of great interest, as it offers a way
of proving one’s identity within any communications’ environment.

We define first the notions of active or passive adversaries. In public key cryptography we
assume the presence of an adversary Eve, who has access to the communication between the
parties involved. If the adversary is modelled so that she can only eavesdrop (i.e. without
taking part in the communication), she is called a passive adversary. If Eve is assumed to be
able to intervene in the communication between the parties involved (for instance by trying
to impersonate one of the participants in the communication and sending messages on their
behalf) then the adversary is called active.

A regular key exchange (KE) protocol should be generally safe against passive attackers.
For example, a simple Diffie-Hellman exchange is safe against passive attacks, as solving the
DLP, CDHP, and DDHP problems is computationally infeasible. When we have discussed
the security of the previously presented protocols, we have shown them to be secure against
passive attacks.

However, an active attacker can simply intercept the messages sent by, say, party A, and
send a message of her choice instead. For example, let us assume that we have a simple
protocol, where parties A and B choose secret keys and compute the corresponding public
keys, which they send to each other. However, Carol could intercept the message from party
A and instead choose a secret key of her own. It can then send party B the corresponding
public key and thus only Carol and party B can perform encryption and decryption on the
future messages. Similarly, by sending her own public key to party A, Carol will now be
able to intercept and decrypt every message sent from one party to the other and substitute
it with a message that she chooses and encrypts. Parties A and B will both remain unaware
of Carol’s existence in this case, as the communication is maintained. This is called a man-
in-the-middle attack.

On the other hand, an authenticated key exchange (AKE) protocol has to be secure also
against active attacks. These protocols require some means of authentication, meaning that
the different parties can prove they are who they claim to be. An important result was
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published by Katz and Yung in [21] – a compiler that turns any KE protocol into an AKE
protocol. In what follows, we describe the general idea of this compiler.

We assume that there are n parties U1, . . . ,Un trying to communicate securely over an
insecure connection. We denote the set of users by U. These parties are all assumed to be
present in the same communication session. Let us assume there exists a KE protocol P for
the key exchange between these parties. Then the Katz-Yung compiler will turn this protocol
into an AKE protocol P ′. The j th message sent by user U in this arrangement is indexed
as U | j |m, where U denotes the user j , and m is the message itself. We define a signing
function based on a secret key, SKU and a verifying function based on a public key PKU .

Binding public keys to identities can present some difficulties. Generally speaking, we
simply assume that all the users have all the public keys of all their peers. In order to
bind public keys to identities, one uses a Public Key Infrastructure (PKI). The user must
generate a secret and a public key of its own, and then be granted a certificate from a trusted
Certificate Authority; this signature proves that the identity truly corresponds to the public
key. Though the process of running proper PKI can be too cumbersome to be included in
any communication over the internet, it should certainly be involved in larger conferences
that require a higher level of security.

Authentication requires signing messages. There are three algorithms involved in digital
signatures (see [24]): key generation algorithms, signing algorithms, and verification algo-
rithms. The key-pair consists of a private key S and a public key P . A message m can be
signed by means of S and the signing algorithm (denoted by Sign); the output is a signature
σ . Then the verification algorithm (denoted by Verify) uses P and m to check that σ is the
signature generated for m with the secret key.

We now return to the Katz Yung compiler. During the initialisation of the protocol P ,
each user U generates an extra secret key SK’U (apart from any secret key generation re-
quired by the protocol P ). This user calculates then the public key PK’U . These keys are
used for signing and verifying subsequent communication. The compiler described below
assumes the existence of this extra pair of secret and public keys.

The compiler that performs the transformation between P and P ′ in the following way:

Katz-Yung Compiler

1. Each user Ui ∈ U generates a random ri ∈ {0, 1}k and broadcasts the message: Ui |0|ri .
The message is therefore given order number 0 – an initiation value. All partners in-
volved in this session store the values of the partners and their random values in a
variable: noncesU = U1|r1|U2|r2| . . . |Un|rn .

2. The protocol P is executed, altered as follows:

• Whenever user U wants to broadcast message U | j |m by means of the protocol
P , it computes first σ = SignSK’U ( j |m|noncesU ), where SignSK’U is the signing

62



function executed under the secret key SK’U . The user broadcasts U | j |m|σ .

• If a message V | j |m|σ is received, the following actions will be performed: (1) :
checking that V ∈ U; (2) : it is checked that there has already been a message
number j − 1 sent by user V , but no message with number j yet; (3) : the sig-
nature is verified, i.e. it is checked that VerifyPK’U ( j |m|noncesU , σ ) = 1. Herein,
VerifyPK’U (a, s) is the verification procedure that checks the validity of s as a sig-
nature on a. It should hold that s = SignSK’U (a). If any of these 3 verification
steps is not completed, then the protocol resets. Otherwise, the protocol contin-
ues as before.

3. If the protocol has not been reset yet, then each user may thereafter compute the
shared secret key as instructed by P .

Katz and Yung prove that if the KE protocol P is secure against passive adversaries, then
the AKE protocol P ′ is also secure against active adversaries. The Katz-Yung compiler can
be applied to the any of the protocols presented before, in order to obtain security against
active adversaries. However, the complexity of the Katz-Yung compiler is O(n), therefore a
KE protocol with smaller complexity will not benefit from this means to turn it into an AKE
protocol.
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Chapter 7

Multi-partite Key Exchange in JCrypTool

An important part of the master project associated with this thesis was the implementation
of the described cryptographic protocols in JCrypTool. This Java development branch of the
CrypTool initiative already contains numerous algorithms, from the classical Caesar cipher,
Viginere encryption, or a one-time pad, to AES, RSA, and zero-knowledge protocols. Apart
from the user interface and user manual, JCrypTool also describes mathematical background
for each of its implemented components and methods.

The current version of JCrypTool is milestone2, which has been released at the end of
August 2008. This version of the project can be downloaded on Source Forge [18]. This
version does not yet include the key exchange component, which is still at its beginning.

This chapter will be structured as follows: Initially a brief description of the author’s
contribution to the project is given in 7.1, then an interface is shown and described in more
detail in 7.2, and finally a few comments are reserved for future development in 7.3.

7.1 Personal Contributions to JCrypTool

The JCrypTool project is based on plug-ins and features including plug-ins. The final out-
put of the GUI’s provided for key exchange are therefore feature projects in Java, and they
include view-based plug-ins. The development of these plug-ins contains two aspects: the
interface aspect and the protocol aspect. The following protocols were targeted for imple-
mentation and integration into JCrypTool at the beginning of this project:

• Authenticated pairing based tripartite key exchange (Joux’ protocol).

• Authenticated broadcast BD I in finite fields and pairings.

• Authenticated broadcast BD II in finite fields and pairings.

It was later agreed upon that the authenticated Diffie-Hellman key exchange protocol
should also be implemented, both on finite fields and on elliptic curves. For the pairing
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based protocols, we decided to use the Tate pairing (see section 3.3) on supersingular curves
with embedding degree 2.

In order to develop these protocols, the following structures were implemented, in order
to complement the tools already provided by Java and the external FlexiProvider toolkit [15]:

• A parameter generator for finite fields, which takes as input the key size (size of l), and
outputs a parameters object including values for p, l, and g as required by the finite
field setting (see section 3.1).

• A parameter generator for elliptic curves with pairings (i.e. curves with small embed-
ding degree). This generator takes as input the size of q and outputs a parameters
object including values for q, l, and the coordinates of P on an elliptic curve E that is
preset in the generator. More details regarding this setting can be found in sections
3.2 and 3.3.

• Elliptic curve arithmetic for an elliptic curve over Fp for p a large prime. Point addition
and point doubling are done with Jacobian coordinates, but the possibility is given to
return the point also in affine coordinates.

• Basic polynomial arithmetic for polynomials with coefficients either in Z or in Fp.
Reduction modulo another polynomial f is provided, together with multiplication,
exponentiation, and inversion modulo f .

• A very basic construction of points on E(Fp2) was implemented as default. This struc-
ture can be extended to E(Fpn).

• A Tate pairing implementation is given for embedding degree 2 (with distortion maps).
This implementation is based on Miller’s algorithm. A Weil pairing implementation
is amongst the first items on the list of future developments (see section 7.3).

• Implementations of the bipartite (Diffie-Hellman), Joux, Broadcast BD I, and BD II
protocols as described above.

• Authentication for an arbitrary message m with default method SHA-1 followed by
RSA.

We implemented the user interfaces for the following protocols:

• The Diffie-Hellman key exchange interface in finite fields. Available interaction: key
size, authentication (impersonation attacks), manual/automatically-generated input.
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• The Broadcast BD I in finite fields. Available interaction: parameter size (two choices,
5-bit parameters and 1024 bit parameters), number of users n > 2.

• The Broadcast BD I in the pairing setting, embedding degree 2 with default curve.
Available interaction: parameter size (two choices, 8-bit parameters and 512-bit pa-
rameters), number of users n > 3.

7.2 Sample Interface

As there are many aspects of key exchange that can be interesting to see, each of the protocol
interfaces attempts to show new facets of key exchange, and different parameters are varied.
We show here only one of these interfaces and mention that all the interfaces will all be made
as user-friendly as possible, so that a greater understanding of key exchange might follow as
naturally as possible.

As key exchange is not yet included in the JCrypTool product, its location might be subject
to change. The user can choose between protocols from a menu; what we describe in the
following pages, however, is a brief overview of the interface that becomes accessible once
the BD I protocol with pairings has been chosen.

There are two types of parameters that can be set by the user: the number of users and
the setting parameters. The elliptic curve E is set by default to have the short Weierstrass
equation y2

= x3
+ x , and the embedding degree k = 2. There are two choices of parameter

sizes: high and low. The values of q, l, and the coordinates of P are automatically chosen for
the specified parameter size. Low security equates: q = 103, l = 13, and P = (26, 35). For a
high security level, the parameters are automatically set to those mentioned in [27].

Once the setting parameters are set, the user can then choose a number of users n > 3.
Special values of n are 4, 5, and 6; for these particular parameters, special protocol illustra-
tions and explanations follow. Generalised illustrations are also drawn for any value of n.
Figure 7.1 shows an example of the illustration for n = 5.
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Figure 7.1: The Case n = 5

The illustration panel, denoted in the figure 7.1 by 3, is updated at ever step of the proto-
col. The protocol develops interactively, as the user clicks buttons such as the ones denoted
by 1 and 2. As each step of the protocol is completed, further explanations are made available
to the user. This is more easily visible in Figure 7.2:
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Figure 7.2: Protocol Information and User Interaction

The illustration panel 1 is updated with protocol information; explanations related to this
information are written in the adjacent panel 2. The protocol can be continued by the user’s
interaction with the protocol panel 3. The authentication and verification panel 4 provides
additional explanations regarding each of the protocol steps and also shows the user data.
For n = 4, 5, or 6, the verification panel shows the values of si , zi , X i , and Ki , as defined
by section 5.2.1. These values can be used for verification only; changing or deleting a value
will not affect the protocol. For a number of users greater than 6, only the user information
of the first six users is shown in the verification panel.

We show the authentication and verification panel in more detail in Figure 7.3:
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Figure 7.3: The User Authentication and Verification Panel

We point out in particular the verification panel 1, where the user information is dis-
played. The authentication panel 2 shows the authentication-related steps connected to each
step of the protocol. For small numbers of users, it is visible from the verification panel that
the keys computed by each user are identical. For larger numbers of users, however, only the
user data of a few users is available. An automatic verification is provided by the interface
as shown in figure 7.4 (the verification step is denoted 2). Once the keys are all verified to
be identical, the user is given two rerun choices: with a new number of users, and with new
setting parameters. The rerun panel is denoted below by 3.

At each step the user interface provides the user with only that information which is
currently relevant. As an example, we show a fragment of the interface before the choice of
setting parameters; any remaining panels – such as the protocol, illustration, verification,
and rerun panels – are hidden at this point.
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Figure 7.4: Initial Setting Description
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7.3 Further Developments

As a short term goal, the key exchange component in JCrypTool is required to have the in-
terfaces corresponding to the improvements mentioned in section 7.1. Apart from these
modifications, the following extra items are listed for implementation:

• The implementation of the Weil pairing and adding it to the tripartite key exchange
protocol (protocol-related).

• The implementation of the tripartite, BD I, and BD II protocols for pairings for embed-
ding degree k = 12, with the aid of Paulo Barreto’s library. (protocol-related, interface-
related)

• Including a slow curve (a pairing friendly elliptic curve E for which denominator elim-
ination is not applicable in Miller’s algorithm – see chapter 2) as parameter of the
k = 2 tripartite key exchange case. (protocol-related, interface-related)

• The implementation of turn-based BD I in finite fields and with pairings. (protocol-
related, interface-related)

• Optimisation of the code: introduction of efficient polynomial reduction and arith-
metic, optimisation of pairing computation. (protocol-related)

• Maintenance work for any of the included components.
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Chapter 8

Conclusions

Several topics were presented throughout this thesis. Three main cryptographic settings
are considered: finite fields, elliptic curves, and pairings. The parallel between finite fields
and elliptic curves is easy to draw, by relating field elements to points and multiplication
to addition. The translation of the Diffie-Hellman key exchange protocol and of the hard
problems in finite fields and on elliptic curves is quite straight-forward, once exponentiation
is replaced by scalar multiplication.

Pairings are a more complicated structure in general. They exist on any elliptic curve,
but are only efficiently computable on the so-called pairing-friendly curves. They depend on
the value of the embedding degree k. For the case k = 2, one usually must consider also a
distortion map, while for the more efficient BN curves, one must alter the protocols so that
the second argument of the pairing is chosen from a group G2 that is linearly independent
from the group G1 where the first argument is taken from.

Several multi-partite key exchange protocols have been shown in this paper, in various
settings. The Diffie-Hellman bipartite protocol is shown as the base key exchange arrange-
ment for finite field and elliptic curve key exchange. The tripartite key exchange protocol
due to Joux is the corresponding unit key exchange arrangement for pairing settings. These
arrangements can be extended to the BD I and BD II multi-partite key exchange protocols.

Two versions of the BD I protocol were presented in this paper: a broadcast and a turn-
based version. While the broadcast version contains less communication rounds, each user
must perform more calculations. On the other hand, the turn-based protocol depends on
the existence of a steady connection between the users, and on the fact that each user will
react immediately after the previous user has acted. In both broadcast and turn-based BD
I in finite fields, the arrangement is circular, while for pairings, it is triangle-based. This
paper shows that the turn-based protocol in the pairing setting requires less rounds than
the turn-based protocol in the finite field setting; however, each round is more complicated
when pairings are considered. Similarly, the triangle-based, layered arrangement for BD II
in the pairing setting takes less rounds than the tree-based arrangement in finite fields, but
the pairing computation slows the protocol down.

All the above mentioned protocols rely on the difficulty of the discrete logarithm and
computational and decisional Diffie-Hellman problems in their respective settings. With
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parameters of proper size, they can be shown to be secure against passive attacks. In order
to make these protocols secure against active attacks, one needs to provide authentication.
One way of doing this is to use the Katz Yung compiler; the compiler, however, has running
time linear in the number of users, so it will not be to the advantage of the BD II protocol,
which is logarithmic in the number of users.

The visualisation of the protocols in CrypTool aims to present various facets of key ex-
change, demonstrating which parameters can influence the running time of the considered
protocols. Several settings are provided for each protocol, and authentication is provided
every time by using the Katz Yung compiler.
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Appendix

In this appendix, we give a few interesting details regarding the implementation of key ex-
change protocols in various settings. Miller’s algorithm has already been given in section
3.3; some further tricks may help in the writing of a fast implementation.

A.1 Scalar Multiplication and Exponentiation with Windowing Methods

In finite fields, repeated multiplication represents exponentiation. On elliptic curves,
repeated addition represents scalar multiplication. We consider the following setting: p is
a (large) prime, and we denote F∗p the multiplicative subgroup of Fp. Suppose we wish to
calculate ga for some elements g, a ∈ F∗p.

The input of the algorithm is: the prime p, g ∈ Fp, and a non-negative integer a, whose
binary decomposition is (al−1, . . . , a0). The efficiency of the method depends on a window
size that can depend on the application, denoted w; the higher the window size, the faster
the algorithm. However, as the window size increases, the precomputation necessary for
the scalar multiplication increases, and more storage capacity is needed. If the element g
is known from before the protocol is started, better methods may be used for scalar multi-
plication; once g is given during the protocol, however, each user can compute in parallel
g, g3, . . . g2w−1. The output of the algorithm is the point ga .

Scalar Multiplication on Finite Fields

Input: g ∈ F∗p, a = (al−1, . . . , a0)2 ∈ Z, w ≥ 1, {g, g3, . . . , g2k
−1
}.

Output: ga
∈ Fp.

1. b← 1; i = l − 1;

2. WHILE i ≥ 0 DO:

(a) IF ai = 0 THEN: b← b2; i ← i − 1;

(b) ELSE:
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i. s ← max(i − w + 1, 0);
ii. WHILE as = 0 DO: s = s + 1;

iii. FOR h = 1 TO i − s + 1 DO b← b2;

iv. u ← (ai . . . as)2;

v. b← b · gu ;

vi. i ← s − 1;

3. RETURN: b.

We point out that this problem is essentially equivalent to having an elliptic curve E
over a field of the form Fq for q a prime or prime power, and wishing to calculate n P for
some non-negative integer n and a point P ∈ E . An algorithm similar to the one above
can therefore be used for scalar multiplication on elliptic curves; this algorithm is presented
for example in [1]. The run time of scalar multiplication can be improved by using signed
window methods.

A typical value for the window size for elliptic curves w = 3. A much bigger window
size, such as w = 7 will dramatically increase both the speed of the algorithm and its
storage demands; the precomputation time will also be much larger in this case. In the
case of finite fields, a larger window size is admitted. If the precomputed list of points
{P, 3P, . . . , (2w − 1)P} and of field elements {g, g3, . . . , g2w−1

} are given as public parame-
ters of a protocol and do not have to be computed by each of the participants involved, then
it is certainly worth using a larger value of w. if the computation needs to be performed by
each user independently, the value of w should be kept small.

A.2 A Horner-like Trick

The BD I key exchange protocol, both in finite fields and on pairings, contains expres-
sions of the form an

1 · a
n−1
2 · · · · · an . If each of these exponentiations is done separately and

then the multiplication is performed, the user must do n exponentiations and n multiplica-
tions in the finite field. This calculation, however, can be done much faster if one considers
using a Horner-like method.

Firstly, let us briefly mention what Horner’s method is. Consider a polynomial p ∈ K[x]
for some field K. This polynomial is assumed to have degree n and can be written as:

p(x) = anxn
+ an−1xn−1

+ · · · + a1x + a0 . (8.1)

Then the evaluation of this polynomial at some value x = z can be done as follows:

Horner’s Method for Polynomial Evaluation
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Input: p(x) = anxn
+ · · · + a1x + a0, x = z.

Output: p(z).

1. bn = an ;

2. FOR k = n − 1 TO k = 0 DO: bk = ak + zbk+1;

3. RETURN: b0.

This method can be more easily visualised as follows: instead of computing (((anxn
+

an−1xn−1)+an−2xn−2)+· · ·+a1x)+a0, one computes: (((anx +an−1)x +an−2)x +an−3)+

· · · + a0.
A method similar to this can calculate expressions of the form an

1 an−1
2 . . . an . We show

this algorithm below.

A Horner-like Multiplication Trick

Input: a1, . . . an .
Output: an

1 · a
n−1
2 · · · · · an .

1. s = t = a1;

2. FOR k = 1 TO k = n − 1 DO:

(a) s = s · ak+1;

(b) t = s · t ;

3. RETURN: t .

With the aid of this method, each user is able to calculate the result an
1 · · · · · an with only

2n−2 field multiplications. As exponentiation is much more expensive than field multiplica-
tion, this Horner method is much cheaper than straight-forward successive exponentiation
and multiplication.

A.3 Montgomery’s Trick

Throughout the paper, we repeat that inversions can be turned into multiplications. This
can be done in a variety of ways. For example, on elliptic curve, one can choose to use Jaco-
bian instead of affine coordinates to obtain inversion-free addition and scalar multiplication
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on the elliptic curve. In the case of pairings, one may use the bilinearity property to compute
ê(P, Q)−1 as ê(−P, Q). This is generally a good strategy, as inverting a point on an elliptic
curve is almost a free operation.

If field multiplications are much faster than inversions, one can also use the so-called
Montgomery trick. Given a and b, this method will compute a−1 and b−1. We add that this
algorithm need not be used exclusively with integers or integers modulo p; any field will do.
We show the trick below:

Montgomery’s Trick

Input: a, b ∈ K, for some field K.
Output: a−1 and b−1.

1. π = ab;

2. π = 1
π

;

3. RETURN: a−1
= π · b and b−1

= π · a.

Clearly, this method is not worth applying for a single inversion. However, if one must
invert two elements, one may trade one of these inversions for three multiplications. On
most platforms and in most fields, inversions are much slower than multiplications, so this
trick can be very effective.
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